65 research outputs found

    ToPoliNano and fiction: Design Tools for Field-coupled Nanocomputing

    Get PDF
    Field-coupled Nanocomputing (FCN) is a computing concept with several promising post-CMOS candidate implementations that offer tremendously low power dissipation and highest processing performance at the same time. Two of the manifold physical implementations are Quantum-dot Cellular Automata (QCA) and Nanomagnet Logic (NML). Both inherently come with domain-specific properties and design constraints that render established conventional design algorithms inapplicable. Accordingly, dedicated design tools for those technologies are required. This paper provides an overview of two leading examples of such tools, namely fiction and ToPoliNano. Both tools provide effective methods that cover aspects such as placement, routing, clocking, design rule checking, verification, and logical as well as physical simulation. By this, both freely available tools provide platforms for future research in the FCN domain

    SCERPA Simulation of Clocked Molecular Field-Coupling Nanocomputing

    Get PDF
    Among all the possible technologies proposed for post-CMOS computing, molecular field-coupled nanocomputing (FCN) is one of the most promising technologies. The information propagation relies on electrostatic interactions among single molecules, overcoming the need for electron transport, significantly reducing energy dissipation. The expected working frequency is very high, and high throughput may be achieved by introducing an efficient pipeline of information propagation. The pipeline could be realized by adding an external clock signal that controls the propagation of data and makes the transmission adiabatic. In this article, we extend the Self-Consistent Electrostatic Potential Algorithm (SCERPA), previously introduced to analyze molecular circuits with a uniform clock field, to clocked molecular devices. The single-molecule is analyzed by ab initio calculations and modeled as an electronic device. Several clocked devices have been partitioned into clock zones and analyzed: the binary wire, the bus, the inverter, and the majority voter. The proposed modification of SCERPA enables linking the functional behavior of the clocked devices to molecular physics, becoming a possible tool for the eventual physical design verification of emerging FCN devices. The algorithm provides some first quantitative results that highlight the clocked propagation characteristics and provide significant feedback for the future implementation of molecular FCN circuits

    Hybrid Quantum-Dot Cellular Automata Nanocomputing Circuits

    Get PDF
    Quantum-dot cellular automata (QCA) is an emerging transistor-less field-coupled nanocomputing (FCN) approach to ultra-scale ‘nanochip’ integration. In QCA, to represent digital circuitry, electrostatic repulsion between electrons and the mechanism of electron tunnelling in quantum dots are used. QCA technology can surpass conventional complementary metal oxide semiconductor (CMOS) technology in terms of clock speed, reduced occupied chip area, and energy efficiency. To develop QCA circuits, irreversible majority gates are typically used as the primary components. Recently, some studies have introduced reversible design techniques, using reversible majority gates as the main building block, to develop ultra-energy-efficient QCA circuits. However, this approach resulted in time delays, an increase in the number of QCA cells used, and an increase in the chip area occupied. This work introduces a novel hybrid design strategy employing irreversible, reversible, and partially reversible QCA gates to establish an optimal balance between power consumption, delay time, and occupied area. This hybrid technique allows the designer to have more control over the circuit characteristics to meet different system needs. A combination of reversible, irreversible, and innovative partially reversible majority gates is used in the proposed hybrid design method. We evaluated the hybrid design method by examining the half-adder circuit as a case study. We developed four hybrid QCA half-adder circuits, each of which simultaneously incorporates various types of majority gates. The QCADesigner-E 2.2 simulation tool was used to simulate the performance and energy efficiency of the half-adders. This tool provides numerical results for the circuit input/output response and heat dissipation at the physical level within a microscopic quantum mechanical model.N/

    Modeling, Design, and Analysis of MagnetoElastic NML Circuits

    Get PDF
    With the predicted end of CMOS scaling process, researchers started to study several alternative technologies. Among them NanoMagnet Logic (NML) offers advantages complementary to MOS transistors especially for its magnetic nature. Its intrinsic memory capability makes it suitable for zero stand-by power and logic-in-memory applications. NML requires a clock system that, if based on a magnetic field, highly increases the circuit dynamic power consumption. We have recently proposed a solution based on the magnetoelastic effect (ME-NML) [1] and on currently available fabrication processes, which drastically reduces dynamic power consumption. However, many questions still remain unanswered. Which kind of applications are best suited for this technology? How can we effectively design, analyze, and compare ME-NML circuits? Does it really offer advantages over state-of-the-art CMOS transistors? In this paper, we provide answers to all these questions and the results prove that this technology offers indeed extremely good performance. We have designed a Galois field multiplier with a systolic array structure to reduce interconnection overhead. We developed a new RTL model that allows us to easily describe and simulate circuits of any complexity, evaluating at the same time the performance and keeping into account technology constraints. We approach for the first time in the NML scenario the design of ME-NML circuits adopting the standard-cell method used in standard technologies and fulfill the design down to the physical level. The same circuit is designed also with NML technology based on magnetic fields and with a 28 nm low power CMOS bulk technology for comparison. The CMOS circuit is obtained through physical place&route with a commercial tool, providing, therefore, the most accurate comparison ever presented in literature. Power analysis shows that ME-NML circuits have a considerable advantage over both NML and state-of-the-art CMOS bulk technology. As a further by-product results clearly highlight which kind of architectures can better exploit the true potential of NML technology

    Design and Investigation of Genetic Algorithmic and Reinforcement Learning Approaches to Wire Crossing Reductions for pNML Devices

    Get PDF
    Perpendicular nanomagnet logic (pNML) is an emerging post-CMOS technology which encodes binary data in the polarization of single-domain nanomagnets and performs operations via fringing field interactions. Currently, there is no complete top-down workflow for pNML. Researchers must instead simultaneously handle place-and-route, timing, and logic minimization by hand. These tasks include multiple NP-Hard subproblems, and the lack of automated tools for solving them for pNML precludes the design of large-scale pNML circuits
    • …
    corecore