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ABSTRACT

HEAT DISSIPATION BOUNDS FOR NANOCOMPUTING:
METHODOLOGY AND APPLICATIONS

FEBRUARY 2014

İLKE ERCAN

B.Sc., MIDDLE EAST TECHNICAL UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Neal G. Anderson

Heat dissipation is a critical challenge facing the realization of emerging nanocom-

puting technologies. There are different components of this dissipation, and a part of

it comes from the unavoidable cost of implementing logically irreversible operations.

This stems from the fact that information is physical and manipulating it irreversibly

requires energy. The unavoidable dissipative cost of losing information irreversibly

fixes the fundamental limit on the minimum energy cost for computational strategies

that utilize ubiquitous irreversible information processing.

A relation between the amount of irreversible information loss in a circuit and the

associated energy dissipation was formulated by Landauer’s Principle in a technology-

independent form. In a computing circuit, in addition to the information-theoretic

dissipation, other physical processes that take place in association with irreversible

information loss may also have an unavoidable thermodynamic cost that originates

v



from the structure and operation of the circuit. In conventional CMOS circuits such

unavoidable costs constitute only a minute fraction of the total power budget, how-

ever, in nanocircuits, it may be of critical significance due to the high density and

operation speeds required. The lower bounds on energy, when obtained by consider-

ing the irreversible information cost as well as unavoidable costs associated with the

operation of the underlying computing paradigm, may provide insight into the funda-

mental limitations of emerging technologies. This motivates us to study the problem

of determining heat dissipation of computation in a way that reveals fundamental

lower bounds on the energy cost for circuits realized in new computing paradigms.

In this work, we propose a physical-information-theoretic methodology that en-

ables us to obtain such bounds for the minimum energy requirements of computation

for concrete circuits realized within specific paradigms, and illustrate its application

via prominent nanacomputing proposals. We begin by introducing the unavoidable

heat dissipation problem and emphasize the significance of limitations it imposes on

emerging technologies. We present the methodology developed to obtain the lower

bounds on the unavoidable dissipation cost of computation for nanoelectronic circuits.

We demonstrate our methodology via its application to various non-transistor-based

(e.g. QCA) and transistor-based (e.g. NASIC) nanocomputing circuits. We also

employ two CMOS circuits, in order to provide further insight into the application

of our methodology by using this well-known conventional paradigm. We expand our

methodology to modularize the dissipation analysis for QCA and NASIC paradigms,

and discuss prospects for automation. We also revisit key concepts in thermody-

namics of computation by focusing on the criticisms raised against the validity of

Landauer’s Principle. We address these arguments and discuss their implications for

our methodology. We conclude by elaborating possible directions towards which this

work can be expanded.
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INTRODUCTION

Advancements in nanotechnology – emerging technologies with functional features

at the one-billionth of a meter scale – promise to overcome limitations of current elec-

tronic circuits. Complementary Metal-Oxide Semiconductor (CMOS) transistors have

been the fundamental building block of modern computer processors since 1980s and

the size of these transistors has been shrinking steadily ever since,1 enabling us to

progressively develop smaller circuits operating at increasingly faster speeds. How-

ever, there are numerous limiting factors to this trend, which threaten the improved

performance of this technology in the near future. The challenges encountered as the

chips scale down to nanometer size have significant real-world implications,2 and need

to be addressed with urgency in all levels.

Numerous promising proposals are being put forth to overcome the limitations

of current electronic technologies. The realization of these emerging nanoelectronic

technology proposals faces a broad range of challenges cutting across device, circuit,

architecture, and fabrication levels. Energy dissipation is perhaps the most critical

one among these obstacles. The realization of post-CMOS nanoelectronic circuits3

depends on tackling such challenges. Advances in technology may allow us to over-

come limitations at all levels for a proposed successor computational strategy and

1The trend in the shrinking device size translates to an increase in the number of transistors
on integrated circuits. Approximately every two years since 1960s, this number has doubled as
predicted by the Moore’s law [1]. In the early years of this millennium, however, the scaling has
reached a limit where making “a transistor smaller no longer meant it would be faster or less power
hungry.” [2]

2In 2012, the revenue of the semiconductor industry in the US was about $300 billion [2, 3].

3Integrated electronic circuit technologies that can potentially replace current Complementary
Metal Oxide Semiconductor (CMOS) circuits.

1



perhaps one day we can realize complex nanocomputing circuits with atomic-scale

perfection.

Even if we achieve such perfection, however, the operation of these circuits will

unavoidably dissipate some minimum amount of energy that is determined solely by

the logical irreversibility of the computations they perform. This stems from the

fact that information is physical – it is encoded in the physical states of a system

– and manipulating it irreversibly requires an unavoidable energy dissipation. This

unavoidable dissipative cost of implementing logically irreversible operations fixes the

minimum energy cost required for computation. Fundamental physical limits on en-

ergy dissipation associated with information processing has not been the focus of

much attention until recently due to the minute contribution they make to the total

power budget of conventional circuits. In order to determine the viability of invest-

ments best suited for the progress of computing technologies, however, it is critical

to develop techniques that address these fundamental considerations in nanocircuits.

Rolf Landauer recognized the unavoidable cost of irreversible information pro-

cessing, and formulated a relation between the amount of information loss and the

associated energy dissipation in Landauer’s Principle [4] over fifty years ago. In the

most general sense, Landauer’s Principle (hereafter LP) states that any irreversible

manipulation of information in a circuit increases the thermodynamic entropy of the

circuit and/or its environment, which necessarily dissipates heat. In post-CMOS

nanocomputing circuits, the device densities and operating speeds will be extreme, as

they are designed to supersede microelectronic circuits. Therefore, this unavoidable

dissipation cost associated with irreversible computation may become significant and

impose practical limitations on the ultimate capabilities and resource requirements

of these circuits. The total energy dissipated per irreversible binary decision, con-

tinued at the historical rate observed for silicon technology, will reach Landauer’s

lower bound on the physical cost of logical irreversibility alone (∼ kBT ) around 2020

2



[5]. Therefore, it is of paramount importance to approach emerging nanoelectronic

devices from a fundamental energy requirement point of view to properly assess the

viability of paradigms that have the potential to replace current CMOS technologies.

In its most general form, LP purely reflects the cost of irreversible information

processing that is lower bounded by nature regardless of the computing technology

used to execute it. In other words, LP is independent4 of any device or circuit param-

eters that play a functional role in information processing according to the underlying

features of a computing paradigm. However, there may be physical operations in a

circuit that cannot be disassociated from information erasure: physical operations

(such as charge transport) that necessarily take place in order to process informa-

tion. Therefore, for a given technology base, the fundamental lower bound on heat

dissipation may contain additional unavoidable costs that are associated with thermo-

dynamic processes required to execute computation within that paradigm. We define

this cost as the heat dissipated by the “working substance” (such as information

bearing electrons) of the computing circuit that carries out the physical operations

required to process information. Landauer provided a connection between informa-

tion processing and thermodynamics, however, this relation needs to be expanded

further to capture the unavoidable cost of the working substance that is associated

with the circuit structure and operation for a given paradigm. To put in another way,

in addition to the lower bound on the irreversible information loss, the fundamental

lower bound on the idealized circuit operation to execute that information processing

according to a particular strategy needs to be considered as well. This juxtaposition

of two interrelated components of unavoidable heat dissipation in computation allows

us to obtain fundamental lower bounds on energy at the circuit level.

4Sagawa refers to this nature of LP as “model-independent” [6].
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In order to obtain these fundamental lower bounds at the circuit level, our goal

is to calculate heat dissipation in computation by identifying the cost of irreversible

information loss, as well as the cost associated with the idealized circuit operation

that is required to execute that information. This allows us to analyze computational

paradigms from a fundamental energy requirement point of view and obtain lower

bounds on energy at the circuit level. In this dissertation, we present a methodology

that captures the fundamental lower bounds for a given nanocomputing technology.

In a sense, the spirit of our approach can be explained with an analogy from ther-

modynamics: Carnot’s bounds for heat engines. The bounds that Carnot obtained

for a thermodynamic steam engine considers idealized, frictionless piston operations,

and provides a bound for the physically achievable regime in the efficiency of a given

engine. Similarly, the fundamental lower bounds on heat dissipation of information

processing in a circuit considers computation with no parasitics, and is purely based

on the nature of the irreversible information processing under an idealized circuit

operation. Here, the challenge is to establish a solid connection between the ener-

getic cost of information loss and unavoidable cost of associated physical operations

by bringing the two, seemingly disassociated costs, together on the same ground.

Furthermore, the dominating factors in the fundamental cost of information process-

ing will certainly vary for different computing strategies. As such, the bounds must

be formulated separately for a given paradigm and specified for each circuit in that

paradigm.

The fundamental lower bounds of information processing that are tailored for a

specific nanocircuit requires bringing physical laws to bear directly on the underly-

ing computational strategy that defines the paradigm: treating information-bearing

degrees of freedom and non-information-bearing degrees of freedom on an equal foot-

ing. In this work, we respond to this need this by developing a general physical-

information-theoretic methodology for determination of fundamental lower bounds
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on the dissipative costs of computation that can be applied directly to concrete, non-

trivial nanocomputing paradigms. We, then, use this methodology to obtain lower

bound on the energy cost of computation in non-transistor- and transistor-based post-

CMOS technologies.

This dissertation is organized as follows. In Chapter 1, we introduce the unavoid-

able heat dissipation problem and discuss the limitations it imposes on emerging

technologies. This requires a discussion of concepts such as reversibility, irreversibilty

and the laws of thermodynamics from a computational perspective. We explain how

encoding of information in physical states of a system described and why its loss

has a physical cost as captured by LP. Following Landauer’s inaugural work, various

researchers have taken the bounds that establish a connection between energetic and

entropic cost of information processing further to capture the cost of physical infor-

mation processing in quantum mechanical systems [7, 8, 9]. We present these new

bounds based on the “referential approach” at the end of this chapter. The studies

presented in this chapter serve as the departure point for this study.

In Chapter 2, we develop a general methodology to determine fundamental lower

bounds for the dissipative costs of computation. We begin by introducing the theoret-

ical constructs, as well as the mathematical representations and dynamic assignments

employed to develop our methodology. We present the most general form of the lower

bounds independent of a given nanocomputing paradigm. We elaborate on the basis

of our methodology and describe the steps that are required to obtain fundamental

lower bounds for a broad class of computing technologies.

In Chapter 3, we apply our methodology to non-transistor- and transistor-based

post-CMOS nanocomputing technologies to obtain lower bounds on the energy cost

of computation. We first illustrate our methodology on a non-transistor-based cir-

cuit that can exchange energy – but not particles – with their surroundings. We

consider a Quantum Cellular Automata (QCA) half adder operated under both Lan-
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dauer (irreversible) and Bennett (reversible) clocking to illustrate the importance of

the circuit operation on the fundamental bounds [10]. Then, we focus our attention

on transistor-based nanocomputing circuits that exchange both energy and particles

with their surroundings. Our methodology allows us to address this more challenging

problem and obtain bounds for the NASIC (Nanoscale Application Specific Integrated

Circuit) paradigm proposed by Moritz and co-workers ([11] and references therein).

We consider the half [12] and full [13] adders implemented in the NASIC fabric. Il-

lustrating our methodology via applications on transistor-based circuits allows for

comparison of unavoidable costs associated with particle supply to those arising from

logical irreversibility in such paradigms. In addition to such emerging paradigms,

we also illustrate our methodology via an np-CMOS half adder circuit, and provide a

pedagogic example for the application of our approach to the well-known and conven-

tional CMOS paradigm. Furthermore, together with the dynamically clocked circuits,

we discuss our methodology’s application to static circuits and comment on certain

limitations involved.

In Chapter 4, we describe a modular approach that could allow automation for

the determination of fundamental lower bounds on heat dissipation for the post-

CMOS technologies. We illustrate modularized dissipation analysis for both QCA

and NASIC paradigms. For the Landauer-clocked QCA half adder circuit designed

according to a specified set of example design rules, we verify that the modular dissi-

pation analysis yields identical results to that of our general approach [14]. Similarly,

we generalize the fundamental lower bounds for the NASIC paradigm with multiple

computational tiles. We elaborate on the dramatic analytical simplification that this

modularization presents and discuss prospects for automation of our methodology.

We suggest that automated implementation of our methodology could enable deter-

mination of fundamental lower bounds on dissipation for large and complex circuits

such as full processors.
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In Chapter 5, we provide an overview of the key concepts in thermodynamics of

computation and comment on studies concerning the validity of LP. Our methodol-

ogy has a distinct departure point than that of Landauer’s; we employ the referential

approach to obtain our lower bounds on dissipation. However, the final bounds we

obtain qualitatively uphold LP and are of the same quantitative form for some cases.

This resonance begs the question whether our methodology is also vulnerable to argu-

ments leveled against the validity of LP. In this chapter, we provide an chronological

list of fundamental concepts in thermodynamics of computation, and outline the ar-

guments concerning the validity of LP. We comment on the extent to which these

arguments have implications for our methodology.

In the final chapter of this dissertation, we summarize and conclude our work

by elaborating on the significance of our contribution and hint at potential future

directions.
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CHAPTER 1

TECHNICAL BACKGROUND

In this chapter, we introduce fundamental concepts such as reversibility, irre-

versibilty and laws of thermodynamics from a computational perspective. We explain

how information is encoded in physical states of a computational system and why ir-

reversibly discarding it has a physical cost. We also present the studies that take

Landauer’s initial work further for quantum mechanical systems processing physi-

cal information. The concepts and formulations presented in this chapter serve as a

departure point for this dissertation.

1.1 Reversibility, Irreversibility, and Dissipation in Compu-

tation

Heat dissipation in thermodynamics and computing is described in terms of re-

versibility and irreversibility. In thermodynamics, if a process is irreversible then it

is defined to be dissipative. A thermodynamic system is studied within a universe

in which it is situated together with its surroundings, and the thermodynamic rela-

tions governing the interactions and processes they undergo are defined within this

universe. A reversible process in thermodynamic terms is an operation, which can be

reversed after its transition from initial equilibrium state to final equilibrium state

with no entropic or energetic cost to the system or its surroundings. An irreversible

process, on the other hand, is a process, which the change in the thermodynamic state

of a system and all of its surroundings cannot be precisely restored to their initial

state without a resulting entropic and/or energetic cost to the universe.
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From a computational point of view, a process is logically reversible if the inputs

can be fully recovered from the outputs after computation. That is to say that the

initial input states map one-to-one onto the final output states. Significantly, logical

states in a computing system are represented by physical states of the system, i.e.

the initial and final logic states correspond to the initial and final physical states of

the system. The concept of logical reversibility was introduced by Rolf Landauer in

1961 [4] in connection with information-discarding process in computers. Information

erasure and resetting are always logically irreversible. If the inputs to an information

processing system cannot be obtained from its outputs then that computation is

defined to be logically irreversible. As a consequence, throughout a computation,

dissipation occurs when a part of system’s energy that is capable of doing work is

converted into heat during the operation.

Heat is a special form of energy measured by temperature and can be regarded as

transformation of useful energy to useless energy. The perception of heat as energy,

which is statistically distributed among the particles of a system, was provided by

Rudolf Clausius. This interpretation of heat allowed a more refined approach to

the implementation of principle of conservation of energy in both macroscopic and

microscopic systems as it enables the inclusion of heat exchange of the system with

its surroundings to the total energy exchange, in addition to the work performed

by or on the system. The connection between the computational irreversibility and

heat dissipation, therefore, allows us to use thermodynamic inequalities to obtain the

fundamental energy requirements of a system to do computation.

1.2 First and Second Laws of Thermodynamics

The first and second laws of thermodynamics have an essential role in the dis-

cussion of relations governing the physical changes that a system undergoes as a

consequence of any given computing process. In thermodynamics, an internal en-
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ergy, U , is assigned to each macroscopic system. For isolated systems which do not

exchange work or heat with their surroundings this internal energy, U , is equal to

the total energy, E, of the system that we are familiar from classical mechanics and

electrodynamics. However, if the system is able to exchange work or heat with its

surroundings, we then take the principle of conversation of energy into account [15].

Based on the perception of heat as a form of energy introduced above, we can then

state that the differential of the internal energy of a system, dU , is equal to the sum

of the reversible work done on the system, dW , and the heat irreversibly exchanged

with the environment, dQ,

dU = dW + dQ. (1.1)

This is the first law of thermodynamics. Here dQ is associated with the change in the

entropy of the system and defined as dQ = TdS.1 Integrating the above equation we

obtain a fraction of the total internal energy that can reversibly be recovered to do

work

F = U − TS. (1.2)

Here, F represents the free energy of the system.2 Erasing a bit consumes this free

energy as well as changing the logical entropy dS of the system and hence dissipates

heat [17].

In an information processing system, as a result of this heat dissipation, the num-

ber of logical states that is available to the system changes, and the associated ther-

modynamic cost can be explained by the second law of thermodynamics. The second

law of thermodynamics states that the entropy of a system always increases or at

most remains constant, but it never decreases;

1This is the mathematical form of entropy expression that is initially provided by Clausius.

2Sklar, for example, uses the terms “high quality” and “low quality” for the energy and suggests
that: “Energy must be available in a “high quality” state to do work. Performing the work degrades
the energy into “low quality.” [16]
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dS ≥ 0, (1.3)

therefore, it is also referred to as “the law of increase of entropy.” This law was discov-

ered by Clausius in 1865 and its statistical account was given by Ludwig Boltzmann

in the 1870s [18]. The formulation of the second law provided by Clausius is much

more general and refers to any spontaneous process occurring in isolated systems and

defines entropy as a state function that in an isolated system never decreases. In its

essence, the second law is probabilistic as it indicates that the system will go from a

relatively low probability state to a high probability state.3

Boltzman’s atomistic formulation of the second law, however, does not contain

the word or concept of probability explicitly [20]. Although it is implied because

the formulation is connecting the entropy with the total number of states, and there

is a statistical probability distribution associated with particles’ occupation of the

available states based on their type.

In the context of information erasure the second law has a significant role because

erasure changes the number of logical states available to the system, which has an

inevitably real thermodynamic cost. Gershenfeld [17] explains this as follows

“Entropy increases in spontaneous irreversible processes to the maximum

value for the configuration of the system. If at any time the state of the

bit is not close to being in its most probable state for the system, the there

will be extra dissipation as the entropy of the system increases to reach the

local minimum of the free energy.”

This allows us to see the connection between information and thermodynamics

more clearly. Below, we revisit the first and second laws of thermodynamics in a

3The probabilistic nature of the second law was poetically restated by Maxwell in a letter to
John William Strutt as follows:“The second law has the same degree of truth as the statement that,
if you throw a tumblerful of water into the sea, you cannot get the same tumblerful of water out
again.” [19]
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quantum mechanical setting during the discussion of Partovi’s work on “Quantum

Thermodynamics” [7]. We now move our attention to the physicality of informa-

tion and how these thermodynamic laws are used to explain the processes governing

computing circuits and the information they process.

1.3 Information is Physical

Non-semantic information as processed by computing circuits is often thought of

in abstract terms. However, every bit of non-semantic information, regardless of its

semantic content, is encoded in the physical states of a computing circuit in order

to be processed, manipulated or transmitted [21]. It’s often difficult to comprehend

information independent of meaning and content in the conventional sense, and un-

fortunately the relation between semantic and non-semantic information is not as

clear as one would expect. In the most general sense, semantic and non-semantic

information are both associated with lack of information about the state of a certain

system. In the context of semantic information, this lack of information is correlated

with what a particular signal means as assigned by human convention. In the non-

semantic sense, however, information is associated with physical correlation between

two systems, and refers to the amount of information that one system has about the

statistical likelihood of realization of a given signal chosen among many others in an-

other system.4 It is important to underline this difference, however, further discussion

on the distinction between different types of information is beyond the scope of our

study.

In this work, we focus on non-semantic information that is carried in physical

states of the system about the states of another system. This is defined as the

4In the literature, one can find slight differences in the distinction drawn between semantic and
non-semantic information. For instance, Piccinini [22] refers to the concept of information, as we
employ in this work, as “natural (semantic) information.”
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mutual information between an information processing artifact, such as a circuit of

interest, and an input referent that holds a physical instantiation of the input data to

be processed by the artifact. Introducing a referent allows us to obtain the amount of

information about the input referent that is irreversibly lost during circuit operation

given a period of time. We discuss the details of such information processing sys-

tems and their quantum mechanical representation in the following chapter. We also

introduce mathematical representations of appropriate measures as progress within

our discussion. Here we simply underline that the statement “information is phys-

ical” implies that processing and manipulation of information in a system can be

represented by the physical laws that govern the information processing system and

its interaction with its environment. We employ this fact to obtain the fundamental

lower bounds that can be tailored for specific nanocomputing devices.

1.4 Landauer’s Principle

Rolf Landauer used the physicality of information to provide a connection be-

tween the abstract logical computation and associated physical processes realized in

a computing system. In his inaugural work, Landauer [4] proposes that

“computing machines inevitably involve devices which perform logical func-

tions that do not have a single-valued inverse. This logical irreversibility is

associated with physical irreversibility, and requires a minimal heat gener-

ation, per machine cycle, typically of the order of kBT for each irreversible

function,”

where kB is the Boltzmann constant. This is the initial and most general form of LP.

The entropic and energetic bounds associated with LP are written as

∆S ≥ kB ln(2)∆Ier (1.4)

∆E ≥ kBT ln(2)∆Ier (1.5)
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respectively where T is temperature and ∆Ier is the amount of bits of classical infor-

mation erased from a physical system.5

Therefore, the physics of information suggests that in addition to information

always being encoded in a physical system, irreversible manipulation of it always

results in a generation of at least kBT ln(2) of heat per bit in the environment [21].

This statement has been refined over the years and a version of it as provided by

Charles Bennett6 [24] states that

“any logically irreversible manipulation of information, such as the erasure

of a bit or the merging of two computation paths, must be accompanied by

a corresponding entropy increase in non-information bearing degrees of

freedom of the information processing apparatus or its environment.”

This definition of LP is clearer than its original version as it introduces the entropy

change in the non-information bearing degrees of freedom. We employ this refined

definition of LP in the rest of this document, which helps us make our initial claim of

treating information-bearing degrees of freedom and non-information-bearing degrees

of freedom on an equal footing more clearly.

In a practical sense it can be stated that the manipulation of information in a

circuit increases the thermodynamic entropy of the circuit and/or its environment,

and hence dissipates heat. This principle provides a lower bound on the energetic

cost of irreversible information loss, however, it does not provide insight into the

unavoidable costs associated with implementing the physical information processing;

i.e. the bound is independent of the structure and operation of the computational

5The definition of ∆Ier is not provided explicitly, however, Landauer’s calculations show that
the term represents the self entropy encoded in an information processing system.

6Bennett proved that logically irreversible operations can be embedded in and implemented by
thermodynamically reversible operations [23]. It is important to note that, in this dissertation,
the logically irreversible operations we study correspond to irreversible loss of information and are
physically irreversible.
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strategy that processes information. In addition, conventional devices have orders of

magnitude higher thermodynamic degrees of freedom than the information-bearing

ones. Emerging nanoelectronic devices present an opportunity, as well as an obliga-

tion, to study and understand these two levels of description together because of the

fundamental limitations on the energy cost of computation that lies ahead.

1.5 Thermodynamic Relations for Quantum Systems

LP applies to the erasure of physical information from classical systems. Emerg-

ing nanoelectronic devices exhibit various quantum effects, which require quantum

dynamic treatment to accurately capture the unavoidable dissipative cost of informa-

tion processing. In order to address the fundamental energy requirement of quantum

system, we need generalized thermodynamic relations to accommodate the treatment

of these systems. Below, we present the quantum thermodynamic relations derived

by Partovi [7].

In his paper Partovi focuses on the issue of determining the origin of irreversibility.

First, he shows that “for microscopic systems, irreversibility and the second law follow

from the dynamics of the system and do not have an independent status.” This allows

him to limit his consideration to microscopic states, which also places emphasis on

the fact that thermodynamic behavior is already present at quantum scale. He starts

by introducing the system state based on the preparation state and measurement

process. The state of the preparation is represented by a density matrix, ρ̂, generally

representing a mixed state. In Partovi’s approach, the uncertainty for this mixed

states is interpreted as von Neumann entropy as

S(ρ̂) = −Tr[ρ̂ ln(ρ̂)]. (1.6)

Partovi refers to this quantity as the Boltzmann-Gibbs-Shannon (BGS) entropy. The

BGS entropy is a constant of the motion for a closed system, which evolves unitarily
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according to a Hamiltonian. In quantum systems, the source of the irreversibility is

the change in this entropy and is caused by an interaction with external systems. In

general, for quantum systems, a thermodynamic interaction yields a different initial

and final state. The equilibrium state of a closed system is explained by Gibbs states,

which can be represented as

ρ̂ =
exp(−βĤ)

Z
(1.7)

where β and Z are real constants due to self-adjointness of ρ̂. In his derivation of the

thermodynamic inequalities Partovi omits Z where it is inessential, however, for the

sake of consistency of notation we explicitly write it in this dissertation.

For two interacting systems A and B which are initially in the Gibbs states, the

density operators are ρ̂A = exp(−βĤA) and ρ̂B = exp(−βĤB). They undergo a

joint unitary evolution, and their interaction can be explained accordingly. After

this evolution, the total entropy which is the sum of BGS entropies of each system,

increases. For example, consider the initial state Γ̂ = ρ̂A ⊗ ρ̂B, the final state Γ̂′, and

the respective entropies of initial and final states, S
[
Γ̂
]

= S and S
[
Γ̂′
]

= S ′. The

entropies of the partial systems SA and SB is defined in terms of density matrices

ρ̂A = TrBΓ̂ and ρ̂B = TrAΓ̂ where TrA and TrB represent partial trace operation on

the Hilbert space of system A and B, respectively. This allows us to write SAB =

S
[
ρ̂AB

]
and S(AB)′ = S

[
ρ̂(AB)′

]
for initial and final state, respectively. The change in

the entropy is then defined as

SA
′
+ SB

′ − SA − SB = −Tr
[
Γ̂′
(
ρ̂A
′
ρ̂B
′ − ln Γ̂′

)]
.

Due to the convexity property of the entropy function the right hand side of this

equation is non-negative, which allows us to rewrite it as

∆SA + ∆SB ≥ 0. (1.8)
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The important consequence of this general result allows us to obtain an inequality

for the interaction of two system that can be formulated as follows. Let’s say the

system a, can initially be in any state, interacts with another system b that is initially

in a Gibbs state characterized by the parameter β where the density matrix is ρ̂B =

exp(−βĤB)
Z

. The mean value of energy of the system b is given by UB = Tr[ρ̂BĤB],

which refers to the internal energy we previously introduced in the above chapter.

We can then write the difference between the entropy and the mean energy value as

∆SB −∆βUB = −Tr
[
ρ̂B
′
ln ρ̂B

′ − ρ̂B ln ρ̂B − β
(
ρ̂B
′ − ρ̂B

)
ĤB
]
. (1.9)

The right hand side of this equation can be rewritten by using the relation ln
(
ρ̂B
)

+

βĤB = − ln (Z) as

∆
(
SB − βUB

)
= −Tr

[
ρ̂B
′
(

ln ρ̂B
′ − ln ρ̂B

′
)]
. (1.10)

Partovi shows that, due to convexity property, right hand side of this equation is non-

positive, i.e. ∆SB + β∆UB ≤ 0 where the term is equal to zero only when ρ̂B
′

= ρ̂B.

This inequality, along with Eq. (1.8) and conservation of energy, ∆UA + ∆UB, gives

us

∆
(
SA + βUA

)
≥ 0. (1.11)

If both systems were to be in Gibbs states with corresponding parameters βA and

βB for the systemA and B, respectively, then Eq. (1.11) implies that ∆
(
SA + βUA

)
≥

0 as well as ∆
(
SB + βUB

)
≥ 0. Given ∆SA+∆SB ≥ 0, it follows that

(
βA − βB

)
∆UA ≥

0. This means that when two Gibbs states interact, the state with the higher value of

β−1 loses energy to the other. For equal values of β no flow of energy and no change

of state occurs. This establishes the zeroth law of thermodynamics and the existence

of temperature.
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The Eq. (1.11) can also be used to establish the second law of thermodynamics.

Consider a cyclic transformation of any system A that undergoes through a series

of interactions with an array of systems Bn which are initially in equilibrium at

temperatures β−1
n . Eq. (1.11) applies to each of these interactions and implies ∆SAn ≥

βn∆UAn . For a cyclic transformation we have Σn∆SAn = 0, which then gives us

Σnβn∆βUAn ≤ 0. (1.12)

This inequality represents the Clausius principle. In the absence of changes in the

Hamiltonian of the system, which leads to exchange of work, ∆U is the heat.7

In his paper, Partovi establishes the two laws of thermodynamics that are statisti-

cal in nature by using relations provided by quantum dynamics. In addition, he also

shows how and why systems that are not in equilibrium can approach equilibrium,

however, that proof is beyond the scope of this work therefore we limit our discussion

on Partovi’s paper with the quantum thermodynamic inequalities he defines.

1.6 Information Erasure in Quantum Systems

The fundamental bounds associated with LP, as presented in (1.5), regard the

erasure of information from a physical system as a state transformation that reduces

uncertainty in the system state associated with a self-referential information mea-

sure defined in terms of the statistical state of the “erasable” system alone. This

definition has been restated and reformulated to address the information erasure in

fully quantum mechanical framework within referential approach by Anderson [8].

The referential approach introduces a referent, defined as a physical system that un-

ambiguously holds the input data throughout computation. The referent allows us

to regard information erasure as loss of correlation between the state of an erasable

7The term ∆U is the expected value of internal energy and hereafter represented by ∆〈E〉.
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quantum system and the initial input; i.e. it distinguishes the erasure of information

from local changes in the structure of the erasable system’s state.

The closed composite quantum system considered in this framework consists of

a bipartite information bearing system composed of a referent and a system, RS,

and an environment E . The initial state of the global system is then defined as

ρ̂ = ρ̂RS ⊗ ρ̂E , where ρ̂RS and ρ̂E density operators describing the initial states of

the information bearing subsystem and environment, respectively. The states of the

“referent system” R and the “erasable” system S are initially correlated. This means

that there is information about the state of R initially in the state of S (and vice

versa), but RS is isolated from E . Information processing and erasure is regarded

by a unitary time evolution of RSE which is governed by the Hamiltonian of the

global, isolated system. Since the global system is closed, dynamical evolution of

RSE necessarily maps initial states ρ̂ to final states ρ̂′ via ρ̂′ = Û ρ̂Û †, where Û is

the unitary time-development operator governing Schrödinger evolution of the global

system. During this process S is coupled to E , where as by definition, R remains

isolated through out computation. The correlation between S and R, as a result, is

reduced by the interaction between S and E . This results in erasure of part of the

information about the state of R that is initially encoded in the state of S. Based on

the formalization of these notions the quantities needed for consideration of physical

costs.

The information about the state ofR that is in the state of S is the general measure

of information erasure. This is quantified by the quantum mutual information, which

is the correlation entropy, and given as

S(ρ̂R; ρ̂S) = S(ρ̂R) + S(ρ̂S)− S(ρ̂RS) (1.13)

Here S(σ̂) = −Tr[σ̂ log2 σ̂] is the von Neumann entropy of density operator σ̂ in

“information theoretic” units, and ρ̂RS = TrE [ρ̂] and ρ̂E = TrRS [ρ̂] are the reduced
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density operators of the information bearing subsystem and environment, respectively.

Then, the amount of information lost in an erasure operation is

∆Ier = S(ρ̂R; ρ̂S)− S(ρ̂R
′
; ρ̂S

′
). (1.14)

This quantity is connected to the loss of classical information about the state of R,

which holds classical information, that is accessible via quantum measurement on

the quantum state of S. This can be codified by representing the ith symbol in the

source alphabet, generated with a priori probability pi, by a pure state ρ̂Ri = |ri〉〈ri|

of R and encoding this symbol in a generally mixed quantum state ρ̂Si of S. The |ri〉

corresponding to the various source symbols are assumed to be mutually orthogonal,

i.e. 〈ri|ri〉 = δii′∀i, i′, to ensure their distinguishability, but no assumptions are made

about the orthogonality or distinguishability of the encoding states ρ̂Si . This allows

us to write the initial state of RS as

ρ̂RS = Σipi(|ri〉〈ri| ⊗ ρ̂Si ). (1.15)

The total entropy of the initial state is defined as

S̃tot(ρ̂) = kB ln(2)
[
S(ρ̂RS) + S(ρ̂E)

]
. (1.16)

Similarly, we can define the corresponding quantities for the final states. This then

gives us a total entropy change of

∆S̃tot = kB ln(2){
[
S(ρ̂S

′
) + S(ρ̂E

′
)− S(ρ̂SE)

]
}+ kB ln(2)

[
S(ρ̂R

′
)− S(ρ̂R)

]
(1.17)

+kB ln(2)∆Ier
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where, S(ρ̂SE
′
) = S(ρ̂SE) and S(ρ̂R

′
) = S(ρ̂R) for the erasure operation, since the

systems evolve unitarily. Also by using the subadditivity of the von Neumann entropy

S(ρ̂S
′
) + S(ρ̂E

′
) ≥ S(ρ̂SE

′
), (1.18)

the lower bound on the total entropy change is then written as

∆S̃tot ≥ kB ln(2)∆Ier. (1.19)

This equation is obtained by the referential approach, however, the end result (1.19)

is identical to the entropy relation provided by LP in (1.4).

The bound (1.19) can also be written in terms of the Holevo information.8 The

quantum mutual information associated with a bipartite state of the form (1.15) is

S(ρ̂R; ρ̂S) = S(ρ̂S)− ΣipiS(ρ̂Si ) = χ(ε) (1.20)

where χ(ε) is the Holevo information associated with the ensemble ε = {pi, ρ̂Si } of the

initial states of S. The bound on the entropy cost of erasure can be defined based on

the above definition as

∆S̃tot ≥ kB ln(2) [χ(ε)− χ(ε′)] (1.21)

for classical erasure operation. If the system were to be reset then the reset cost

becomes

∆S̃tot ≥ kB ln(2)χ(ε). (1.22)

Similarly, we can define the energy relations for the system. The system is coupled

to a thermal bath and as a result of information erasure in the system some amount

8Holevo information is significant as it represents the maximum value of the mutual information
and hence its reduction fixes the lower bound on the erasure entropy [8].
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of energy flows to this environment. Assuming that the environment is initially in a

Gibbs state at temperature T , the canonical density operator is then written as

ρ̂E = Z−1 exp{−Ĥ/kBT} (1.23)

where Z = Tr
[
exp{−ĤE/kBT}

]
is the partition function. A lower bound on the

energy increase of the environment due to information erasure can then be obtained by

considering the quantity ∆〈EE〉−T∆S̃E , where ∆〈EE〉 = 〈EE ′〉−〈EE〉 = Tr
[
ρ̂E
′ĤE

]
−

Tr
[
ρ̂EĤE

]
. This may read as a change in the free energy but cannot be interpreted

as such since the final state of the environment, ρ̂E
′
, is not assumed to be a thermal

state. By using the unitary evolution of RSE and the concavity of the quantum

relative entropy, it can be shown that this quantity is nonnegative. This allows us to

write the lower bound the energy as

∆〈EE〉 ≥ T∆S̃E . (1.24)

From (1.19) we have

∆S̃E ≥ kB ln(2){∆Ier −∆SRS} (1.25)

which then gives us

∆〈EE〉 ≥ kBT ln(2){∆Ier −∆SRS}. (1.26)

Unlike the inequality (1.19), the above relation (1.26) is different from that of the

bound obtained by using LP. In addition to the information term that is also present in

LP, the bound (1.26) has an extra entropy term that distinguishes the result obtained

using the referential approach.

Note that ∆SR = 0, and ∆Ier −∆SRS = S(ρ̂S)− S(ρ̂S
′
). This allows us to write

the lower bound on energy cost of erasure as

∆〈EE〉 ≥ kBT ln(2)∆S(ρ̂S). (1.27)
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The entropy change in the system in resetting operation is ∆S(ρ̂S) = S(ρ̂S
′

reset)−S(ρ̂S).

We can then specialize the lower bound on energy for resetting as

∆〈EE〉 ≥ kBT ln(2)
(
S(ρ̂S)− S(ρ̂S

′

reset)
)
. (1.28)

Irrespective of the amount of information erased this energy is required to flow to

the environment when the resetting to the standard state lowers the entropy of S.

If the states of the system are distinguishable that they have support on mutually

orthogonal subspaces in quantum description we can further specialize the above

bounds using ∆Ier = H and ∆SS = S(ρ̂S
′

reset) − H − ΣipiS(ρ̂Si ), where H is the

Shannon entropy [25], or classical “encoding entropy,” H = −Σipi log2 pi, associated

with the ensemble ε = {pi, ρ̂Si }, of encoding states, and obtain the lower bounds on

the entropy and energy cost as

∆S̃E ≥ kB ln(2)H (1.29)

∆〈EE〉 ≥ kBT ln(2){H − 〈∆SS′i 〉}. (1.30)

Here 〈∆SS′i 〉 = S(ρ̂S
′

reset)−
∑

i piS(ρ̂Si ) is the average entropy change in S upon reset-

ting averaged over all initial states.

In addition to “erasure-by-reset,” the erasure of information can be defined in

association with “partial-erasure” scenarios. When information is erased by reset,

the system is set back to its standard state with no trace of information left in the

system after erasure operation. Partial-erasure, however, indicates an incomplete

erasure operation after which a trace of information is left in the system, which

indicates that the system is not completely reset to its standard state. This may

be a result of a noisy communication or computation, for instance if the fidelity of

the signal carriers is compromised by noise then the system would still carry some
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amount of information after erasure. In the literature, “erasure-by-reset” has been

widely studied for canonical systems. The approach presented by Anderson covers a

more general class of state transformations, which allows us to go beyond the erasure

of information encoded in distinguishable states, and treat partial-erasure scenarios

in which the information is encoded in general quantum states.

1.7 Landauer’s Principle Specialized for L-machines

The above form of LP enables us to address the information erasure in quan-

tum systems irrespective of the logic operation and computational strategy. In [9],

Anderson further expanded this bound by specifying the logic transformations in

a computing machinery, and specialized LP to account for fundamental energy re-

quirements of specific logic operations in terms of entropy change in the information

processing system as well as the amount of information erased.

Anderson’s paper is based on the notion of L-machine, that is introduced by

Ladyman et. al. [26] as a part of their study on the connection between logical

and thermodynamic irreverisbility. In a later paper [27] Ladyman defined L-machine

as a “hybrid-physical-logical entity that combines a physical device, a specification

of which physical states of that device correspond to various logic states, and an

evolution of that device which corresponds to the logical transformation L.” The form

of L-machine that is studied in Ladyman’s papers is classical and highly idealized.

Anderson expanded this notion by generalizing it to classical logical transformations

in quantum mechanical systems that can be noisy and hold imperfect representation

of information.

The formal definition of quantum mechanical L-machine that Anderson develops

allows us to obtain physical cost of “single-shot” implementation of logical transfor-

mation L. In actual quantum mechanical systems that process physical information

through classical logical transformations the computation is achieved by sequences of
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cycles. Anderson’s study on the quantum mechanical L-machines also sets the stage

for such realistic computing scenarios.

Based on the generalized L-machine formulation, the fundamental lower bound on

unavoidable heat dissipation in a quantum mechanical system as a result of a classical

irriversible logic operation is obtained as follows. Consider a device D that interacts

with an environment E . Assuming that the joint evolution of the composite system

DE is unitary allows us to use Partovi’s result presented above, i.e. “any decrease

in the von Neumann entropy SD of the device results in an increase in the expected

energy of the environment that is lower bounded as”

∆
〈
EE
〉
≥ kB ln(2)∆SD, (1.31)

where
〈
EE
〉

= Tr
[
ρ̂EĤE

]
=
∑M

i=1 piTr
[
ρ̂Ei Ĥ

E
]

=
∑M

i=1 pi
〈
EEi
〉

=
〈〈
EEi
〉〉

, with ĤE

is the environment Hamiltonian. The entropy reduction in the device is defined as

−∆SD = S
(
ρ̂D
)
− S

(
ρ̂D
′
)
. (1.32)

Initial entropy of the device is expanded as

SD = H (X) +
M∑
i=1

piS
(
D̂ini
)
, (1.33)

where M is the number of device states and D̂ini represents the initial device states

which are mutually orthogonal. By using the the definition of Holevo information

X
(
εD
′

X

)
= S

(
M∑
i=1

Λ
(
D̂in
i

))
−

M∑
i=1

piS
(

Λ
(
D̂ini
))

, (1.34)

for the ensemble εD
′

X =
{
pi,Λ

(
D̂ini
)}

. The information loss for a general quantum

L-machine in terms of Holevo information is then
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−∆I = H (X)−X
(
εD
′

X

)
. (1.35)

Based on these definition the change in entropy can be rewritten as

−∆SD = −∆I −
〈
∆SDi

〉
, (1.36)

where −∆I is the amount of information loss. The average device entropy reduction

is

−∆SDi =
M∑
i=1

pi

(
S
(

Λ
(
D̂ini
))
− S

(
Dini
))
. (1.37)

Substituting these equalities into Partovi’s inequality, Anderson obtains the lower

bound on the expected valued of energy in terms of the information loss and the

change in device entropy,

∆
〈
EE
〉
≥ kB ln(2)

(
−∆I −

〈
∆SDi

〉)
. (1.38)

This indicates that the average expected energy value of the environment necessarily

increases as a result of information loss in a quantum L-machine as long as the entropy

of the representative states, on average, increases more than the information loss after

its evolution from its initial state to final state. If the device entropy does not increase

as a result of information erasure then the above equation reduces to a simpler yet

commonly encountered version of LP

∆
〈
EE
〉
≥ kB ln(2)∆I. (1.39)

As stated earlier, the above inequality (1.38) can be used to obtained the funda-

mental lower bound on the physical cost of “single-shot” implementation of logical

transformation L in a quantum mechanical system. We derive the fundamental lower

bound on unavoidable heat dissipation from Eq. (1.38) and build our methodology

based on the studies presented in this chapter.

26



CHAPTER 2

HEAT DISSIPATION FOR NANOCOMPUTING:
METHODOLOGY

Our goal is to develop a general methodology for determination of lower bounds on

the dissipative cost of computation that can be applied directly to concrete nanocom-

puting paradigms. In order to accomplish this, we need to bring physical laws directly

to bear on the underlying computational strategy that defines the paradigm. In the

previous chapter, we outlined laws and relations that govern the physical interactions

required for computation. In this chapter, we introduce mathematical representations

and dynamic assignments that allow us to tailor the fundamental bounds for a given

nanocomputing paradigm. The theoretical constructs we define in this chapter are

presented in their most general form, independent of a given nanocomputing technol-

ogy. The methodology proposed here [12] is applied to various paradigms in Chapter

3 and 4.

2.1 Introduction

Information processing in a circuit involves various interactions, in both physical-

information theoretic level and thermodynamic level, depending on the computa-

tional paradigm. These interactions are represented by information-bearing degrees

of freedom and non-information-bearing degrees of freedom, respectively. We obtain

fundamental lower bounds on heat dissipation for a given paradigm by treating these

degrees of freedom on an equal footing. Below, we explain this detail by discussing

the steps required for determination of fundamental bounds and introduce the math-
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ematical representations and dynamic assignments that allow us to obtain the bounds

for a given paradigm.

There are two main steps to obtain the fundamental lower bounds on the dissi-

pative cost of computation of a given nanocomputing scenario using our methodolgy.

First, an idealized physical abstraction of the circuit and its operation is constructed.

Second, using a spacetime decomposition of computation in the circuit abstraction,

physical-information-theoretic analyses of the global system evolution are performed

for the time intervals relevant to each computational step. The abstract description

of the circuit and its operation is constructed so that it captures nothing more and

nothing less than the essential functional features of the underlying computational

strategy, implemented precisely as envisioned in the computational paradigm. This

is to say that the abstraction describes paradigmatic operation of the circuit. The

analyses yield lower bounds on the energy that is unavoidably dissipated into the

circuit’s local environment on each computational step, under paradigmatic opera-

tion, including both the dissipation required to execute logically irreversible oper-

ations and other unavoidable paradigm-dependent “overhead” costs (e.g. particle

supply required to maintain the computational working substance in transistor-based

paradigms). Bounds obtained for each computational step are finally summed over

all steps in the computational cycle to obtain a fundamental lower bound on the

(input-averaged) energy cost of each computation performed by the circuit. In the

next chapter, we further articulate and illustrate applications to various nanocom-

puting circuits. First, we begin by introducing the lower bounds on the fundamental

heat dissipation in the most general, paradigm-independent form below.

2.2 Abstraction

The abstraction is composed of two main stages. First, we create a physical ab-

straction of the circuit and its surroundings in a globally closed and isolated universe.
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Second, in the process abstraction, we present assignments to identify local phys-

ical operations. The assignments are decomposed into two groups for control and

restoration operations. The circuit’s interaction with the other information-bearing

subsystems and the bath is described by the control operations. The restoration op-

erations represent the coupling between the remote environment and the bath. The

control and restoration operations provide the circuit evolution required to implement

computation. We now discuss the abstraction procedure in detail.

2.2.1 Physical Decomposition

The physical abstraction of the circuit and its surroundings is depicted schemati-

cally in Fig. 2.1. The upper half of the figure represents the computationally relevant

domain. This domain includes an information processing artifact A which is the

computing circuit of interest and computationally supporting subsystems such as ex-

ternal registers and adjacent circuit stages, as well as an input referent R that holds

a physical instantiation of the input data that will be processed by the artifact. The

lower half represents the environmental domain consisting of a heat bath B, which is

the part of the environment that is in direct thermal contact with the artifact and

nominally at temperature T . The greater environment B̄ includes heat reservoirs that

“rethermalize” the bath and anything else that is required to ensure that the universe

is globally closed. Fig. 2.1 depicts the location of each subsystem and its interaction

with another subsystems.

Below, we elaborate on the definition of each domain and all the elements con-

tained in these domains.

• Computationally Relevant Domain - The part of the universe that is directly

relevant to consideration of computation by a physical artifact:

– Information Processing Artifact A - The nanocomputing circuit of interest,

which, under paradigmatic operation, can be used to evaluate a specified
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Figure 2.1. Physical abstraction of an information processing artifact and its sur-
roundings in a globally closed and isolated universe.

function L(xi) for any desired argument xi ∈ {xi}. The artifact consists

of:

∗ Representational Elements C - Elements of A that have the function

of registering digital information in their states at computationally

relevant times. The collective state of all representational elements at

a “computationally relevant time” (e.g. at the conclusion of a compu-

tational step) is the computational state of the artifact.

∗ Non-Representational Elements C̄ - Other elements of A, memoryless

or otherwise, which may register digital information in their states at

computationally relevant times only incidentally (e.g. supply lines,

circuit capacitances outside of representational elements).

– Input Referent R - A physical instantiation of the “source file,” which

holds unambiguous and enduring physical representations of the input(s)

xi to be processed by the artifact.
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– Supporting Computational Subsystems Ā - Computationally relevant sub-

systems external to A that exchange information about xi or L(xi) with

A (e.g. input/output registers, previous and subsequent circuit stages).

• Environmental Domain - The environmental domain includes everything else,

which is subdivided as follows:

– Heat Bath B - A part of the environment, nominally at temperature T ,

that interacts directly with A, can exchange heat with A, and can serve

as a “sink” for information lost from A.

– Environment B̄ - The greater environment, including remote heat reser-

voirs that “rethermalize” the bath (i.e. drive the bath toward a thermal

equilibrium state at temperature T after it has been driven away from equi-

librium), remote particle reservoirs that supply the electrical work required

to “recharge” the artifact (i.e. drive particle densities of local particle re-

serviors - such as supply wires - back to their nominal values after they

have exchanged particles with the nanocircuit), and anything else that

must be included to ensure that the global system RAĀBB is isolated

(i.e. that it cannot exchange heat, work, or matter with anything external

to RAĀBB).

As we mentioned above, these subsystems are situated in a globally closed and iso-

lated universe. Constructing a globally closed universe as presented above enables

us to assume it evolves unitarily via Schrödinger’s equation. The global unitarity,

together with identification of the subsystems that are coupled in each step, allows

determination of the fundamental lower bounds that we are after in this work.

We now move on to the second stage of the abstraction and introduce the assign-

ments that we use for process abstraction.
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2.2.2 Process Abstraction

During computation, the subsystems are driven away from equilibrium but then

rethermalized as a part of the process abstraction. We identify a set of local physical

operations φt ∈ {φt}, each of which is decomposed into a control process and a restora-

tion process. Control processes are the local operations that act during specified time

intervals to change the states of representational elements in the artifact either uncon-

ditionally or conditioned on the states of other representational elements. Typically,

they involve interaction between the artifact, other information-bearing subsystems,

and the bath. Restoration processes are the local operations that couple the remote

environment B̄ to the bath B and local particle reservoirs in A. These operations

rethermalize the bath and recharge the reservoirs after they have been driven from

their nominal states by control operations. Together, the control and restoration

phases make up the sequence of global system evolutions required for implementation

of computation in the circuit. The complete definition for these substeps is provided

below.

• Control Operations - Local operations that act during specified time intervals to

change the states of representational elements in the artifact either uncondition-

ally or conditioned on the states of other representational elements. Typically

involves interaction between the artifact, other information-bearing subsystems,

and the bath. Denote as φt ∈ {φt}, where {φt} is the set of control operations

employed by the artifact.

• Restoration Processes - Local operations that couple the remote environment B̄

to the bath B and local particle reservoirs in Ā that rethermalize the bath and

recharge the reservoirs after they have been driven from their nominal states by

control operations.
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This completes the first step of our methodology. We can now discuss the analysis

that we pursue based on the above assignments presented under the abstraction step.

2.3 Analysis

The second step in our approach involves spacetime decomposition of the circuit

function (operational decomposition) and physical-information-theoretic analyses of

local dissipation into the bath throughout the computational cycle (cost analysis).

Any local information about the initial state of A that is irreversibly lost during a

computational step induces dissipation in B before being swept completely into B̄

during the restoration process. Note that, loss of initial-state information from part

of A is locally irreversible if it is erased in the absence of interaction with other parts

of A or Ā that hold or receive copies of the initial state during the clock step. This

locally irreversible information loss affects the state of B during an operation’s control

process, which is precisely the point at which the dissipation costs are “cashed out”

in our approach. The details of this procedure are outlined below.

2.3.1 Operational Decomposition

In this stage of the analysis, we perform a spacetime decomposition of the circuit.

We first define clock zones, subzones, steps and cycles, which allows us to define

computation steps and cycles. The definition of each concept is listed below.

• Clocking - We present the relevant concepts and definitions we employed for

clocking below.

– Clock Zones and Subzones - A clock zone is a set of representational ele-

ments that are simultaneously subjected to the same control operation in

any given time step. Each clock zone may consist of physically disjoint

subsets of representational elements - called clock subzones - that do not
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interact with one another directly as they change state. We denote the uth

clock zone as C(u) and the lth clock subzone of C(u) as Cl(u).

– Clock Step -It represents a time step during which a specified set of control

operations are applied to various clock zones. We denote the assignment

of control operation φt to clock zone C(u) as (C(u);φt), the vth clock step

φv is specifically defined as an assignment

ϕv : {(C(u);φt)}v

of control operations to all clock zones. The restoration processes that

rethermalize the bath and recharge the artifact’s local particle reservoirs

after the associated control operation drives these subsystems from their

nominal states is also included in a clock step.

– Clock Cycle - A clock cycle is one period of the periodic sequence Φ =

φ1φ2φ3... of clock steps applied to the artifact to enable its operation.

• Computation - Above definitions we present for clocking allows us to define the

computational steps and cycle. We list the relevant concepts and definitions

below.

– Computational Step- The computational step ck, defined for the η-th input

x
(η)
i in an input sequence ...x

(η−1)
i x

(η)
i x

(η+1)
i ..., is the k-th of K clock steps

required for evaluation of L(x
(η)
i ).

– Computational Cycle- The η-th computational cycle is the sequence

Γ(η) = c1...ck...cK

of the K clock steps required to fully implement L for the η-th input x
(η)
i ,

including the phase that loads x
(η)
i into the artifact, the phases that evalu-
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ate L(x
(η)
i ), and the phases that transfer L(x

(η)
i ) to the outside world and

erase all information about x
(η)
i from the artifact. Denote c1 as the LOAD

phase and cK as the phase in which all correlation between the computa-

tional state of the artifact and the i-th referent is lost. Γ(η) may include

clock steps from multiple clock cycles, and, in artifacts that pipeline input

data, Γ(η) may exclude clock steps that implement operations belonging

only to other computational cycles (e.g. Γ(η−1) and Γ(η+1)), i.e. clock

steps that do not affect representational elements, whose states depend on

the η-th input. Thus, the η-th computational cycle includes only clock

phases that contribute directly to evaluation of L(x
(η)
i ) in the information

processing artifact.

We can now move on to the calculation of total dissipative cost associated with one

computational cycle based on information dynamics, which involves data zones and

subzones presented above.

2.3.2 Cost Analysis

We calculate the total dissipative cost associated with one computational cycle

based on information dynamics. We present the concepts and definitions related to

this dynamics analysis below.

• Information Dynamics - Here we define data zones and sub zones that allows us

to track information flow and identify irreversible loss of information and hence

calculate the associated unavoidable cost.

– Data Zones and Subzones - For the η-th computational cycle, the k-th

data zone is the set of representational elements that, at the completion

of the k-th computational step ck, hold information about the input data

x
(η)
i . A data zone may contain clock subzones belonging to multiple clock
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zones, and need not include all subzones belonging to any given clock zone.

It may consist of physically disjoint subsets of representational elements

- called data subzones - which do not interact with one another directly

during some or all of the computational steps. We denote the data zone

associated with computational step ck as D(ck), and the w-th data subzone

of D(ck) as Dw(ck). Note that, regardless of the circuit implementation,

there is one data zone defined at the end of computational step of the

computational cycle from c1 to cK−1. By definition, there are no data zones

at the completion of step cK . As a computation progress through steps

in the computational cycle, the data zone changes its size and topology

while propagating from input to output. Data subzones generally split

and merge throughout a computation, generally changing in number from

step to step.

– Information Loss - The total information loss is the sum of contributions

from information lost to the bath in each computational step, with “infor-

mation loss” for the k-th step defined as the amount of information about

the state of each subzone in the k− 1-th data zone that is not in the state

of the corresponding subzone in the k-th data zone, summed over all data

subzones. This implies assignment of individual “subzone referents,” with

appropriate enumeration of states and corresponding probabilities, to each

data subzone.

This conjecture follows from the assumption that data subzones that do

not interact with one another essentially “act alone” for the purposes of

dissipation calculations, as the interactions that erase information about

the prior state are necessarily local. This highlights the importance of

correctly identifying and classifying the relevant physical interactions that

occur throughout the computational cycle, as identification of the data
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subzones - and thus the appropriate level of analysis for obtaining dissipa-

tion bounds - depends on the nature of these interactions.

• Dissipation Bounds - In any given computational step, any information lost

from A that is not completely transferred to Ā results in local energy dissipa-

tion into the bath. Information is “lost” from data subzone Dw(ck−1) during

computational step ck if, at the conclusion of ck, the initial states of erased

clock subzones of Dw(ck−1) cannot uniquely inferred from the final states of

clock subzones Cl(u) ∈ D(ck) that interacted directly with Dw(ck−1) during ck.

The total dissipative cost of one computational step is taken to be the sum of

contributions from all informationally lossy data-subzone-to-data-subzone tran-

sitions, and the cost of processing one input is then the sum of contributions

from each computational step. This is to say that the total energy cost is addi-

tive at the subzone level, i.e. the energy costs associated with these individual

data-subzone information losses can be cashed out individually and summed

over a full cycle to get:

〈E〉TOT =
K∑
k=1

∆〈E〉k =
K∑
k=1

 ∑
w∈{w}k−1

∆〈E〉(w)
k−1

 . (2.1)

where 〈E〉k and ∆〈E〉TOT represent the average energy transferred to the bath

in the k-th computational step and over the full cycle, respectively, increase in

the energy of the bath over one computational cycle.

In conclusion, the analytical strategies developed in this chapter rely on the

assumption that the circuit abstractions we constructed appropriately captures all

computationally functional features of the underlying computational strategy. The

abstractions and decompositions used in this methodology are essential for proper

localization and quantification of the resulting dissipation costs. This requires con-

stant scrutiny and reevaluation as our approach is applied in various contexts. The
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dissipation bounds reflect truly the fundamental costs associated with the circuit op-

eration based on this abstraction. We acknowledge that certain circuit features that

are deemed “non-functional” in an initial analysis, such as a parasitic capacitance not

intended as a memory element, may play a functional role, such as energy-reducing

storage of charge for later reuse. Therefore, a redefinition of the circuit abstraction

and the notion of “paradigmatic operation” need to be developed to address such

features to obtain tighter bounds.

We apply the foundations developed in this chapter to obtain the fundamental

energy requirements of specific nanoelectronic technology proposals. In the next

chapter, we illustrate applications of this methodology to various nanocomputing

strategies.
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CHAPTER 3

HEAT DISSIPATION BOUNDS FOR
NANOCOMPUTING: APPLICATION

In this chapter, we illustrate application of the approach presented in Chapter 2 to

specific nanocomputing paradigms. We consider both non-transistor- and transistor-

based paradigms, and use prominent examples from each nanocomputing technology

to illustrate application our methodology. First, we focus on non-transistor-based

circuits, which can exchange energy with their surroundings but not particles. As

an illustrative example we employ a Quantum Cellular Automata (QCA) half adder

[10]. We also consider nanocomputing circuits that exchange both energy and parti-

cles with their surroundings, which allows us to calculate the fundamental bounds on

energy cost in transistor-based technologies. We apply our methodology to an early

version of the NASIC (Nanoscale Application Specific Integrated Circuit) paradigm

proposed by Moritz and co-workers ([11] and references therein) by using 1-bit half

and full adder implementations of the fabric. In addition to these post-CMOS tech-

nologies, we also calculate the fundamental lower bounds for conventional and well-

known CMOS circuits for pedagogic purposes; we illustrate our methodology via its

application to an np-CMOS half adder. The circuit examples we study throughout

this chapter are dynamically clocked, in the last section of the chapter we also discuss

our methodology’s application to static circuits and comment on certain limitations

involved.
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Figure 3.1. Polarizations and logic states for four-dot and six-dot quantum cells.

3.1 Non-transistor-based Applications

The non-transistor-based technology we employ to illustrate our methodology is

the QCA paradigm. QCA is an emerging technology that is proposed as an alternative

to transistor-based computing technologies. QCAs are composed of arrays of bistable

cells that support binary computing. The technology relies on “arrays of quantum

device cells in a locally-interconnected architecture” [28] that are used to implement

logical devices [29]. Each cell contains quantum dots that are either unoccupied or

occupied by electrons. The logic states are represented by using different configuration

of electron occupancy. The four-dot cell can represent logic-0 and logic-1 states by

using the polarization of the charge in opposite cells. The null state in the four-dot

cell is a mixture of 0 and 1 states. The six-dot quantum cells can represent a null

state, logic-0 and logic-1 states orthogonally as shown in Fig. 3.1

QCA circuits can be composed of four- or six-dot cells. In our study, we assume

that the input states are orthogonal, therefore require the circuit to made up of six-

dot cells.1 operation we consider does not depend on the cell type, therefore the QCA

1In the four-dot cells, the null state is a mixture of 0 and 1 states, therefore is not orthogonal.

40



half adder we present can be constructed by using either four- or six-dot quantum

cells. The stability of cell polarization and coupling to neighboring cells is the essence

of computation in QCA. The polarization of charges in a cell changes according to

the polarization of charges in the neighboring cells due do electrostatic interactions;

i.e. information flow does not involve charge transport. Information in a QCA circuit

propagates by means of the electrostatic interaction between the neighboring cells.

The direction and flow of interaction between the QCA cells can be controlled by

using various clocking schemes. In this study we obtain the fundamental lower bounds

on energy dissipation in QCA half adder circuit that is operated under two different

clocking schemes; Landauer (irreversible) and Bennett (reversible) clocking. Below we

discuss the operation of QCA circuit Landauer and Bennet clocking, and demonstrate

how difference in clocking scheme effects the fundamental lower bounds on the heat

dissipation in this circuit.

3.1.1 Quantum Cellular Automata (QCA) Half Adder with Landauer

Clocking

The cell layout and logic diagram of the QCA half adder circuit used in this study

is illustrated in Fig. 3.2 along with its associated timing diagram for the Landauer

clocking scheme. This layout is based on the circuit used in our earlier study (see

Ref. [10])2 as depicted in Fig. 1 of Ref. [10]. The timing diagram depicts the Landauer

clocking of the circuit using the four-phase adiabatic clocking scheme, which is color

coded to indicate the corresponding clock domains on the cell layout and functional

features of the logic diagram. The cells in each clock region switch to data states

determined by the states of cells at the edges of neighboring regions during the leading

clock edge, hold their states when the clock is high, release during the falling edge,

and remain relaxed in a null state when the clock is low. The clocking of the various

2Note that the circuit employed in Ref. [10] was based on the layout presented in Ref. [30]
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Figure 3.2. Layout, clocking, and gate-level representation of a Landauer-clocked
QCA half adder circuit with no line crossings.
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regions is synchronized as shown in Fig. 3.2. This allows the data to more from left

to right through the adder. The four clock waveforms and corresponding clock zones

for Landauer clocking are indicated in green, magenta, blue, and red, respectively.

The gray shaded clocking regions in the timing diagram correspond to the eleven

steps of one computational cycle. Note that eleven computational steps are required

for one computational cycle, from loading of input from the external source register

AB through evaluation and transfer output to the external destination register CS.

The pipelining is supported in this circuit under Landauer clocking, which means

that while input data for any given computational cycle is loaded from register AB

into the green cells on the left side of the circuit (on the leading edge of CLOCK

0), intermediate results for the previous computational cycle are being clocked into

the green cells on the right side of the circuit and are still two clock steps away from

the output. Let us now present these structure and process details by using our

methodology.

3.1.1.1 Abstraction

The first step is construction of physical abstractions of the circuit and its sur-

roundings (physical decomposition) and the physical processes that enable paradig-

matic operation (process abstraction) as presented in Chapter 2. The intention is to

capture the essential computational strategy of the QCA adder within a physical de-

scription that is compatible with physical-information-theoretic analysis, from which

the dissipation bound can be obtained.

Physical Decomposition – The universe that our system of interest is situated in is de-

picted in Fig. 3.3. In the circuit abstraction corresponding to paradigmatic operation

of the QCA adder, the artifact A is the QCA adder circuit and the representational

elements are the individual QCA cells in this circuit. Each cell is regarded as an

elementary physical system that can support two distinguishable antipodal “data”

43



Figure 3.3. Physical abstraction of the QCA circuit and its surroundings.

states and one null state. Key subsystems external to A include the input/output

register cells AB and SC (which belong to Ā) and the underlying substrate in thermal

contact with cells in the adder circuit (which belongs to B), and other environmental

subsystems (belonging to B̄) that interact with B (but not A) and work always to

drive B toward equilibrium at temperature T . The set of computational states is the

set of all combinations of cell states that are accessed when all possible combinations

of addend and augend bits are clocked through a full computational cycle, defined

so it extends from the step that loads inputs into the circuit from the external reg-

ister AB through the step that erases all information about the initial state of AB

(i.e. about R) from the circuit after the resulting sum and carry values have been

evaluated and stored externally in SC.

As we mentioned in the previous chapter, constructing a globally closed system

enables us to assume the system evolves unitarily via Schrödinger’s equation. The

global unitarity allows us to obtain fundamental lower bounds that we are after in

this work.

Process Abstraction – During computation the subsystems are drawn away from equi-

librium but then rethermalized as a part of the process abstraction. The four ele-
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mentary operations relevant to operation of the QCA adder correspond to the four

phases of the adiabatic clock cycle – switch (φ1), Hold (φ2), Release (φ3), and Relax

(φ4) – each of which acts on specified parts of the circuit in any given clock step. The

restoration processes defined for the φt unconditionally rethermalize the bath if it has

been driven from equilibrium during the control operation. These operations provide

the circuit evolution as required to implement computation.

We can elaborate further on the state transformations associated with the control

and restoration process for all elementary operations performed throughout one com-

putational cycle of the QCA adder as follows. Initially, all cells in the adder circuit

are in null states, the bath B is in a thermal state, and the η-th input referent is in

the state

ρ̂Rη =
4∑
i=1

pi|xRηi 〉〈x
Rη
i | (3.1)

where the |xRηi 〉 are orthogonal pure states encoding the inputs {xi} = {Ai, Bi} and

pi is the ith input probability. This referent is initially correlated with the external

input cells A and B.

On each computational step, the globally closed composite system evolves accord-

ing to Shrödinger equation. The initial state of each computational step ck is shown

together with the structure of the control operation relevant to that state transforma-

tion in Table 3.1. Recall here that Ak denotes the subsystem of A that participates in

the k−th computational step ck. Each computational step concludes with a restora-

tion process. For computational steps that need not be dissipative, Û rest is simply

identity operation. However, for the dissipative steps c6, c9 and c11 the restoration

operator is Û rest = ÛBB̄ ⊗ ÎRηAkĀk .

The sequence of state transformations specified in Table 3.1. is relevant to a single

shot computation, so Rη+1 is not loaded into the circuit as Rη is being processed as

would be the case in pipelined operation of the circuit.
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Computational Steps Initial State State Transformation Control Operation

c1 ρ̂0 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Āk
i

)
⊗ ρ̂Ak ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂1 = Û restÛ1ρ̂0Û

†
1 Û

rest† Û1 = ÛRηAkĀk ⊗ ÎBB̄

c2 ρ̂1 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ak
0,i

)
⊗ ρ̂Āk ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂2 = Û restÛ2ρ̂1Û

†
2 Û

rest† Û2 = ÛRηAk ⊗ ÎBĀkB̄

c3 ρ̂2 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ak
1,i

)
⊗ ρ̂Āk ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂3 = Û restÛ3ρ̂2Û

†
3 Û

rest† Û3 = ÛRηAk ⊗ ÎBĀkB̄

c4 ρ̂3 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ak
2,i

)
⊗ ρ̂Āk ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂4 = Û rest

diss Û4ρ̂3Û
†
4 Û

rest†
diss Û4 = ÛRηAk ⊗ ÎBĀkB̄

c5 ρ̂4 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ak
3,i

)
⊗ ρ̂Āk ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂5 = Û restÛ5ρ̂4Û

†
5 Û

rest† Û5 = ÛRηAk ⊗ ÎBĀkB̄

c6 ρ̂5 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ak
4,i

)
⊗ ρ̂Āk ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂6 = Û rest

diss Û6ρ̂5Û
†
6 Û

rest†
diss Û6 = ÛRηAkB ⊗ ÎĀkB̄

c7 ρ̂6 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂B̄5,i ⊗ ρ̂

Ak
5,i

)
⊗ ρ̂B ⊗ ρ̂Āk ρ̂7 = Û restÛ7ρ̂6Û

†
7 Û

rest† Û7 = ÛRηAk ⊗ ÎBĀkB̄

c8 ρ̂7 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂B̄6,i ⊗ ρ̂

Ak
6,i

)
⊗ ρ̂B ⊗ ρ̂Āk ρ̂8 = Û rest

diss Û8ρ̂7Û
†
8 Û

rest†
diss Û8 = ÛRηAk ⊗ ÎBĀkB̄

c9 ρ̂8 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂B̄7,i ⊗ ρ̂

Ak
7,i

)
⊗ ρ̂B ⊗ ρ̂Āk ρ̂9 = Û restÛ9ρ̂8Û

†
9 Û

rest† Û9 = ÛRηAkB ⊗ ÎĀkB̄

c10 ρ̂9 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂B̄8,i ⊗ ρ̂

Ak
8,i

)
⊗ ρ̂B ⊗ ρ̂Āk ρ̂10 = Û rest

diss Û10ρ̂9Û
†
10Û

rest†
diss Û10 = ÛRηAk ⊗ ÎBĀkB̄

c11 ρ̂10 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂B̄9,i ⊗ ρ̂

Ak
9,i

)
⊗ ρ̂B ⊗ ρ̂Āk ρ̂11 = Û rest

diss Û11ρ̂10Û
†
11Û

rest†
diss Û11 = ÛAkĀkB ⊗ ÎRηB̄

Table 3.1. State transformations for the QCA 1-bit half adder operated under Landauer clocking.

46



The computationally active region of the half adder Ak is correlated with the sup-

porting computational system Āk only after the inputs are loaded in the first com-

putational step and before the outputs are erased in the last step.

The referent is correlated with Ak alone from the end of c1 until the end of c4, after

which the loss of information to the bath correlates Rη to B and, after restoration

steps, to B̄. At the end of the final step c8, the circuit has lost all information about

the input referent and Rη and A are no longer correlated.

3.1.1.2 Analysis

We start our analysis by performing a spacetime decomposition of the circuit (op-

erational decomposition), which is then followed by a physical- information-theoretic

analysis of local dissipation into the bath throughout the computational cycle to

capture and lower bound the dissipative costs.

Operational Decomposition – The clock cycle is a periodic sequence Φ = ϕ1ϕ2ϕ3ϕ4

of four clock steps ϕv, each of which is an assignment of operations φt to the four

independently controlled “clock zones” C(u) depicted in green, magenta, blue, and

red in Fig. 3.2. Denoting these clock zones as C(1), C(2), C(3) and C(4), respectively,

the assignment corresponding to the adder clocking described in above is

ϕ1 : {(C(1);φ1), (C(2);φ4), (C(3);φ3), (C(4);φ2})

ϕ2 : {(C(1);φ2), (C(2);φ1), (C(3);φ4), (C(4);φ3})

ϕ3 : {(C(1);φ3), (C(2);φ2), (C(3);φ1), (C(4);φ4})

ϕ4 : {(C(1);φ4), (C(2);φ3), (C(3);φ2), (C(4);φ1})
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The computational cycle Γ associated with a single input, which requires two full

clock cycles, is then

Γ = c1c2c3c4c5c6c7c8c9c10c11 = ϕ
(1)
1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(1)
4 ϕ

(2)
1 ϕ

(2)
2 ϕ

(2)
3 ϕ

(2)
4 ϕ

(3)
1 ϕ

(3)
2 ϕ

(3)
3

where ck denotes the k-th step in the computational cycle. Here c1 is the initial LOAD

step and c11 is the final erase step.

Each step of the computational cycle is necessarily a unitary evolution of the

global system state, as must be the case for any isolated system evolving according

to the time-dependent Schrödinger equation, i.e. according to physical law, governed

by Hamiltonians that selectively couple various parts of A and external subsystems

to one another. At each computational step, the system starts out with A in a

computational state and B in its nominal (thermal) state. The control processes

evolves the system unitarily such that A transitions to the next computational state

specified by paradigmatic operation, with the state of B adjusting as necessary to

accommodate this computational state change within the global constraints imposed

by physical law. The restoration process then returns B to its nominal state through

interaction with B̄, leaving A in its new computational state.

To track information flow through the circuit, and to isolate the sources of irre-

versible information loss within the computational cycle, we refer back to section 2.3.2

and use the definition data zone D(ck) for each computational step ck as follows: The

k-th data zone is the union of all clock zones that, at the conclusion of computational

step ck, hold some information about the input associated with the cycle. There are

ten data zones, D(c1)...D(c10) (since no information about the relevant input remains

in the circuit at the conclusion of computational step c11), each of which is the union

of multiple disjoint data subzones Dw(ck). For the adder circuit of the present work,

the data zones and subzones are

D(c1) = D1(c1) ∪D2(c1)
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D(c2) = D(c2)

D(c3) = D1(c3) ∪D2(c3) ∪D3(c3)

D(c4) = D1(c4) ∪D2(c4) ∪D3(c4)

D(c5) = D(c5)

D(c6) = D1(c6) ∪D2(c6) ∪D3(c6)

D(c7) = D1(c7) ∪D2(c7) ∪D3(c7) ∪D4(c7)

D(c8) = D1(c8) ∪D2(c8)

D(c9) = D1(c9) ∪D2(c9)

D(c10) = D1(c10) ∪D2(c10)

where each data subzone corresponds to clock subzones3 as

D1(c1) = C1(1)

D2(c1) = C2(1)

D1(c2) = C1(1) ∪ C1(2) ∪ C2(2) ∪ C2(1) ∪ C3(2)

D1(c3) = C1(2) ∪ C1(3)

D2(c3) = C2(2) ∪ C2(3)

D3(c3) = C3(2) ∪ C3(3)

D1(c4) = C1(3) ∪ C1(4)

D2(c4) = C2(3) ∪ C2(4)

3Numbered from top to bottom and then from left to right.
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D3(c4) = C3(3) ∪ C3(4)

D1(c5) = C1(4) ∪ C5(1) ∪ C2(4) ∪ C2(5) ∪ C3(4) ∪ C3(5)

D1(c6) = C1(5) ∪ C1(6)

D2(c6) = C2(6) ∪ C2(5)

D3(c6) = C3(5) ∪ C4(6)

D1(c7) = C1(6) ∪ C1(7)

D2(c7) = C2(7) ∪ C2(6) ∪ C3(7)

D3(c7) = C3(6) ∪ C4(7)

D1(c8) = C1(7) ∪ C1(8) ∪ C2(7)

D2(c8) = C3(7) ∪ C2(8) ∪ C4(7)

D1(c9) = C1(8) ∪ C1(9)

D2(c9) = C2(8) ∪ C2(9)

D1(c10) = C1(10)

D2(c10) = C2(10).

The data zones exhibit considerable splitting and merging throughout the com-

putational cycle.

Cost Analysis – The dissipative cost per computational cycle is the sum of contribu-

tions from each step

∆〈E〉TOT =
11∑
k=1

∆E(ck) =
11∑
k=1

∆〈EB〉k (3.2)

where ∆〈EB〉k is the change in the expected energy of the bath B during the control

phase of the k-th computational step ck. A lower bound on this quantity is obtained
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by summing single-step lower bounds on ∆〈EB〉k obtained from physical-information-

theoretic analyses. These single-step bounds, and thus the full-cycle bound, derive

exclusively from global unitary dynamics of the coupled subsystems, entropic inequal-

ities, fundamental thermodynamic considerations assuming paradigmatic operation

of the abstracted circuit as described in Chapter 2 (see Eq. (2.1)).

Nonzero lower bounds on ∆〈EB〉k are obtained for computational steps in which

data-bearing blocks of cells relax to null states in the absence of interaction with

other blocks of cells that hold a complete record of the data initially encoded in

the relaxing cells. To formalize this, note that the clock subzones that are nullified

during computational step ck are those common to data zones D(ck−2) and D(ck−1).

Assuming that there is one such clock subzone for each data subzone Dw(ck−2), as is

the case for the QCA adder considered here, these clock subzones can be identified,

denoted, and indexed as C(k)
w = Dw(ck−2) ∩ D(ck−1). Noting also that the union

of “successor” subzones with which C(k)
w interacts as it is nullified during step ck

is D(k)
w =

⋃
w′ D

(k)
w′w, where D(k)

w′w ∈ {D
(k)
w′w} = {Dw′(ck−1)|Dw′(ck−1) ∩ C(k)

w 6= ∅}.

Specifically, some information is irreversibly lost during computational step ck if, at

the conclusion of ck, the initial states of clock subzones C(k)
w cannot uniquely inferred

from the final states of the successor subzones D(k)
w with which they interacted during

ck. This allows us to treat each C(k)
w ∪ D(k)

w as an independent L-machine (denoted

L(k)
w ≡ C(k)

w ∪ D(k)
w ). We assume that the C(k)

w interact locally with the bath, since by

definition they do not interact with one another, the dissipative cost of information

loss from subzones in a given computational step is additive and the net dissipative

cost of erasure for all subzones erased during the k-th computational step can be

lower bounded as [9]

∆
〈
EB
〉
k
≥
∑
L(k)w

−kBT ln(2)∆IRηL
(k)
w (3.3)
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where kB is the Boltzmann constant, −∆IRηL
(k)
w is the amount of information about

the initial state of clock subzone C(k)
w that is locally and irreversibly lost from C(k)

w ∪D(k)
w

during the k-th computational step. In specializing the bound presented above in

Eq. (1.38) for quantum mechanical L-machines to this scenario, we have taken each

C(k)
w ∪ D(k)

w to be an ideal classical L-machine and regarded the two data states and

the null state of each subzone to be pure (and thus zero entropy).

The single-step dissipation bound (3.3) is nonzero only for computational steps

c4, c7 and c10, arising from information loss in the clock subzones {C(4)
w } = {C2(2)},

{C(7)
w } = {C3(1), C4(1)}, and {C(10)

w } = {C4(2), C5(2)}. Evaluation of the correspond-

ing bounds for equiprobable adder inputs yields.4

∆〈EB〉4 ≥ 1.19kBT ln(2) (3.4)

∆〈EB〉7 ≥ 1.38kBT ln(2) (3.5)

∆〈EB〉10 ≥ 1.19kBT ln(2). (3.6)

These results are summarized in Fig. 3.4, which shows the lower bound on the

cumulative dissipative cost of processing one input, averaged over the four possible

two-bit inputs (assumed equiprobable), for the eleven steps of the computational cycle

under Landauer clocking.

Adding the single-step costs via Eq. (3.3), we obtain the fundamental lower

bound on the local dissipative cost of computation for one computational cycle of

the Landauer-clocked QCA half adder:

∆〈E〉TOT ≥ (3.76)kBT ln(2). (3.7)

4Note that the bound ∆〈EB〉10 accounts for the fact that the subzones C(10)
w = {C4(2), C5(2)}

are nullified in interaction with the output registers S and C, respectively, which hold partial copies
of the information erased from these subzones.
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Figure 3.4. Fundamental lower bound on the cumulative dissipative cost for one
computational cycle of the Landauer-clocking of QCA 1-bit half adder circuit.

This full-cycle bound is about 7.5× the 0.5kBT ln(2) lower bound for any half adder

that erases its input, with the excess resulting from local irreversibility associated with

the specific circuit structure and clocking scheme. We emphasize that the localization

and quantification of information loss that enable determination of this dissipation

bound requires the abstractions and decompositions used in this analysis: A half

adder with equiprobable inputs necessarily loses 0.5 bits of information taken as a

whole, whereas the 135 cells in the QCA adder lose a total of 114 bits when taken

individually. The intermediate value of 3.76 bits follows from our detailed analysis

of the structure and operation of this particular circuit. A detailed discussion on the

granularity of heat dissipation is presented in Appendix A.

To give the bound (4.3) a quantitative meaning in a computational setting, we as-

sume a clock (cycle) frequency of 50 GHz (55 ps computational cycle), a cell footprint

of 10 nm2 (circuit area of 5.7 × 10−11 cm2), and operation at T = 300K. For this
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case, the bound (4.3) implies an areal power dissipation of no less than 3.45W/cm2

per computational cycle.5 Since data is pipelined through the circuit, and portions of

other computational cycles are active during the same time period, the lower bound

on the total energy dissipated during the eleven clock steps taken to implement one

computational cycle is (8.9)kBT ln(2),6 and the lower bound on the corresponding

areal power dissipation for the above parameters and conditions is 8.14 W/cm2.

3.1.2 QCA Half Adder with Bennett Clocking

We now sketch application of our approach to operation of the QCA adder using

Bennett clocking, which proposed by Lent and co-workers [31] as a way to implement

reversible computation in QCA circuits and improve power efficiency. In principle,

Bennett clocking allows for dissipation-free single-shot computations by retaining the

input data in the circuit throughout the computation. Dissipation-free sequences

of computations are also possible, but only if special efforts are made to “unload”

the input data at the end of each cycle [32]. Dissipative costs do, however, arise in

more practical Bennett clocking scenarios, including large circuits with independent

Bennett-clocking of individual stages to enable pipelining, where input data is erased

from each stage at the end of its Bennett-clocked cycle. A scheme for pipelining

data through multiple Bennett-clocked stages of a QCA circuit has recently been

proposed by Ottavi and co-workers [33], who investigated trade-offs between stage

depth, computational throughput, and the dissipative cost of erasing intermediate

results of each stage. Here, we consider a relatively simpler Bennett clocking scheme.

5We calculate this by using P = ∆E
A·t , where ∆E is the amount of energy dissipated, A is the

circuit area, and t is the amount of time it takes for one full computational cycle (2 3
4 clock cycles).

At T = 300K the constant kBT ln(2) is 2.869× 10−21 Joules, therefore P = 3.76·2.869×10−21

5.7×10−11·55×10−12 .

6The three dissipative steps associated with the processing of the ηth input overlaps with the
last two and first two of the dissipative steps associated with the (η + 1)th and (η − 1)th input,
respectively. Therefore, dissipative costs outlined in Eq. (3.4), (3.5), and (3.6) appear two-, three-,
and two-times in this calculation, respectively.
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Figure 3.5. Layout, clocking, and gate-level representation for Bennett clocking of
the QCA 1-bit half adder.

The scheme for Bennett clocking of the QCA adder considered here enables

pipelining and is depicted in Fig. 3.5. The nine clock waveforms and correspond-

ing zones for Bennett clocking are indicated in green, magenta, blue, red, navy, and

brown, yellow, maroon, pink, respectively. The external input and output registers

are shown in black and gray since they are not simultaneously operated with clock

zones listed above. The shaded clocking regions correspond to the twenty steps of one

computational cycle. There are nine clock zones and nineteen clock steps φv (grey

bars), each corresponding to a unique computational step ck of the nineteen-step

computational cycle. Input data is loaded from the external register AB in step c1,

the result is computed during steps c2 − c7. During these steps, the data remains

intact behind the forward propagating clock wave, the result is read out to external

register CS in step c9, the computation is reversibly “undone” during steps c8 − c19.
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This leaves the original input data for the cycle in the leftmost (green) clock zone,

with the remainder of the adder in its null state, which is then irreversibly erased

in step c19 in the absence of a copy assuming that register AB holds data for the

next cycle at this point. This would also be the case in a simple pipelining scheme.

This is the only step in the computational cycle where information is irreversibly lost

and dissipation costs are necessarily incurred. For instance, recent work on molecular

QCA suggests that dissipation from switching will dominate dissipation costs, far

exceeding parasitic clocking losses [34].

For equiprobable inputs, the dissipative cost of each computational cycle is that

of erasing the two bits of input information, which is lower bounded simply as

∆〈E〉TOT ≥ (2)kBT ln(2). (3.8)

Here the coefficient two comes from the two bits of input information that is unavoid-

ably discarded at the end of a full computational cycle. We can explain this in terms

of the general bound (2.1); only the final computational step contributes to the total

bound –when the circuit loses all the information at once and completely the end of

the computational cycle. The final fundamental bound for the QCA half adder op-

erated under Bennett clocking does not have any connection to dissipation from the

data zones or subzones we identified for the same circuit operated under Landauer

clocking. The fundamental lower bound on the dissipative cost per computational

cycle for Bennett clocking is smaller than the corresponding bound for Landauer

clocking by a factor of 0.53 (= 2/3.76). This is despite the fact that the Bennett

cycle requires twenty computational steps compared to eleven for Landauer clocking.

For a fixed computational throughput, with the Bennett clocked circuit operated at

a rate 4.75 (= 19/4) times faster than the Landauer clocked circuit to compensate

for the increased latency inherent in Bennett clocking, the fundamental lower bound
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on areal power dissipation for Bennett clocking is less than the corresponding bound

for Landauer clocking.

This comparative study, which is specific to one particular circuit controlled via

Landauer clocking scheme and Bennett clocking scheme, demonstrates application

of our approach to concrete scenarios in the QCA nanocomputing paradigm. The

result of this study provides fundamental support for the conclusion that Bennett

clocking can provide power efficiency (operations per Watt [35]) advantages in multi-

stage, pipelined circuits for a given computational throughput. The resulting power

dissipation bounds with a Bennett clocking rate increases as necessary (4.75x the

Landauer rate) to achieve the same computational throughput in the two schemes.

For the particular pipelining granularities considered, we found the lower bound on

power dissipation for Landauer clocking to exceed that for Bennett clocking.

3.2 Transistor-Based Applications

In this section, we expand our methodology to address the fundamental bounds

on energy costs for circuits that exchange not only energy but also particles with

their surroundings. This enables us to apply our approach to transistor-based com-

plex circuit structures. We employ 2D grid single nanowire type NASIC (Nanoscale

Application Specific Integrated Circuit) proposed by Moritz and co-workers ([11] and

references therein) for illustrative purposes. We use both half and full adder imple-

mentations of the fabric. We also apply our methodology to a dynamically clocked

CMOS circuit to illustrate our methodology’s application to a conventional paradigm.

Lastly, we discuss the limitations involved in applying our methodology to static

CMOS circuits.
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Figure 3.6. The cross section of a crossed-nanowire Field Effect Transistor (xn-
wFET) [11].

3.2.1 Nano-Application Specific Integrated Circuits (NASICs)

NASIC is a promising CMOS-replacement technology that has been extensively

researched by multiple groups for various applications. The architecture relies on a

new hybrid CMOS-nanoscale circuit style which is shown to have higher performance,

as well as less manufacturing cost by using single type Field Effect Transistor in

nanoscale portions [36]. The fabric is built from 2-D semiconductor nanowire grids

with crossed-nanowire FET (xnwFET) at certain crosspoints. The channel of an

xnwFET is aligned along one nanowire while the perpendicular nanowire above it

acts as a gate [11], [37]. The cross section of an xnwFET7 is shown in Fig. 3.6.

In xnwFET devices, the gate, source, drain, and substrate regions are all doped n-

type (high in electron concentration), and the channel is doped p-type. This device

is an inversion mode device similar to conventional MOSFETs: applying a positive

voltage at the gate terminal attracts electrons into the p-doped channel leading to n-

type FET behavior.8 NASICs use a dynamic circuit style with control signals driven

7The Fig. 3.6 displays a rectangular nanowire, however, depending on the performance target as
well as the manufacturing and synthesis process used cylindrical nanowires too are possible [11].

8The “inversion mode” corresponds to inversion layer-like behavior similar to that of conventional
CMOS. Inversion layer in CMOS is a channel through which electron can pass. Further details, as
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from external reliable CMOS circuitry. This emerging technology is one of the most

well-developed post-CMOS circuits and its analysis is tractable within our approach.

The physical circuit structure of the NASIC half adder along with the associated

timing and logic diagram used in this study is depicted in Fig. 3.7. The nanowire grid

is represented by thin blue lines and the peripheral microwires carrying VDD, VSS and

dynamic control signals (PRE1, EVA1, PRE2, EVA2) are depicted as thick yellow,

green and blue lines, respectively. Channels of the crossed-nanowire FETs, shown

at certain cross points, are oriented horizontally in Stage 1 (left NAND plane) and

vertically in Stage 2 (right NAND plane). Inputs are received from vertical nanowires

in Stage 1, which act as gates for horizontal crossed-nanowire FETs implementing the

first stage of the dynamic circuit. The horizontal nanowires act as the outputs of Stage

1 and as gates of the Stage 2 transistors, whose channels are aligned in the vertical

direction. Independent latching of the gate inputs and outputs in separate transistor

stages allows for pipelined operation of the adder. Note here that the control signals

coordinate the flow of data through NASIC tiles. The horizontal and vertical signals

are different which supporting cascading. Fig. 3.7 (middle) shows NASIC control

scheme considered in this study. A logic diagram of the half adder implemented by

this circuit is also shown in Fig. 3.7 (bottom). The transistors in Stage 1 register

the input values for the first level of NAND gates, whereas the Stage 2 transistors

register the outputs of these NAND gates (hereafter the “minterm complements”),

which are, of course, the inputs to the second level of NAND gates.

We trace the processing of a single adder input through one full computational

cycle.9 Only one of the control signals is active at any time in this scheme, affecting

well as the difference between the operation of n-type and p-type devices will be explained under
the discussion of CMOS paradigm in Sec. 3.2.2. Here, we focus on the single type FET used in the
NASIC paradigm, and provide information on its structure and operation.

9A variety of clocking schemes are possible for NASIC circuits: the one we consider here (cf.
Fig. 3.7) is of Ref. [11] which is designed for single wire type circuits in the original paper.
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Figure 3.7. Layout, clocking, and logic diagram of the single-FET-type NAND-
NAND NASIC 1-bit half adder circuit.
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either the Stage 1 transistors or the Stage 2 transistors but not both. Ideally, PRE2

and PRE1 unconditionally precharge the transistors in Stages 1 and 2, respectively.

This erases any information held in the transistors of these circuit stages. During the

evaluation steps, EVA2 conditionally discharges the transistors in Stage 1, conditioned

on the adder input values, and EVA1 discharges the transistors in Stage 2 conditioned

on the states of the Stage 1 transistors. From a functional point of view, transistor

states are the repositories for bit values in NASIC circuits.

We now construct the physical decomposition and process abstraction of the cir-

cuit scheme explained for NASIC half adder and introduce our cost analysis. We

present the final fundamental lower bounds for both circuits in sections 3.2.1.3 and

3.2.1.4, respectively.

3.2.1.1 Abstraction

We begin by constructing the abstraction of the circuit and other surrounding

subsystems to capture the essential functional features of the underlying computa-

tional strategy of NASIC adders. We do this within a physical description that is

compatible with physical-information-theoretic analysis. This allows us to obtain the

dissipation bounds we are after.

Physical Decomposition – The abstraction used to describe the NASIC adders and

its environment is depicted in Fig. 3.8. The artifact A is the NASIC tile, or, more

specifically, the system of electrons in the nanowire grid and at the surface of the

underlying substrate (collectively C) together with the source (VSS) and drain (VDD)

microwires (S and D). The source and drain are nominally regarded as idealized

Fermi gases at temperature T with associated chemical potentials µSS and µDD,

respectively, with ∆µ = µSS − µDD = qVDD, where q is the electric charge. The

bath B is (the phonon gas in) the underlying substrate in direct thermal contact

with the NASIC tile, and is nominally in a thermal state at temperature T . The
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Figure 3.8. Physical abstraction of the NASIC 1-bit adder situated in its surround-
ing environment.

greater environment B̄ includes subsystems that drive B toward thermal equilibrium

and supply the energy and particles required to maintain the nominal populations of

S and D and a chemical potential difference ∆µ = qVDD when these subsystems are

driven from their nominal states during computation. The nanowire grid exchanges

particles with the source and drain microwires S and D and heat with the bath B

as it processes input data held in register (referent) R. The greater environment B̄

provides the energy, particles, and heat removal that enable circuit operation, and

everything else required to thermodynamically isolate the global system.

The interaction between the subsystems can be summarized as follows. The

precharge and evaluate operations selectively open the nanowire grid to particle ex-

change with the drain D and source S, respectively, with S open to substrate electrons

at all times. The subsystems C, S, and D can also exchange heat with B during each

computational step. Heat exchange between B̄ and the subsystems B, S and D, and

particle exchange between B̄ and S and D, are assumed to restore B, S and D to

their nominal states at the conclusion of each computational step.
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Process Abstraction – We associate physical operations φ with each clock step, decom-

posing each operation into a control process and a restoration process. Both processes

are necessarily unitary evolutions of the global system state, as must be the case for

any isolated system evolving according to the time-dependent Schrödinger equation

(i.e. according to the physical law) each involving selected subsystem interactions.

At each step, the system starts out with C in a computational state and S, D, and

B in their nominal states. The control process evolves the system unitarily such that

C transitions to the next computational state specified by paradigmatic operation,

exchanging precisely the minimum number of particles required for the operation (if

any) with S and D and adjusting the state of B as necessary to accommodate the

computational state change while obeying physical law. The restoration process re-

turns S, D, and B to their nominal states through interaction with B̄ and leaves C in

its new computational state.

Similar to the QCA half adder, we outline the sequence of state transformations

that comprise a single computational cycle of the NASIC. The initial state of the

NASIC half adder circuit and the surrounding systems is defined as

ρ̂initial = [ρ̂Ck ⊗ ρ̂C̄k ⊗ ρ̂S ⊗ ρ̂B ⊗ ρ̂D ⊗ ρ̂B̄],

where subsystem density operators are separable. The reduced density operators are

ρ̂RA = TrSBD[ρ̂], ρ̂S = TrRABD[ρ̂], ρ̂B = TrRASD[ρ̂] and ρ̂D = TrRASB[ρ̂]. Initially, all

nanowire FETs in the circuit are precharged (set to their logic 1 states), the bath B is

in a thermal state, and the referent state for the η-th input is represented as defined

in Eq. (3.1).

On each step, the global system evolves unitarily via the time-dependent Schrödinger

equation. Table 3.2. outlines the initial states and the structure of the state trans-

formation associated with each computational step, with Ck indicating the clock zone
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that changes state during computational step ck. The state of Ck is determined by

the pattern of discharged transistors in the computationally relevant circuit stage.

The control operation of every computational step is followed by a restoration

phase. For evaluation steps, the restoration operator is Û rest
EV A = ÛBB̄ ⊗ ÎRηCkSDC̄k ,

which rethermalizes the bath and S. The restoration operation for precharge steps,

which is of the form Û rest
PRE = ÛBSDB̄ ⊗ ÎRηCkC̄k , rethermalizes B and recharges and

rethermalizes S and D.

As was the case for the QCA adder, we consider single shot computation to ob-

tain a lower bound on the amount of dissipation associated with processing a single

input. The computationally relevant stage Ck of the half adder is correlated with

the supporting computational system C̄k only when the inputs are loaded in the first

computational step and when the outputs are obtained in the last step. Starting from

c2 the greater environment B̄ is correlated with Rη due to the restoration of B after

evaluation. At the end of c4, the final step of computation, the circuit loses all the

information about the η-th input and C is no longer correlated with Rη.

Three classes of clock operations defined for the NASIC adder are precharge op-

erations φP , evaluate operations φE, and hold φH . Each of these operations act on

a specified part of the circuit in any given clock step. During precharge φP , part of

the nanowire grid is selectively opened to D and electrons flow from S into C and

from C into D. A subsequent “reinvestment” of energy is required by B̄ during the

restoration to recharge S and D. During evaluation φE, part of the nanowire grid

is selectively opened to S, which is in contact with substrate electrons at all times,

allowing discharging via electron exchange within the artifact (through S) at no cost

to the greater environment. During hold operations φH , part of the nanowire grid

remains isolated from S and D by keeping past transistors OFF.
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Computational Initial State State Transformation Control Operation
Steps

c1 ρ̂0 =
(∑M=4

i=1 piρ̂
Rη
i ⊗ ρ̂

C̄k
i

)
⊗ ρ̂Ck ⊗ ρ̂S ⊗ ρ̂D ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂1 = Û rest

EV AÛ1ρ̂0Û
†
1 Û

rest†
EV A Û1 = ÛRηCkC̄kB ⊗ ÎSDB̄

c2 ρ̂1 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ck
1,i ⊗ ρ̂B̄1,i

)
⊗ ρ̂S ⊗ ρ̂D ⊗ ρ̂B ⊗ ρ̂C̄k ρ̂2 = Û rest

EV AÛ1ρ̂1Û
†
1 Û

rest†
EV A Û2 = ÛRηCkB ⊗ ÎSDC̄kB̄

c3 ρ̂2 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ck
2,i ⊗ ρ̂B̄2,i

)
⊗ ρ̂S ⊗ ρ̂D ⊗ ρ̂B ⊗ ρ̂C̄k ρ̂3 = Û rest

PREÛ3ρ̂2Û
†
3 Û

rest†
PRE Û3 = ÛRηCkSDB ⊗ Î C̄kB̄

c4 ρ̂3 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ck
3,i ⊗ ρ̂B̄3,i

)
⊗ ρ̂S ⊗ ρ̂D ⊗ ρ̂B ⊗ ρ̂C̄k ρ̂4 = Û rest

PREÛ4ρ̂3Û
†
4 Û

rest†
PRE Û4 = ÛCkSDBC̄k ⊗ ÎRηB̄

Table 3.2. State transformations for the NAND-NAND NASIC 1-bit adder.
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The crucial feature of this decomposition and abstraction, which ultimately en-

ables determination of fundamental dissipation bounds within our approach, is this:

Any local information about the initial state of C that is irreversibly lost during a

clock step induces dissipation in B before being swept completely into B̄ during the

restoration process.10 This locally irreversible information loss affects the state of

B during the control process, which is precisely the point at which the dissipation

costs are cashed out in our approach. All dissipation costs resulting from logical irre-

versibility and particle supply can be captured by “monitoring” energy flow into the

bath during control operations. It is important to note here that the cost we capture

by this approach is subject to several key assumptions regarding the relative time

scales of the various physical processes involved. These assumptions are concerned

with the time it takes for the information in the contacts to get dissipated into the

bath as well as the interactions between the other subsystems. Specifically, we as-

sume that the information in the contacts get dissipated into the bath before the next

computational operation and rethermalization of the subsystems involved.

3.2.1.2 Analysis

In order to properly capture and lower bound the dissipative costs, we perform a

spacetime decomposition of the circuit (operational decomposition) and a physical-

information-theoretic analysis of local dissipation into the bath throughout the com-

putational cycle.

Operational Decomposition – The clock cycle Φ = ϕ1ϕ2ϕ3ϕ4 is a periodic sequence

of four clock phases ϕv, each of which is an assignment of operations φ to the two

independently controlled clock zones identified as Stage 1 and Stage 2 of Fig. 3.7. The

duration of the full computation requires six clock steps, however, only four among

10Loss of initial-state information from part of C is locally irreversible if it is erased in the absence
of interaction with other parts of C or C̄ that hold or receive copies of the initial state during the
clock step.

66



the six steps is associated with the computation cycle of a given input. Only the

steps labeled as 1 , 2 , 3 and 4 involve manipulation of data related to a given input

within the tile.

Denoting these clock zones as C(1) and C(2), respectively, the assignment corre-

sponding to the adder clocking described above is

ϕ1 : {(C(1);φE), (C(2);φH)}

ϕ2 : {(C(1);φH), (C(2);φP )}

ϕ3 : {(C(1);φH), (C(2);φE)}

ϕ4 : {(C(1);φP ), (C(2);φH)}.

The computational cycle Γ(η) for the η-th input is then the sequence

Γ(η) = c1c2c3c4 = ϕ
(1)
1 ϕ

(1)
3 ϕ

(1)
4 ϕ

(2)
2 (3.9)

of four computational steps ck associated with this cycle, which are drawn from the

first six steps of two consecutive clock cycles

Φ(1)Φ(2) = ϕ
(1)
1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(1)
4 ϕ

(2)
1 ϕ

(2)
2 ϕ

(2)
3 ϕ

(2)
4 (3.10)

as explained above. Only dissipative costs incurred during the four computational

steps contribute to the total dissipative cost of processing the η-th input in the NASIC

adder tile.

To track information flow through the circuit, and to isolate the sources of irre-

versible information loss within the computational cycle, we define a data zone D(ck)

for each computational step ck. The k-th data zone is defined as the union of all clock

zones that, at the conclusion of computational step ck, hold some information about

the η-th input. Each data zone D(ck) is, in general, the union of multiple clock zones.

For the computational cycle of the NASIC adder, we have

67



D(c1) = C(1)

D(c2) = D1(c2) ∪D2(c2) = C(1) ∪ C(2)

D(c3) = C(2)

D(c4) = ∅.

Cost Analysis – The total dissipative cost associated with one computational cycle

is

∆〈E〉TOT =
4∑

k=1

∆E(ck) =
4∑

k=1

∆〈EB〉k (3.11)

where ∆〈EB〉k is the change in the expected energy of the bath B during the k-th

computational step ck. At most one clock zone in the data zone D(ck−1) changes its

state during step ck, and the dissipative cost can be lower bounded as [9]

∆
〈
EB
〉
k
≥ −kBT ln(2)

(
∆IRCkSD +

〈
∆SCkSDi

〉)
(3.12)

where Ck is the clock zone that changes state during the k-th computational step

(C1 = C3 = C(1), C2 = C4 = C(2)), ∆IRCkSD is the information about R that is lost

from CkSD during the k-th step and 〈∆SCkSDi 〉 is input-averaged entropy change of

CkSD for the k-th step. Because, for all steps, the initial and final states of Ck and

the number ∆Nk of particles transferred (from S to Ck and Ck to S) are precisely

specified for all steps under paradigmatic operation, and because S and D are in

thermal states at the beginning and end of the control process for each step, the

bound (3.12) simplifies to

∆
〈
EB
〉
k
≥ −kBT ln(2)

(
∆IRCk + ∆〈SS〉k + ∆〈SD〉k

)
. (3.13)
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We use this general bound in the steps where the artifact is charged and information

is irreversibly erased (i.e.; the precharge steps) to analyze the cost. In the evaluation

steps, we can simply use the energy conservation relation

∆
〈
EB
〉
k

= −∆〈ECki 〉 (3.14)

since no information is erased, the initial and final states of S are the same, and D is

isolated during this process.

Since clock zone C(1) changes state only during computational steps c1 and c3

(C1 = C3 = C(1)), and since clock zone C(2) changes state only during computational

steps c2 and c4 (C2 = C4 = C(2)), we can isolate contributions from each clock zone

(or stage) to the full dissipation bound:

∆
〈
EB
〉

1
+ ∆〈EB〉3 ≥ −∆〈EC1i 〉 − kBT ln(2)

(
∆IRηC3 + ∆〈SC3i 〉+ ∆〈SSi 〉3 + ∆〈SDi 〉3

)
(3.15)

∆
〈
EB
〉

2
+ ∆〈EB〉4 ≥ −∆〈EC2i 〉 − kBT ln(2)

(
∆IRηC4 + ∆〈SC4i 〉+ ∆〈SSi 〉4 + ∆〈SDi 〉4

)
(3.16)

These bounds can be simplified greatly through two minimal assumptions that recog-

nize the nature of the NASIC circuit operation, as we now illustrate in detail for Stage

1. First, since selected transistors in Stage 1 (i.e. subsystem C1) simply discharge

(through S) in the evaluation step c1, and since this process involves only C1, B, and

S (with the initial and final states of S unchanged), electrostatic energy capacitively

stored in C1 is necessarily dissipated into the bath in Step c1. A minimal assumption

on the energy loss from C1 is thus that it is nonnegative:

−∆〈EC1i 〉 ≥ 0. (3.17)

Second, we assume that the interactions between C1 and B are such that, for initial

charge configurations of C1 that encode every input xi, precharging of C1 can never
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decrease the entropy of B. This recognizes that a nonnegative amount of energy is

necessarily transferred to the surroundings during capacitive charging, and requires

that this energy is transferred in the form of heat. We thus require that, for all i

∆SBi ≥ 0 (3.18)

in computational step c3. Noting that (i) Step 3 is a unitary evolution of C3SDB, (ii)

von Neumann entropy is preserved under unitary evolution, (iii) the initial and final

states of C3SDB for every i, and (iv) the entropy is additive for composite systems

in separable states, we also have

∆SC3i + ∆SSi + ∆SDi + ∆SBi = 0 (3.19)

Thus

∆SBi = −∆SC3i −∆SSi −∆SDi ≥ 0 (3.20)

for step c3, and consequently

−〈∆SC3i 〉3 − 〈∆SSi 〉3 − 〈∆SDi 〉3 ≥ 0 (3.21)

for the input averages.

Applying (3.12) and (3.14) to (3.3), and analyzing Stage 2 along precisely the

same lines, we have

∆
〈
EB
〉

1
+ ∆

〈
EB
〉

3
≥ −kBT ln(2)∆IRηC3 (3.22)

∆
〈
EB
〉

2
+ ∆

〈
EB
〉

4
≥ −kBT ln(2)∆IRηC4 . (3.23)
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Combining these results, we finally have the full-cycle bound with the total energy

dissipated

∆
〈
EB
〉
TOT

=
4∑

k=1

∆
〈
EB
〉
k
≥ −kBT ln(2)

(
∆IRηC3 + ∆IRηC4

)
. (3.24)

This reflects only the costs of irreversible information erasure, can be tightened so

it includes additional costs related to particle supply by the source-drain subsystem

SD. To achieve this, we model SD as a capacitor - initially charged to a voltage VDD

– that partially discharges into the NASIC circuit during the precharge phases. For

a discharge of magnitude q∆N , i.e. a transfer of ∆N electrons to D from the circuit

and ∆N electrons to the circuit from S, the change in the amount of energy stored

in SD is given by

∆
〈
ESD

〉
= −qVDD∆N (3.25)

provided that ∆N is small compared to the total electron populations of S and D

when it is charged to VDD. The electron transfer ∆N associated with any given

precharge step depends on the number of FETs that are charged in the step and the

amount of charging required to change the state of each FET.

Now, part of the energy ∆〈ESD〉 transferred out of SD during precharge steps is

stored in the artifact and part of this energy is irreversibly dissipated into the bath.

The fraction f of this energy that is stored in the artifact during precharge is ulti-

mately dissipated into the bath during subsequent evaluation steps, so its dissipative

contribution can be cashed out during the evaluation stages; the energy lost from the

first circuit stage (during EVA2) is thus ∆〈EC1i 〉 = −fqVDD∆N1 and the energy lost

from the second circuit stage (during EVA1) is ∆〈EC2i 〉 = −fqVDD∆N2. Note here

that the total number of electron transfer for a NASIC circuit operated under this

clocking scheme is ∆NTOT = ∆N1 + ∆N2. Using these expressions in place of the

weaker conditions
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∆
〈
EB
〉
TOT
≥ −kBT ln(2)∆IRCTOT + fqVDD∆NTOT . (3.26)

The general term, ∆N corresponds to the number of transistor times the electron

transfer required to switch each FET, ∆n. Since ∆n cannot be less than unity,

∆n ≥ 1, the lower bound on ∆
〈
EB
〉
TOT

can be obtained in terms of ∆n. Note

that substitution of ∆n = 1 into the above bound simply ensures that the resulting

expression is a fundamental lower bound on the dissipation; it does not amount to a

claim that ∆n = 1 is technologically achievable in this context. Below, we obtain the

numerical form of this bound by considering the irreversible information erasure and

associated particle cost in both half and full adder NASIC circuits.

3.2.1.3 NASIC Half Adder

We now present the fundamental lower bounds on heat dissipation for the NA-

SIC half adder circuit introduced above. We refer back to Fig. 3.7 for the physical

circuit structure, timing and logic diagrams. We consider pipelined operation of the

adder as it processes a sequence of inputs ...X(η+1)X(η)X(η+1)... (where X ∈ {Xi} =

{AB} = {00, 01...11}). Let the η-th computational cycle begin with EVA2, when the

η-th input X(η) is loaded into the Stage 1 transistors. Next, in PRE1, the minterm

complements left over from the (η − 1)th input are erased from Stage 2 without af-

fecting Stage 1. Next, in EVA1, the minterm complements for X(η) are evaluated

and latched into Stage 2. Next, in PRE2, Stage 1 is precharged and X(η) is erased

from this stage. Next, in EVA2, the complemented minterms held in Stage 2 are

preserved as the sum and carry outputs for input X(η) are evaluated and latched into

the (implied) “downstream” circuit stage while input X(η+1) is loaded into Stage 1

from the “upstream” tile. Finally, PRE1 precharges Stage 2 and erases the minterm

complements for input X(η). This completes the computational cycle for the ηth input

in the adder tile.
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A B A B D0 D1 D2 D3 C S C S
0 0 1 1 0 1 1 1 0 0 1 1
0 1 1 0 1 0 1 1 0 1 1 0
1 0 0 1 1 1 0 1 0 1 1 0
1 1 0 0 1 1 1 0 1 0 0 1

Table 3.3. The truth table of the NAND-NAND NASIC 1-bit half adder.

Although the duration of the full computation requires six clock steps, we associate

only four of these steps NASICse labeled as 1 , 2 , 3 and 4 on the timing diagram

in Fig. 3.7 – with the computational cycle for the η-th input, since only these steps

involve manipulation of data related to the η-th input within the tile. (The remaining

clock steps – the first PRE1 and the second EVA2 – belong to computational cycles

for inputs X(η−1) and X(η+1), respectively.)

The truth table associated with the NASIC half adder is presented in Table. 3.3.

Computational steps c1 and c2 are both evaluation steps, during which charge redis-

tributes within C without altering the particle numbers in S or D and information

about the input X(η) (i.e. about Rη) is transferred within C without irreversible infor-

mation loss from C(1) or C(2). Thus, ∆N1 = ∆N2 = 0 and ∆IRηC1 = ∆IRηC2 = 0,

so ∆
〈
EB
〉

1
= ∆

〈
EB
〉

2
= 0. The fundamental lower bound on the dissipative cost of

the first two computational steps thus vanishes. Computational steps c3 and c4 are

precharge steps. During c3, half of the twenty four transistors in C(1) are precharged

(at one electron per transistor) and all of the information about input X(η) is irre-

versibly lost from C(1), yielding ∆N3 = 4 electrons and ∆IRηC3 = −2 bits (assuming

equiprobable inputs). During c4, two of the sixteen transistors in C(2) are precharged

and all of the information about input X(η) is irreversibly lost from C(2), yielding

∆N4 = 2 electrons and ∆IRηC4 = −2 bits.

We add the single-step costs as shown in the bound (3.11). Contributions to

this bound from information loss and particle supply at each computational step are
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Computational Step Particle Supply Information Loss
c1 : EVA 2 0 0
c2 : EVA 1 0 0
c3 : PRE 2 4qVDD 2kBT ln(2)
c4 : PRE 1 2qVDD 2kBT ln(2)
Cycle Total 6qVDD 4kBT ln(2)

Table 3.4. Dissipation bound for the NASIC 1-bit half adder: Particle supply and
information loss components

tabulated in Table 3.4., and the cumulative cost is shown for one computational cycle

in Fig. 3.9 assuming T = 300K, VDD = 0.8 V, and equiprobable inputs.11

The dissipative cost of processing a single input through a full computational cycle

of the NASIC half adder, controlled via the clocking scheme described above, is lower

bounded as

∆
〈
EB
〉
TOT
≥ 4kBT ln(2) + f6qVDD, (3.27)

where ∆
〈
EB
〉
TOT

is the total amount of heat dissipated into the circuit’s surround-

ings during one computational cycle. Note here that we assume ∆n, the number of

electrons required to switch each FET, to be 1 in order to obtain the lowest bound.

This bound is obtained from fundamental physical considerations for the NASIC

half adder working under paradigmatic operation with no parasitic losses and the

most optimistic possible assumption for the amount of charge required to switch each

transistor’s state. Therefore the cost reflected in the bound reflect the unavoidable

physical cost of computation inherent in the underlying computational strategy em-

ployed by the NASIC adder. Significantly, the cost of local information loss associated

with irreversible information processing (4 bits) and the supply of (particles dropping

11For the values considered here, the total dissipation from the information loss is 4kBT ln(2) =
0.072eV and the total dissipation from the working substance is 6qVDD = 4.8eV . Also note that,
the coefficient in front of the particle supply cost is taken to be f = 1 while calculating the total
dissipation for this graph.
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Figure 3.9. Fundamental lower bound on the cumulative dissipation cost for one
computational cycle of the NASIC 1-bit half adder.

through potential difference of VDD) maintaining the computational working sub-

stance (6 electrons) are distinctly reflected in the two separate components of the

fundamental bound.

Note that the bound is independent of assumptions regarding material, device,

or circuit dimensions or parameters. Even in this idealized scenario – where the

particle supply requirements are at their absolute minimum – particle-supply accounts

for 99% of the lower bound on the dissipative cost, far exceeding that required for

implementation of the irreversible computation. The dominance of the particle-supply

cost in the bound can be reduced but not eliminated by reducing VDD, since the

directional circuit/microwire electron injection and extraction processes that enable

proper circuit operation and reliable computation require that VDD >> kBT .

In the next section, we present a similar inequality for NASIC full adder which

operates based on same principles in a more complicated structure. There, we also
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A B Cin A B Cin S Cout Si Cout

0 0 0 1 1 1 0 0 1 1
0 1 0 1 0 1 1 0 0 1
1 0 0 0 1 1 1 0 0 1
0 0 1 1 1 0 1 0 0 1
0 1 1 1 0 0 0 1 1 0
1 0 1 0 1 0 0 1 1 0
1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 1 0 0

Table 3.5. The truth table of the NAND-NAND NASIC 1-bit full adder.

discuss the terms on the right hand side of the inequality and compare them to provide

a better understanding of the fundamental lower bound.

3.2.1.4 NASIC Full Adder

We consider a single-FET-type NAND-NAND NASIC full adder shown in Fig. 3.10

(top), which is adapted from Ref’s [11] and [36]. Based on the circuit details and the

application of our methodology to the NASIC half adder presented in the previous

section, we now extend our analysis to a full adder. The physical circuit structure,

associated timing and logic diagrams are presented in Fig. 3.10. The truth table

associated with the full adder is also presented in Table 3.5.

Computational steps c1 and c2 are both evaluation steps, during which charge

redistributes within C without altering the particle numbers in S orD and information

about the input12 X(η) (i.e. about R) is transferred within C without irreversible

information loss from C(1) or C(2). Thus, ∆N1 = ∆N2 = 0 and ∆IRC1 = ∆IRC2 =

0, so ∆
〈
EB
〉

1
= ∆

〈
EB
〉

2
= 0. The fundamental lower bound on the dissipative

cost of the first two computational steps thus vanishes. Computational steps c3 and

c4 are precharge steps. During c3, half of the twenty four transistors in C(1) are

12Note here that, for the full adder circuit the inputs correspond to X ∈ {Xi} = {ABCin} =
{000, 001...111} as listed in Table 3.5.
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Figure 3.10. Layout, clocking, and logic diagram of the single-FET-type NAND-
NAND NASIC 1-bit full adder circuit.
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precharged (at one electron per transistor) and all of the information about input

X(η) is irreversibly lost from C(1), yielding ∆N3 = 12 electrons and ∆IRC3 = −3 bits

(assuming equiprobable inputs). During c4, two of the sixteen transistors in C(2) are

precharged and all of the information about input X(η) is irreversibly lost from C(2),

yielding ∆N4 = 2 electrons and ∆IRC4 = −3 bits.

Similarly, we add the single-step costs to obtain the total bound on the dissipative

cost. Contributions to this bound from information loss and particle supply at each

computational step are tabulated in Table 3.6., and the cumulative cost is shown

for one computational cycle in Fig. 3.11 assuming T = 300K, VDD = 0.8 V, and

equiprobable inputs.

Computational Step Particle Supply Information Loss
c1 : EVA 2 0 0
c2 : EVA 1 0 0
c3 : PRE 2 12qVDD 3kBT ln(2)
c4 : PRE 1 2qVDD 3kBT ln(2)
Cycle Total 14qVDD 6kBT ln(2)

Table 3.6. Dissipation bound for the NASIC 1-bit full adder: Particle supply and
information loss components

The dissipative cost of processing a single input through a full computational cycle

of the NASIC full adder, controlled via the clocking scheme described above, is lower

bounded as

∆〈E〉TOT ≥ 6kBT ln(2) + f14qVDD. (3.28)

Similar to the fundamental bound for the half adder, this inequality too has the form

of Eq. (3.26). The first term represents the cost of local information loss associated

with irreversible information processing (6 bits) and the second term represent the

cost of the supply of maintaining the computational working substance (14 electrons),
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Figure 3.11. Fundamental lower bound on the cumulative dissipation cost for one
computational cycle of the NASIC 1-bit full adder.

which are, as mentioned before, distinctly different components of the fundamental

bound.

We substitute the constant values considered for the half adder case13 and get

6kBT ln(2) = 0.108 eV and 14qVDD = 11.2 eV – see Fig. 3.11.14 For quantitative

perspective, note that the bound ∆〈E〉TOT ≥ 11.3 eV on the net cost per computa-

tional cycle implies a theoretical minimum power density of PTOT ≥ 6.8W/cm2 for

an average (nanowire and control) transistor density of 1011 cm−2 and clock speed of

10 GHz.

In order to acquire further perspective, we can compare this result with dissipation

in a full adder circuit level and NAND gate level. A full adder with equiprobable

13For T = 300K and VDD = 0.8 V. We also assume that one electron ∆n = 1, is required to switch
each transistor’s state

14The coefficient in front of the particle supply cost is taken to be f = 1 while calculating the
total dissipation for this graph.
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inputs necessarily loses 1.19 bits of information from input to output, while the net

local information loss associated with the 11 NAND gates in the logic circuit of

Fig. 3.7 (with all gate input probabilities reflecting equiprobable adder inputs) is 34.3

bits. The 6 bit loss identified here for the NASIC implementation, and the simple

additivity of the associated logical irreversibility cost (6kBT ) and particle supply cost

(14qVDD) observed in the bound, result from our detailed physical analysis of the

circuit and its operation.

Finally, we can also generalize the bound (3.26) for any number of inputs and

outputs. Any combinational function with M input bits and N output bits can be

implemented using a NASIC logic block with general structure employed in the half

adder, with 2M input nanowires (for M logical inputs and their complements) 2N

output wires (for 2N logical outputs and their complements) and 2M(M+N) crossed-

nanowire FETs appropriately placed at crosspoints. Application of our methodology

to such a logic block yields the dissipation bound

∆ETOT ≥ (2M) kBT ln(2) + fqVDD
[
2M−1M +N

]
(3.29)

with the assumption of uniformly distributed input. This simple bound holds for

arbitrary M and N , and for any M -input, N ouptut Boolean function.

3.2.1.5 Comparison with Physical Circuit Simulations

The theoretical lower bounds on dissipative costs that we present here and cal-

culated values for energy consumption based on explicit device models are of a fun-

damentally different nature. However, comparing trends in the fundamental bounds

with those observed in analogous results from physical circuit simulations may provide

us further insight into the overhead costs incurred in real implementations. In this

subsection we present the results we have obtained on the cumulative energy delivered

by the power source, throughout one computational cycle, from HSPICE simulations
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Figure 3.12. Input-averaged cumulative energy consumption for one computational
cycle of the NASIC 1-bit full adder obtained from HSPICE simulations.

of a nanowire full adder with layout, clocking, and operation as described in Fig. 3.7

and in above discussion. This simulation provides us a basis for comparison.

The simulated adder uses the circuit style of Fig. 3.7, but uses a grid of paired Si

nanowires (pitch 22 nm). Each nanowire pair consists of two 5-nm-diameter nanowires

with an 11 nm pitch. Ref.’s [11] and [37] provide more information on NASIC HSPICE

simulations, and additional details of the device model used can be found in Ref.

[?]. Circuit operation at T = 300K, a supply voltage of VDD = 0.8 V, and clock

frequency of 10 GHz were assumed for the simulations. It is important to note here

that the computational cycles associated with successive inputs overlap one another

as described above, therefore, we have taken special measures, such as use of an

independent VDD source to charge the circuit output nodes, into consideration in

order to isolate the cost of processing a single input throughout a single computational

cycle.
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Results of HSPICE simulations for the cumulative, input-averaged energy dissi-

pation at each step of the computational cycle are shown in Fig. 3.12. Note that the

values shown in Fig. 3.12 are actually double averages, since, in the simulated circuit,

the dissipative cost associated with processing of one input in one computational cycle

may depend on the binary values of the input being processed in that cycle and the

input processed in the previous cycle. The input sequences used in the simulations

were constructed so these dependences are captured in the simulation results, but

effects of capacitive memory in the circuit that extend beyond one previous input

are not reflected. The cumulative dissipative cost shows qualitative similarities to

the fundamental bound of Fig. 3.11, with the largest steps in the cumulative cost

occurring in the third and fourth computational steps (where Stage 2 and Stage 1 are

precharged, respectively). Conspicuous differences include the nonzero calculated en-

ergy costs for the first two phases, which can only result from parasitic leakage during

evaluation, and the orders-of-magnitude discrepancy between the calculated energy

dissipation and the fundamental bound in the last two phases (expected from charge

transfers far exceeding one electron per transistor in the simulated circuit). In any

case, the qualitative similarities that do exist in the results of Fig. 3.11 and Fig. 3.12

suggest that the physical abstraction used to obtain the fundamental bound captures

essential features of the NASIC circuit operation, while the differences highlight what

is missed.

3.2.2 A Dynamically clocked np-CMOS Half Adder

The circuits we studied so far are prominent examples of post-CMOS nanoelec-

tronic technology proposals. We obtained the fundamental lower bounds on energetic

cost of computation for these potential CMOS replacement technologies, and our

results illustrate the factors affecting the bounds such as the clocking scheme and

thermodynamic processes taking place as a result of information loss. Even though
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Figure 3.13. Cross section of an nMOS (left) and a pMOS (right) transistor [39].

these emerging proposal are well-developed and studied extensively, they are not as

well-know and familiar as the conventional CMOS technology. In order to provide

further insight into the application of our methodology, we now employ a CMOS

circuit adapted from widely used textbooks [38], [39]. We calculate the fundamental

lower bound for a dynamically clocked np-CMOS half adder as a pedagogic illus-

trative example. Below, we first provide a brief introduction on the CMOS circuits

and NP domino logic operation, and then move on the np-CMOS half adder circuit

example we employed to illustrate our methodology via a conventional paradigm.

Metal oxide semiconductor field effect transistors (MOSFETs) are composed of

n-type or p-type semiconductors, i.e. semiconductors with high electron and hole

concentration, respectively. Transistors are built on a silicon semiconductor substrate.

Pure silicon has no free charge carriers and conducts electricity poorly. However,

by adding dopants the conductivity of silicon can be increased. CMOS technology

employs complementary and symmetrical pairs of negatively and positively doped

silicon semiconductors in order to implement logic functions. This complementary

n-type and p-type pairs are referred to as nMOS and pMOS, respectively. MOS

structure is created by superimposing various layers of conducting and insulating

materials. Fig. 3.13 shows the cross section of an nMOS and a pMOS transistor. The
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insulating oxide layer between the bulk and the metal gate allows MOS structure to

function as a capacitor. The gate voltage allows for the formation of a conductive

channel below the oxide layer that allows charge transport from source to drain. The

three terminals of a transistor structure is the base (bulk of the semiconductor where

conducting channel forms), source (where the electrons come from) and drain (where

the electrons go to).

The NASIC half and full adder circuits studied in Sec. 3.2.1.3 and 3.2.1.4, respec-

tively, are all composed of xnwFET transistor structure that is operated similar to

nMOS transistors. As we have seen in the NASIC examples, an nMOS transistor is

ON when there is a positive charge on the transistor gate, i.e. the switch is closed to

build a conducting path between the source and drain. The positive charge on the

nMOS transistor is selectively neutralized during evaluation via the path from the

source to the gate. During precharge, an nMOS gate is connected to the drain and

if the gate is neutral, negative charge flows into the drain, leaving positive charge

on the nMOS gate, setting it to logic 1-state. The charge flow mechanism in pMOS

transistors is similar yet asymmetric (with reversed polarity) to that of nMOS tran-

sistors. A pMOS transistor is ON when the gate is neutral, which, provides a path

from the source to the drain.15 The charge flow in nMOS and pMOS networks will

be explained further as we introduce the circuit and its operation.

The nMOS and pMOS transistor gates provide a connection between the output

and the source, VSS, and between the output and the drain, VDD, respectively. Tran-

sistors gates can be used to build networks that perform logic functions, and based on

their nMOS and pMOS characteristic they are called a pull-down (PDN) or pull-up

15There are two modes in FET devices that determine whether the transistor is ON or OFF at
zero gate-source voltage; depletion mode and enhancement mode. If the device is ON at zero gate
voltage then it is referred to as a depletion-mode device, and if it is OFF at zero gate voltage then
it is referred to as an enhancement-mode device. An enhancement-mode MOSFET can be turned
on by changing the gate voltage towards VDD. This change is positive for nMOS and negative for
pMOS devices.

84



(PUN) network, respectively. These MOSFETs networks are built to perform logic

operations. In this section, the circuit we employ is an example of a dynamically

clocked NP domino logic composed of nMOS and pMOS that performs half adder

operation. The simple half adder circuit is designed and operated in a way that it

will allow for comparison with the bound obtained for NASIC half adder. This ap-

plication to a conventional technology will provide further insight to the key features

if our approach.

We designed a dynamically clocked half adder composed of two stages as shown

in Fig. 3.14 (top). The first stage corresponds to two n-block transistor networks

encircled in red on the left, and the second stage corresponds to two p-block transistor

networks encircled in blue on the right of the NP domino logic circuit. Fig. 3.14

(bottom) displays the logic diagram of the circuit. In its simplest and most general

form a half adder is composed of an XOR and an AND gate connected in parallel.

In order to perform this operation, we employ nMOS transistors to build the XNOR

and NAND gate in the first stage, each of which is followed by a dynamically clocked

inverter composed of pMOS transistors in the second stage.

The XNOR gate in the first stage is obtained by using two NAND gates and

an AND gate as shown in the logic diagram. The logical expression for XNOR is

(A⊕B). This expression can be rewritten by using logical tautologies16 as

(A⊕B) ≡
(
A ·B

)
+
(
A ·B

)
(3.30)

≡
(
A ·B

)
·
(
A ·B

)
.

The final form of the expression represents the two NAND and an AND gate we used

to implement the XNOR operation in the half adder circuit as depicted in the logic

16Recall that, for variables (or logic statements) X and Y , the logical expression for the exclusive
disjunction, XOR, is X⊕Y =

(
X · Y

)
+
(
X · Y

)
, and the De Morgan’s Law states that (X + Y )⇐⇒

X · Y .
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Figure 3.14. Layout, logic and timing diagram of the dynamically clocked np-CMOS
half adder.
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A B A B C S C S
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0
1 1 0 0 1 0 0 1

Table 3.7. The truth table of the np-CMOS 1-bit half adder.

diagram. The truth table associated with the np-CMOS half adder is presented in

Table. 3.7.

The clocking scheme of the np-CMOS circuit is depicted in Fig. 3.14 (middle).

The operation of this circuit is slightly different, unlike the NASIC half and full adder

circuits, both stages of the np-CMOS circuit is activate at a given clock step, i.e. the

stages do not go through a hold phase. The circuit stages are driven by complementing

clocking signals CLK and CLK. When the clock signal is low, CLK = 0, the first

stage precharge high while the second stage predischarges low. When the clock signal

is high, CLK = 1, both stages evaluate. It is important to emphasize here that the

logic gates in the pMOS blocks precharges low and discharges high. In other words,

the evaluation phase is when the bottom control transistor in PDNs and the top

control transistor in PUNs is ON –the 1 phase shown in Fig. 3.14 (middle). And,

the precharge occurs when the top control transistor in PDNs and bottom control

transistor in PUNs is ON –the 2 phase shown in Fig. 3.14 (middle) – as can be

inferred from the asymmetry in the PDNs and PUNs. We elaborate further on the

circuit operation in the process abstraction below.

3.2.2.1 Abstraction

The abstraction of the CMOS circuit and its surrounding subsystems is similar

to the abstraction of the NASIC paradigm. We situate the circuit in an isolated and

closed universe, and the abstraction of this universe allows us to capture the essential

functional features of the underlying computational strategy.
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Figure 3.15. Physical abstraction of the CMOS 1-bit half adder situated in its
surrounding environment.

Physical Decomposition – The abstraction used to describe the np-CMOS adder and

its environment is similar to that of NASIC paradigm, and is depicted in Fig. 3.15.

The artifact A is the CMOS half adder, S correspond to the ground, low voltage plate

(particle source), and D represents the plate at a higher, drain (VDD), potential.

Similar to the previous abstraction, we nominally regard the source and drain as

idealized Fermi gases at temperature T with associated chemical potentials µSS and

µDD, respectively, with ∆µ = µSS − µDD = qVDD. The bath B is the underlying

substrate in direct thermal contact with the CMOS half adder, and is nominally in a

thermal state at temperature T . It is important to note here that for the PDN the

substrate corresponds to the p-type Silicon bulk and for the PUN it corresponds to

the n-type bulk as shown in Fig. 3.13. The greater environment B̄ includes subsystems

that drive B toward thermal equilibrium and supply the energy and particles required

to maintain the nominal populations of S and D and a chemical potential difference

∆µ = qVDD when these subsystems are driven from their nominal states during

computation. The transistor in the CMOS half adder exchanges particles with the

source and drain S and D and heat with the bath B as it processes input data
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held in the register (referent) R. The greater environment B̄ provides the energy,

particles, and heat removal that enable circuit operation, and everything else required

to thermodynamically isolate the global system.

The interactions between subsystems is control by the clock signal, CLK. The

state CLK = 0 signals precharge for the first stage, PDN blocks, and predischarge

for the second stage, PUN blocks, and CLK = 1 loads the input as well as evaluating

the output at the same step. The precharge and evaluate operations selectively open

the PDN and PUN in the CMOS to particle exchange with the drain D and source

S, respectively. The subsystems C, S, and D can also exchange heat with B during

each computational step. Heat exchange between B̄ and the subsystems B, S and D,

and particle exchange between B̄ and S and D, are assumed to restore B, S and D

to their nominal states at the conclusion of each computational step. The details of

this operation is discussed below.

Process Abstraction – The interactions between the subsystems occurs in a similar

fashion to that of NASIC paradigm. The order of clock operations and circuit stage

activation is different to some extent and can be outlined as follows. The PDNs and

PUNs are controlled by complementing clock signals, CLK and CLK. The PDN

gates can directly drive PUN gates, and vice-versa. During the precharge phase,

CLK = 0, the outputs of the PDN are set to 1, i.e. precharged, and the outputs

of the PUN are pre-discharged. As we mentioned above, this step takes place by

connecting the PDN outputs to VDD and the PUN outputs to the source, VSS = 0.

The PDN precharge control transistors are located on top of the network, whereas for

the PUNs the precharge control transistor is located at the bottom. At this time the

PUN is turned off since the n-tree gate connects PMOS pull-up devices [38]. When

the clock signal is high, CLK = 1, the PDN outputs make a conditional transition

from 1 to 0, and during this evaluation some transistors in the PUN are turned on.

In the mean time PDN inputs are precharged to 0.
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In other words, the precharging of all the PDN blocks, and predischarging of

all the PUN blocks occur in parallel when the clock signal is low, i.e. CLK = 0.

When the clock signal is high, i.e. CLK = 1 all the blocks perform evaluation; PDN

and PUN each type maintaining the monotonically rising or monotonically falling

property, respectively. Of course there is a cascading effect to propagate the effect of

inputs (at the first stage) to the output (at the last stage), but all of this happens

during the high CLK signal phase. CLK = 1. The inputs must be stable during this

phase.17

The sequence of state transformations that comprise a single computational cycle

of the CMOS half adder can be described similar to that of the transformations of the

NASIC paradigm. Initially, all MOSFETs in the PDNs are precharged, set to their

logic 1-state, and the ones in PUNs are predischarged, the bath B is in a thermal

state, and the referent state for the η-th input is represented as defined in Eq. (3.1).

On each step, the global system evolves unitarily via the time-dependent Schrödinger

equation. Table 3.8. outlines the initial states and the structure of the state trans-

formation associated with each computational step, with Ck indicating the clock zone

that changes state during computational step ck. The state of Ck is determined by

the pattern of discharged transistors in the computationally relevant circuit stage.

The control operation of every computational step is followed by a restoration

phase. For evaluation steps, the restoration operator is Û rest
EV A = ÛBB̄ ⊗ ÎRηCkSD,

which rethermalizes the bath and S. The restoration operation for precharge steps,

which is of the form Û rest
PRE = ÛBSDB̄ ⊗ ÎRηCk , rethermalizes B and recharges and

rethermalizes S and D.

17As one can see, the output of the final stage is obtained in the same evaluation cycle as the
loading of the input to the initial stage. This is the case regardless of the number of the cascaded
NP stages. Surely, there is a delay depending on the number of stages but the loading of the input
to the initial stage and obtaining the output from the final stage happens at the same clock step,
unlike the NASIC paradigm.
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Computational Initial State State Transformation Control Operation
Steps

c1 ρ̂0 =
(∑M=4

i=1 piρ̂
Rη
i

)
⊗ ρ̂Ck ⊗ ρ̂S ⊗ ρ̂D ⊗ ρ̂B ⊗ ρ̂B̄ ρ̂1 = Û rest

EV AÛ1ρ̂0Û
†
1 Û

rest†
EV A Û1 = ÛRηCkC̄kSDB ⊗ Î B̄

c2 ρ̂1 =
(∑4

i=1 piρ̂
Rη
i ⊗ ρ̂

Ck
1,i ⊗ ρ̂S1,i ⊗ ρ̂D1,i ⊗ ρ̂B̄1,i

)
⊗ ρ̂B ρ̂2 = Û rest

PREÛ1ρ̂1Û
†
1 Û

rest†
PRE Û2 = ÛCkSDBC̄k ⊗ ÎRηB̄

Table 3.8. State transformations for the np-CMOS 1-bit half adder
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At the end of second and final step of computation, the circuit loses all the information

about the η-th input and C is no longer correlated with Rη.

The np-CMOS half adder circuit structure presented in Fig. 3.14 does not support

multi tile operation.18 In this example, we study a single tile without defining a

supporting computational system C̄k. Also, unlike the QCA and NASIC examples

we studied above, the number of inputs and outputs in this circuit is not symmetric.

However, one can slightly modify the structure to accommodate computation with

upstream and downstream tiles that will be activated simultaneously. Below, we

obtain a lower bound on the amount of dissipation associated with processing a single

input in this single shot computation. Based on the operation of the np-CMOS half

adder, following the initial computational step the greater environment B̄ is correlated

with Rη due to the restoration of B after evaluation. Two classes of clock operations

for the np-CMOS half adder is defined in terms of the two states of the clock signal

CLK = 0 and CLK = 1 as precharge, φP , and evaluate, φE, respectively. During

precharge φP , PDN inputs and PUN outputs are connected to S, and PDN outputs

are connected to D, i.e. electrons flow in to PDN through its inputs, out from PDN

through its outputs (inputs to PUN) and in from PUN towards its output. During

evaluation φE, PDN inputs are connected to D, PDN outputs (PUN inputs) are

connected to S, and PUN outputs are connected to D. After each of these steps

a subsequent “reinvestment” of energy is required by B̄ during the restoration to

recharge S and D with a cost to the greater environment.

Below, the dissipation costs resulting from both the logical irreversibility and

particle supply cost are captured by following the guidelines provided in Sec. 2.3.

18The circuit operation involves simultaneous activation of all stages.

92



3.2.2.2 Analysis

Operational Decomposition – The clock cycle Φ = ϕ1ϕ2 is a periodic sequence of

two clock phases ϕv, each of which is an assignment of operations φ to the two

simultaneously controlled clock zones identified as Stage 1 and Stage 2 of Fig. 3.14.

The duration of the full computation requires two clock steps. The steps that involve

the manipulation of data related to a given input within the tile are labeled as 1 and

2 on the figure, corresponding to c1 and c2, respectively.

Denoting these clock zones as C(1) and C(2), respectively, the assignment corre-

sponding to the adder clocking described above is

ϕ1 : {(C(1);φE), (C(2);φE)}

ϕ2 : {(C(1);φP ), (C(2);φP )}.

The circuit stages are activated simultaneously. Here φE corresponds to high clock

signal, CLK = 1, and φP corresponds to low clock signal, CLK = 1, . The compu-

tational cycle Γ(η) for the η-th input is the straightforward sequence

Γ(η) = c1c2 = ϕ
(1)
1 ϕ

(1)
2 (3.31)

of two computational steps ck associated with this cycle.

The operation of the dynamically clocked CMOS circuit we study here does not

involve copying of information and the information is lost in a single step. The

information is loaded in the circuit and erased in each clock step, the complete circuit

acts as a single data zone. Therefore, in this paradigm, we do not define data zones

to track information flow through the circuit, and to isolate the sources of irreversible

information loss within a computational cycle. However, for consistency, the data

zones can be represented in terms of the circuit stages

D(c1) = C(1) ∪ C(2)
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D(c2) = ∅.

Cost Analysis – The total dissipative cost associated with one computational cycle

for the np-CMOS half adder is similar to that of NASIC paradigm. The particle

transfer and the amount of information erasure is different to some extent and can

be explained as follows. Computational steps c1 is the evaluation step, during which

the information about the input X(η) (i.e. about Rη) is transferred to C without

irreversible information loss from C(1) or C(2). Thus, ∆IRηC1 = ∆IRηC2 = 0. The

outputs for the PDNs are obtained by an electron flow into the PDN (towards PUN)

from the S. In order to prevent double counting, we account for the particle cost

when an electron completes its transport from the ground to VDD – this particle cost

will be accounted for during precharge. However during evaluation, the inputs to

PDNs are loaded by three electrons flowing into D from the PDN gates (two electron

from the top PDN, and one from the bottom), we take ∆N1 = 3. The computational

step c2 is the precharge step. During c2, the two particles that entered the circuit

in the previous step are transported to the drain, this is, of course, assuming that

each FET requires one electron to switch,19 and all of the information about input

X(η) is irreversibly lost from the circuit, simultaneously from C(1) and C(2), yielding

∆N2 = 2 electrons and ∆IRηC3 = −2 bits. Note here that we assume equiprobable

inputs.

Contributions to this bound from information loss and particle supply at each

computational step are tabulated in Table 3.9. The dissipative cost of processing a

single input through a full computational cycle of the np-CMOS half adder is then

obtained similar to the fundamental lower bounds of NASIC adders,

∆
〈
EB
〉
TOT
≥ 2kBT ln(2) + f5qVDD, (3.32)

19In Sec. 3.2.1, we made the assumption that the number of electrons required to switch each
FET is ∆n = 1.
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Computational Step Particle Supply Information Loss
c1 : EVA 3qVDD 0
c2 : PRE 2qVDD 2kBT ln(2)

Cycle Total 2qVDD 2kBT ln(2)

Table 3.9. Dissipation bound for the np-CMOS 1-bit half adder: Particle supply
and information loss components.

where ∆
〈
EB
〉
TOT

is the total amount of heat dissipated into the circuit’s surroundings

during one computational cycle.

It is important to note here that the bound (3.32) assumes that the np-CMOS half

adder circuit has both input and output complements present. The circuit structure

presented in Fig. 3.14 (top) depicts two inputs with complements, and two outputs

without complements. The second term in the bound (3.32), f5qVDD, is calculated

by considering output complements to make the analysis inline with the analysis of

the NASIC half adder in Sec. 3.2.1.3. This symmetry can be achieved by slight

modification in the circuit diagram in Fig. 3.14.

The lower bound (3.32) may be interpreted as, in the best case scenario, CMOS

can be more energy efficient than NASIC paradigm given that both the cost of lo-

cal information loss associated with irreversible information processing (2 bits) and

the supply of (particles dropping through potential difference of VDD) maintaining

the computational working substance (5 electrons) are less than that of NASIC half

adder. However, it is important to underline once again that this bound is indepen-

dent of assumptions regarding material, device, or circuit dimensions or parameters.

In practice, the manufacturing techniques proposed for the NASIC allow aggressive

scaling that can mean higher performance, density, and power efficiency that can go

far beyond the performance of CMOS technology. Analyzing CMOS circuits from

the fundamental energy requirement point of view stands as an academic effort due

to the the practical limitations imposed on the CMOS technology. Here, we stud-

ied the CMOS adder simply to provide further guidelines for the implementation of
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our methodology via a conventional paradigm, by making no claims regarding the

performance of CMOS in relation to the post-CMOS paradigms we analyzed earlier.

The analysis of the np-CMOS half adder does not only serve as an application

to a well-known and familiar circuit structure but also provides us valuable insights

towards the limitations of our methodology. The assumption we made regarding the

need for the complemented inputs and outputs initially originated from the intention

to make the logic operation similar the operation of the NASIC half and full adder

examples we studied in Sec.s 3.2.1.3 and 3.2.1.4. However, further scrutiny of our

assumption revealed that this symmetry is also the key for the accurate evaluation of

the particle cost component in the bound. Our calculations show that, if the output

complements are not a part of the circuit then the number of electrons flowing in and

out of the circuit depends on the input processed at a given time. The presence of

output complements creates such symmetry in the circuit that it makes the particle

flow and associated cost to be independent of the probability of the ηth input. The

advantage of the NASIC examples studied is that the number of inputs and outputs

are identical and each stage has the same number of electrons flowing in and out of

the circuit regardless of the input. It is important to note here that the non-transistor

based paradigms are free of this requirement to include output complements. The

breadth of our methodology presented here can be expanded further to accommodate

transistor-based circuits without output complements, however, such a modification

is beyond the scope of this work. In the next section, we study a static CMOS circuit

example and elaborate further on the limitations of our methodology.

3.2.3 An Application to Static CMOS Circuits

Above we presented applications of our methodology to various post-CMOS nano-

electronic proposals as well as a conventional CMOS circuit. The illustrative examples

we studied so far are circuits that are dynamically clocked. Our analysis on the QCA
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paradigm showed that the operation of the circuit significantly affects the funda-

mental lower bound. In non-transistor based paradigms, as long as the irreversible

information loss is accurately localized, the static implementations too can easily be

treated with our methodology. However, for transistor-based applications, identifying

the particle supply cost in static implementations can be challenging. In this section,

we discuss these challenges as well as other limitations of our methodology via another

conventional CMOS circuit example.

We consider a combinational two-bit sorter proposed by Gershenfeld [17]. In

1996, Gershenfeld studied the information dissipation of a two-bit sorter circuit im-

plemented in CMOS from a thermodynamic perspective. He explored the connec-

tion between the information and thermodynamic properties of a system that can

implement it, emphasizing the importance of studying information bearing and non-

information bearing thermodynamic degrees of freedom together to obtain the fun-

damental physical limits for a given technology base in emerging electronic circuits.

He proposed a sketch for the unified theory of degrees of freedom and calculated the

minimum energy cost of computation in a combinational and a sequential two-bit

sorter.

The circuit, as shown in Fig. 3.16, is composed of an AND and OR gate connected

in parallel which are composed of a combination of parallel MOSFETs. The AND

and OR operations are obtained by a NAND and NOR logic gate each followed by

an inverter as shown in the figure. The NAND and NOR gates consist of two nMOS

and two pMOS transistor gates where as the inverters are made up of an nMOS and

a pMOS gate. Overall the circuit is composed of six nMOS and six pMOS gates.

The truth table associated with the logic operation is presented in Table 3.10.

From input to output mapping, the number of zeros and ones remain the same for

each operation, however, the self entropy of output distribution is one-half less than
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charging line) of each FET must be charged up, and
when there is a 1 ! 0 transition, this charge is
dumped to ground. The same holds true for the out-
puts, which charge and discharge the inputs to the fol-
lowing gates. Therefore, the dissipation of this circuit
is given solely by the expected number of bit transi-
tions, and the one-half bit of entropic dissipation from
the logical irreversibility appears to be missing. The
issue is not that it is just a small perturbation, but that
it is entirely absent.

To understand how this can be, consider the possible
states of the system, shown in Figure 4. The system
can physically represent four possible input states
(00,01,10,11), and it can represent four output states

(although 01 never actually appears). When the inputs
are applied to this gate, the inputs and the outputs
exist simultaneously and independently (as charge
stored at the input and output gates). The system is
capable of representing all 16 input-output pairs, even
though some of them do not occur. When it erases the
inputs, regardless of the output state, it must dissipate
the knowledge of which input produced the output.
This merging of four possible paths into one con-
sumes log4 = 2 bits of entropy regardless of the state.
That is why the half bit is missing: each step is always
destroying all of the information possible.

The real problem is that we are using irreversible
primitives to do a partially reversible task. Neither

Figure 3 A CMOS implementation of the combinatorial two-bit sort

A

B

A"B

A#B

A

B

VDD

VDD

VDD VDD

A"B

A#B

Figure 3.16. Gershenfeld’s combinational 2-bit sorter [17].

IN OUT
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Table 3.10. The truth table of the CMOS 2-bit sorter.

the self entropy of the input distribution, assuming that inputs are equiprobable.20

The circuit dissipates energy every time an input is loaded. The output capacitors

charge and discharge the inputs to the consecutive transistor; inputs and outputs

exist simultaneously and independently as charge stored in the corresponding gates.

The static CMOS sorter bears certain structural similarities with the np-CMOS

adder circuit studied in Sec. 3.2.2, however, the design and operation of the circuit

renders this example radically different from the earlier transistor-based implementa-

tions we studied. First, this circuit is asynchronous, the computation of an input is

20The self entropy of the input and output distributions is H(X) = −
∑3

i=1 pi log2 pi = 2 bits and

H(Y ) = −
∑3

j=1 qj log2 qj = 1.5 bits, respectively.
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composed of one single step rather than multiple computational steps operated by the

clocking scheme as we have seen in QCA, NASIC and np-CMOS adder circuits above.

Second, each new input is loaded in the circuit without a prior reset, i.e. there is no

intermediate erasure between computational cycles. The erasure of a given input is

done via overwriting of the next input, which means that the energy associated with

erasure of a given input is dissipated over the operation of two inputs. This makes

the cost of computation for a given input dependent on the previous input. These

characteristics make the fundamental analysis of the static CMOS circuit immune to

the analysis by the approach presented in Chapter 2 in its current form.

One may be prompted to think that the physical abstraction of the circuit can be

constructed in a similar fashion to that of NASIC and np-CMOS adders. However,

the CMOS sorter is not divided into circuit stages, all the transistor gates in the

circuit interact with the source and drain simultaneously. We can compare this to the

operation of the NASIC and np-CMOS adders. In NASIC, at a given computational

step, one circuit stage is active and the other stage is in hold state; the circuit interacts

with either the source or drain at a given step through the active stage. In the np-

CMOS half adder, at a given computational step, both stages of the circuits are

active, however, they operate independently; i.e. one stage interacts with the source

and the other stage interacts with the drain. As opposed to the NASIC and np-

CMOS adders, the static CMOS adder circuit interacts with the source and drain

simultaneously during the processing of a given input. The physical decomposition

and associated subsystem interactions therefore cannot be constructed based on the

guidelines provided in Sec. 2.2.1 and as demonstrated for the dynamically clocked

99



circuit examples above.21 And the asynchronous nature of the sorter renders the

operational decomposition presented in Sec. 2.2.2 inapplicable to the static circuit.

Furthermore, we assume that inputs are equally probable for the static CMOS

sorter as was the case for the QCA, NASIC and np-CMOS circuit examples. However,

in the static circuit, the number of electric charges flowing in and out of the circuit

depends on both the current, ηth, and previous, (η − 1)th, input. Four possible

combinations of AB for (η − 1)th input followed by the four possible combination of

ηth input gives us sixteen scenarios for the number of charges flowing in and out of

the circuit. Therefore, the processing of a given input involves one of sixteen possible

scenarios of charge transport. In the dynamic transistor-based circuit examples we

studied, the number of electrons flowing in and out of the circuit was the same

regardless of the input. Due to this characteristic of the static circuit, the second

term in the fundamental bound (3.12) should be evaluated to accommodate for the

amount of information embedded in the probabilistic distribution of charge transport

scenarios.

The evaluation of the fundamental cost of computation in static circuits is possible

after certain modifications to our work.22 However, such expansions in the method-

ology are beyond the scope of this dissertation.

3.3 Discussion

In this chapter, we presented various illustrative applications of our methodology

via three distinct computational paradigms. We studied a QCA half adder controlled

using Landauer and Bennett clocking schemes that support pipelining, and compared

21The heterogeneous structure of the substrate and simultaneous interactions that involve charge
exchange with multiple subsystems require the methodology to be expanded to accommodate the
physical decomposition of a static circuit.

22For instance, the guidelines presented in Ref. [40] can be use to calculate the dissipative cost of
the overwriting information.
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the resulting power dissipation bounds with the relative clock speeds adjusted to

achieve the same computational throughput in the two schemes. For the particular

pipelining granularities considered, we found the lower bound on power dissipation

for Landauer clocking to exceed that of Bennett clocking by nearly a factor of two.

Our study demonstrate the benefits that Bennett clocking can provide in terms of

fundamental energy dissipation even in small circuits..

The application of our approach to transistor-based paradigms showed that due to

external particle supply required for computation the resulting bounds account both

for dissipative cost of logical irreversibility and additional particle-supply cost required

to minimally maintain the computational working substance in these paradigms. Im-

plementation of our approach in the NASIC resulted in an inequality with two terms.

The first term in the bound, which corresponds to the logical irreversibility cost, is

of the same order as that obtained here for the QCA adder. The second term, which

has no analog in QCA, corresponds to the cost of charge flow required to maintain

the computational working substance in the circuit. Comparing the two terms in the

NASIC bound for T = 300K and VDD = 0.8 V, and taking f = 0.5, we find that

irreversible information loss accounts for 4kBT ln(2) = 0.07 eV and 6qVDD = 2.40

eV (for f = 1). Thus, even in this idealized scenario – where the particle supply

requirements are at their absolute minimum23 and half of the energy provided by

the power supply encodes information – particle-supply accounts for > 97% of the

lower bound on the dissipative cost. The dominance of the particle-supply cost in

the bound can be reduced but not eliminated by downscaling VDD. The directional

electron injection and extraction processes that drive particle exchange between the

circuit and mircowires require that VDD >> kBT , in order to enable proper circuit

23Recall that, we take the number of electrons required to switch a FET to be ∆n = 1.
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operation and reliable computation the particle supply cost has to exceed the logical

irreversibility cost.

This work shows the importance of systematically isolating and localizing irre-

versible information loss even for circuits as simple as those considered here. In

detailed analysis of the structure and operation of the QCA adder, five blocks of cells

were identified as the data subzones that independently contribute to the 3.76 bits of

information irreversibly lost in each computational cycle. This is well above (7.5×)

the minimum of 0.5 bits of information that must be lost by any physical implemen-

tation of a half adder that erases its inputs, and is well below (0.03×) the 114 bits

of information loss that would be expected if the 135 cells in the circuit were erased

individually. The intermediate bound obtained through systematic analysis of the

QCA adder using our methodology thus differs substantially from dissipation bounds

that would be obtained by “guessing” either extreme – the entire adder or individual

cells – to be the appropriate levels of granularity for quantifying irreversible informa-

tion loss. We discuss the granularity of the heat dissipation for the QCA half adder

circuit in Appendix A in detail.

Although, the individual logic gates are identified as the appropriate level of gran-

ularity in the QCA adder studied here, this need not be the case in QCA in general or

in other paradigms; the corresponding analysis for the NASIC adders tie irreversible

information loss to circuit regions that do not even correspond to individual logic

gates. It is important to note here that, this explicit dependence on circuit structure

and operation (among other things) distinguishes our approach from that of Zhirnov

and Cavin ([41] and references therein). The systematic isolation of independent

sources of dissipation distinguishes our methodology from approaches that do con-

sider explicit circuit structure and operation, but that “pre-assign” individual gates

as the sources of dissipation and neglect the dependence of the dissipation on the

statistics of the circuit and gate inputs (e.g. [42] and references therein).
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We also note that the energy cost of irreversible information loss reflected in the

dissipation bounds for the QCA and NASIC adders are of very similar magnitudes for

the two very different adder implementations. The additional term appearing in the

NASIC bound (fqVDD∆NTOT ), which has no analog in QCA,24 reflects the additional

cost of irreversible particle transfer required to maintain the computational working

substance in the circuit.

Aside from the post-CMOS technology proposals, we also studied two examples

of CMOS paradigm. Our analysis of these conventional circuits served as a tool to

provide further insight into the application of our approach. The final results we

obtained for the np-CMOS half adder circuit are not intended for comparison with

the post-CMOS examples from a fundamental energy requirement perspective. The

CMOS circuits are best treated by other approaches due to the excess particle cost.

Lastly, we observed that the more difficult it is to design a circuit structure and its

operation, easier it is to analyze the circuit from the fundamental energy requirement

point of view due to the advantage it presents in localizing the irreversible information

loss and associated physical operations taking place in the circuit.

24The absence of paradigm-specific overhead costs in the QCA bound assumes that energy invested
by the clock is reversibly recoverable in principle, thus does not represent a fundamental cost. Recent
calculations suggest that, in molecular QCA, the parasitic losses associated with clocking can be
much smaller than the unavoidable dissipative cost cell switching that enables computation [34].
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CHAPTER 4

TOWARDS AUTOMATION: MODULAR DISSIPATION
ANALYSIS

In Chapter 2, we introduced a general methodology that enables determination

of fundamental heat dissipation bounds for concrete and non-trivial nanocomputing

scenarios. In Chapter 3, we showed how irreversible information loss can be isolated

in a given non-transistor or transistor based circuit, and how lower bounds on the

resulting energy dissipation can be obtained. Our studies have shown that, even for

the single-tile adder circuits, localizing irreversibility requires hard work, and for large

and complex circuit the general methodology can be extremely laborious. In order

to accommodate evaluation of fundamental lower bounds for large and dense circuit

structures we propose to “modularize” our approach. Here, we present a modularized

analysis to facilitate – and possibly automate – the determination of fundamental

dissipation bounds for large, complex circuits designed according to specified rules.

4.1 Modular Dissipation Analysis of a QCA Half Adder

In Section 3.1 we applied our general approach to QCA half adder operated under

Landauer and Bennett clocking schemes. Here, we show how this approach can

be modularized by decomposing a circuit into smaller zones – such that dissipative

contributions can be evaluated separately for each zone and summed – and how this

can simplify dissipation analysis of QCA circuits (hereafter the “modular approach”).

We stress the enabling feature of this decomposition; that it preserves the effects of

field interactions across tile boundaries that influence the reversibility of information
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loss. We provide a comparative comparison between the general analysis presented

in Sec. 3.1 and modular analyses presented here. We briefly discuss prospect for

automation of QCA dissipation analysis using the modular approach. Automated

analysis could, for example, enable evaluation of dissipation bounds for full QCA-

based processor architectures [43] via the approach of [44] by simplifying circuit-level

dissipation analyses of the constituent circuit blocks.

4.1.1 Design Rules

We begin discussion of our modular approach by articulating an example set of

QCA design rules, since circuit decomposition rules defined for a set of design rules

can be applied to modular dissipation analysis of any circuit designed according to

these rules. For each set of design rules, there is a modular dissipation analysis

procedure; we will demonstrate a modular analysis specific to design rules presented

here. Our example design rules, which are specific to Landauer-clocked combinational

QCA circuits with no wire crossings, are as follows:

1. Wires: All wires are linear arrays of “90-degree” wires, i.e. with adjacent

cells oriented as in Fig. 4.11, and with right-angle corners. Wire segments

corresponding to individual clock zones are of length

2 ≤ N ≤ exp[Ek/kBT ]

(in units of cells), where Ek is the kink energy and kB is Boltzmann’s constant.

The minimum allowable wire pitch is three cells.

1We do not consider “45-degree” wires since the design rules we propose are not intended for
wire crossings in a plane.
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2. Inverters: Inverters are of the “complex” form shown in Fig. 4.2, with identi-

cally clocked, two-cell input leg and an identically-clocked two-cell output leg

as shown.

3. Majority Gates: Majority gates are of the standard three-input configuration in

Fig. 4.3. The four input and output legs adjacent to the central cell – hereafter

the “device cell” – are identically clocked, and the four identically clocked input

and output legs are of equal length. The majority gates with cell polarizations

fixed as -1 and +1 function as two-input AND or OR gates, respectively.

Figure 4.1. Three example sections of QCA wires with “90-degree” cell orientation.

Figure 4.2. A complex inverter with two-cell input and output legs and specified
clock zones.

Figure 4.3. QCA majority gates, with and without one fixed input, and associated
clocking.
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The lower and upper bounds on the number of identically clocked cells in the wire

segments, which are based on considerations discussed in Ref.s [45] and [46] respec-

tively, are selected to help ensure reliable information transfer. The minimum pitch is

selected to minimize crosstalk from adjacent wires. The requirement of equal-length

input and output legs in majority gates helps to ensure simultaneous arrival of new

inputs at the device cell, and thus fair voting [45].

We emphasize this simple set of design rules is presented for the purposes of

illustrating our modular dissipation analysis. Having said that, these simple rules

allow for construction of QCA circuits that implement any desired Boolean function2

and are generally consistent with common QCA design practice. It is easily verified

that the adder design of Fig. 3.2 adheres to these simple design rules.

4.1.2 Decomposition Rules

Decomposition of a QCA circuit for modular analysis requires that the circuit

first be segmented into zones according to a design-rule-specific set of decomposition

rules. These rules stipulate how boundaries between the zones are to be placed. For

the set of example design rules presented above, the decomposition rules are simply

as follows:

1. Every cell in the circuit must belong to one and only one zone.

2. All zone boundaries must be placed between adjacent, identically clocked cells,

perpendicular to the direction of information flow. The same applies to the

boundary enclosing the full circuit.

2AND, OR, and NOT form a universal set of primitives, and three-input majority gates can
implement two-input AND and OR functions if one if the inputs is appropriately biased as shown
in Fig. 4.3.
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3. Zone boundaries are to be placed between the two cells of the input legs and

between the two cells of the output legs of inverters, with no boundaries in

between.

4. Majority gates must be enclosed within a single zone as in Fig. 4.4, i.e. with

zone boundaries placed so they enclose (a) the device cell and the identically

clocked, equal-length input and output legs, (b) one cell adjacent to each input

leg in the neighboring clock zone3, and (c) one cell adjacent to the output leg in

the neighboring clock zone. We refer to this zone in Fig. 4.4 as the dissipation

zone.

Figure 4.4. A dissipation zone, including placement of boundaries, for circuits
designed according to the design rules of presented here.

It is important to note that, for circuits designed according to the rules presented

here, all dissipation zones resulting from modular dissipation analyses performed ac-

cording to the decomposition rules of this work have this form. The design rules

preclude irreversibility in all circuit structures other than majority gates. Use of the

3Alternatively, this cell could be fixed if the corresponding input is to be biased.
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decomposition rules presented here greatly simplifies dissipation analysis, as shown

below.

4.1.3 Dissipation Analysis

The modular approach aims to simplify evaluation of the fundamental dissipation

bounds obtained via the general approach by partitioning the circuit into smaller

zones – once and for all at the beginning of the analysis – and applying the general

approach piecemeal to determine the dissipative contributions from each zone. The

partitioning process can, however, introduce an artifact that causes the modular

approach to overestimate the dissipative contributions from the individual zones, and

thus from the circuit as a whole when the individual contributions are summed. We

now describe the origin of this artifact, and show that it is avoided in circuits that are

designed according to the above design rules and partitioned according to the above

decomposition rules.

Information propagation in Landauer-clocked QCA is not dissipative under paradig-

matic operation. Information lost from a block of adjacent, identically clocked cells

in a QCA wire during the “relax” phase of the clocking cycle are always erased in

the presence of (and in interaction with) an identical copy that has already been

transferred to – and is locked in – an adjacent block of cells that is immediately

downstream. This is the reversible erase with copy operation. If the block of cells

being erased belongs to a particular circuit zone, but the downstream copy does not,

then the erasure is irreversible – and thus dissipative – in a dissipation analysis that

treats the zone including the erased cells as independent and isolated. Neglect of the

cross-boundary interactions that renders the erasure reversible are lost, causing the

simplified modular analysis to fail.

If the decomposition rules stated above are followed, however, any group of iden-

tically clocked cells is necessarily a wire segment that belongs to two circuit zones.
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Information in the furthest downstream cell(s) of the upstream circuit zone is always

also held in the furthest upstream cell(s) of the downstream circuit zone, since these

two groups of adjacent “boundary cells” are identically clocked. Dissipation analy-

sis of the upstream zone can thus neglect any apparent contributions from the clock

phase where information is erased from the furthest downstream cells, since this in-

formation also belongs to the furthest upstream cells of the downstream circuit zone,

and any dissipation that would result from irreversible erasure of this information in

a subsequent clocking phase is be captured in analysis of the downstream zone.

This simple constraint on circuit decomposition results in major simplification

of the dissipation analysis. Dissipative contributions from each circuit zone can be

calculated independently and added, and the effects of cross boundary interactions

captured by the general analysis are properly reflected. Furthermore, the only circuit

zones that are necessarily dissipative – those designated as “dissipation zones” – are

those enclosing majority gates; there is no irreversible information loss in zones that

correspond to wire segments and inverters. Dissipation analysis thus requires only

that the dissipation zones be identified and their contributions calculated.

The analysis is simplified even further by the fact that, on each “use,” dissipation

zones defined as above irreversibly lose information during one and only one clock

transition: the clock transition in which the information-bearing state of the “core”

of the dissipation zone – the device cell and surrounding identically clocked cells

belonging to the input and output legs ((a) in Fig. 4.4) – is relaxed.

We proceed to modular dissipation analysis of the adder circuit of Fig. 3.2. One

can immediately identify Ndiss = 5 dissipation zones, which are delineated and labeled

in Fig. 4.5. These dissipation zones can be analyzed separately, with each regarded

as an independent information processing artifact. The amount of energy dissipated

in the processing of each input by the circuit is
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Figure 4.5. Dissipation zones identified by application of the circuit decomposition
rules to the QCA half adder of this work.

∆〈E〉TOT =
5∑

n=1

∆〈EB〉dn (4.1)

where ∆〈EB〉dn is the amount of energy dissipated during the critical clock phase in

dissipation zone dn. ∆〈EB〉dn is lower bounded as [9]

∆〈EB〉dn ≥ kBT ln(2)∆Idn (4.2)

where ∆Idn is the amount of information irreversibly lost from zone dn during the

dissipative clock phase. Using the same assumptions of pure, orthogonal QCA data

states that were made in general analysis, ∆Idn = Hn(X|Y ) where Hn(X|Y ) is the

conditional Shannon entropy for the zone (gate) input and output random variables

X and Y . Obtaining the probability mass functions (pmfs) for the various gate

inputs that result from a uniform adder input pmf, and evaluating the five required

conditional entropies, we have
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∆〈EB〉d1 ≥ 1.1887kBT ln(2)

∆〈EB〉d2 ≥ 0.6887kBT ln(2)

∆〈EB〉d3 ≥ 0.6887kBT ln(2)

∆〈EB〉d4 ≥ 0.5kBT ln(2)

∆〈EB〉d5 ≥ 0.6887kBT ln(2)

for the five dissipation zones. Summing these results, we obtain the bound

∆〈E〉TOT ≥ (3.76)kBT ln(2) (4.3)

on the dissipative cost of processing one adder input, which is indeed identical to that

obtained from the general approach.

Evaluation of this dissipation bound, which was shown in previous chapter to be

somewhat involved even for this simple circuit in general approach (and is laborious

in more complex circuits like the > 105-cell QCA ALU studied in [35]), is straight-

forward and simple in the modular approach. The vast analytical simplification was

enabled by the consistency of the circuit structure with stated design rules, and the

identification and formulation of an appropriate set of circuit decomposition rules

specific to these design rules. With decomposition rules in hand for our design rules,

modular dissipation analyses could be performed in exactly the same manner for any

Landauer-clocked QCA circuit constructed according to the same design rules.

4.1.4 Prospects for Automation

The modular dissipation analysis presented here is much better suited to automa-

tion than is the general approach. For easy comparison, the flow of the general

and modular dissipation analysis procedures is shown schematically in Fig. 4.6. An
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Figure 4.6. Schematic representation of the general (top) and modular (bottom)
dissipation analysis procedures discussed in this work.

algorithm could certainly be devised that would enable automation of the general ap-

proach, but it would be complex and difficult to formulate and implement. The gen-

eral approach requires that data zones and subzones be identified at each step, which

requires that the flow of input information be tracked in space and time throughout

the computational cycle. Irreversible information loss and associated energy dissipa-

tion depend upon changes in the amount of correlation between the states of these

zones during each step.

It would be comparatively straightforward to formulate an algorithm for modular

dissipation analysis of QCA circuits designed according to the design rules of this

work and driven by a random input string with specified input pmf. The first step

is simply to identify the device cells in the circuit, which could easily be performed

by searching a simple matrix representation of the circuit layout. The second step is

to determine the required joint pmfs and marginal (input and output) pmfs for the

gates corresponding to the dissipation zones associated with each device cell. This
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could be achieved, perhaps in a simulator embedding QCADesigner simulation of the

circuit, by building appropriately weighted input-output histograms for all gates in

simulations that step through all adder inputs. The third step is to evaluate the

conditional entropies, and thus the corresponding lower bounds on the dissipative

contributions, for each dissipation zone, which is easily done once the joint input-

output pmfs have been determined. The fourth and final step, is simply to sum the

zone contributions to obtain a dissipation bound for the full circuit. None of these

steps pose formulation or implementation difficulties. We leave implementation of

modular dissipation analysis in a QCA simulator for future work.

4.2 Modular Dissipation Analysis of NASICs

Above, we presented our study on enhancing the tractability of dissipation analysis

for QCA circuits through modularization and possible automation. We can develop

a similar strategy for the NASIC paradigm. We showed that, for circuit designs with

sufficient regularity, our methodology can yield generalized, scalable bounds that are

easily evaluated. In the QCA circuit obtaining this regularity requires defining a set

of sample design rules. In the NASIC paradigm, however, we can obtain the modular

analysis without the need for specified design rules since the physical circuit structure

of the NASIC is inherently premodularized.

Our studies on the localization of information loss in the NASICs showed that each

circuit stage in the circuit corresponds to a dissipation zone. The most general form

of the fundamental heat dissipation bound specified for the NASIC paradigm is given

in inequality (3.26). The first term in the bound is simply the sum of information

loss from each circuit stage, i.e. dissipation zone. Similarly, the second term in

(3.26) corresponds to the total particle loss from each dissipation zone. The nature

of the NASIC is therefore premodularized. This allows us to automatically rewrite

the general form of the fundamental dissipation bound in the modular form as
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∆
〈
EB
〉
TOT
≥ −kBT ln(2)

2∑
n=1

∆Idn + fqVDD

2∑
n=1

∆Ndn (4.4)

where ∆Idn corresponds to the amount of information stored in and completely lost

from a dissipation zone dn, and ∆Ndn is the number of particles transported from the

source to drain through the given dissipation zone in each computational cycle.4

Localization of information loss in a circuit depends on the structure and operation

of the circuit. In the NASIC, this characteristic gives rise to each circuit stage to

function as a dissipation zone, which makes this circuit inherently modularized, and

suitable for automation. As demonstrated by the bound (4.4), the modularization of

the fundamental heat dissipation analysis for the NASIC paradigm is straightforward,

and independent of any requirement for additional set of design rules on the circuit

structure.

4.3 Discussion

In this chapter, we presented an approach to modularize our general methodology

in order to accommodate easier determination of fundamental dissipation bounds

for large, complex circuits designed according to specified rules. We compared the

modularized approach with the general methodology presented in Chapter 2, and

showed that the modularized analysis of QCA and NASIC paradigms gives us the

same results as the ones we obtained in Chapter 3.

First, we introduced an example set of QCA design rules which allowed us to

easily identify the dissipation zones that contribute to the total fundamental lower

bound on the energy dissipation for the Landauer-clocked QCA circuits. We applied

4Here, the lower case n represents the index label corresponding to a dissipation zone, not to be
confused with the ∆n we defined to represent the number of electrons required to switch each FET
in the transistor-based circuits.
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the modular analysis to the QCA half adder circuit and show that modular analysis

gives us the same results as obtained by our general approach.

Second, we modularized the fundamental heat dissipation bounds for the NASIC

paradigm. Our studies showed that the structure of the circuit makes the NASIC pre-

modularized and hence the analysis is straightforward and – unlike the QCA paradigm

– does not require additional set of design rules.

Our calculations show that the results obtained by the general and modular ap-

proach are consistent. The modular approach can provide dramatic analytical sim-

plification over the general approach to dissipation analysis, provided that circuits

are designed according to specified design rules. We argue that the modular dissi-

pation analysis is well suited for automation, which could enable determination of

fundamental lower bounds on dissipation for large and complex circuits such as full

processors.
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CHAPTER 5

FOUNDATIONAL EPILOGUE: REVISITING
LANDAUER’S PRINCIPLE AND THERMODYNAMICS

OF COMPUTATION

Landauer’s inaugural work [4] on the relation between information and energy

is an invaluable contribution to thermodynamics of computation. Despite the dif-

ferences between the nature of LP and our approach, under certain circumstances

our methodology yields results that resonate with LP to a degree. There are vari-

ous scholars and researchers, who address flaws in the interpretation of Landauer’s

argument and question its validity. The similarities between the results obtained by

our approach and LP begs the question whether our methodology too is vulnerable

to such criticisms.

In this chapter, we first provide an historical review of studies that play a sig-

nificant role in the field of thermodynamics of computation. We focus our attention

to emergence of LP and consecutive research that take Landauer’s work further, and

address some foundational questions surrounding its validity. We study some key

arguments and discuss their implication for our methodology. Certain concepts pre-

sented in this chapter do not have immediate consequences for the circuits we are

interested in, however, we address them to provide insights into the the interdisci-

plinary nature of thermodynamics of computation.

5.1 A Historical Review Towards Landauer’s Principle

In this section, we provide an overview of some key results that play a crucial

role in emergence of thermodynamics of computation, and led to and motivated this
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dissertation. The cast of important characters1 and their contribution are chrono-

logically listed in Table. 5.1. A set of researchers listed here play a key role in the

inception and refinement of LP, we elaborate further on their studies in the following

sections of this chapter.

Time Event

1703 Mathematician and philosopher Gottfried Leibniz published

“Explication de l’arithmétique binaire” and presented an ex-

planation of the modern binary system. The paper appeared

in “Memoires de l’Academie royale des sciences” in 1705 [47].

1833 Michael Faraday recorded the first semiconductor effect; he

discovered that the electrical conduction increases with tem-

perature in silver sulfide crystals, which is the opposite to that

observed in copper and other metals [48].

1847 Mathematician George Boole published “The mathematical

analysis of logic” where he introduced Boolean Logic. This

played an essential role in the further development of the mod-

ern binary system by Claude Shannon in later years [49].

1850 Physicist Rudolf Clasius published “On the mechanical theory

of heat” introducing the second law of thermodynamics. The

validity of this law has become the subject of arguably more

argument than any other theory in physics [50].

1As much as we admire and appreciate the genius of individuals listed here, we also acknowledge
that these achievements are collaborative work of numerous scientists and thinkers spanning over
many decades, and listed dates and people are rather symbolic milestones.
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1867 Physicist James Clerk Maxwell wrote a letter to Peter Guthrie

Tait in which he talked about the Maxwell’s Demon thought

experiment for the first time. The idea is presented to public

in Maxwell’s Theory of Heat in 1871 [51].

1865 Physicist Rudolf Clausius coined the term entropy [52].

1872 Physicist Ludwig Boltzmann proposed H-theorem, and with

it the formula Σpi log pi for the entropy of a single gas particle

[53].

1878 Physicist J. Willard Gibbs defined the Gibbs entropy: the

probabilities in the entropy formula are now taken as proba-

bilities of the state of the whole system [54].

1927 Mathematician and polymath John von Neumann defined the

von Neumann entropy, extending the classical notion of en-

tropy to the field of quantum mechanics [55].

1928 Electronics researcher Ralph Hartley introduced Hartley in-

formation as the logarithm of the number of possible mes-

sages, with information being communicated when the re-

ceiver can distinguish one sequence of symbols from any other

(regardless of any associated meaning) [56].

1929 Physicist Leo Szilard analyzed Maxwell’s Demon, showing

how the Szilard engine can transform information into the

extraction of useful work [57].

1936 Mathematician and computer scientist Alan Turing intro-

duced Turing machines as a thought experiment representing

a computing machine in “On computable numbers, with an

application to the Entscheidungs problem” [58].
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1937 Electronic engineer and mathematician Claude E. Shannon

invented digital electronics as his Master’s thesis entitled “A

symbolic analysis of relay and switching circuits” [59].

1947 Physicists William Shockley, John Bardeen and Walter Brat-

tain invented the first transistor at Bell Laboratories [48].

1948 Claude E. Shannon published “A mathematical theory of

communication.” This paper became one of the most influ-

ential works of the Information Theory field [25].

1950 The first of London Symposiums on Information Theory is or-

ganized where prominent scientist discussed the quantification

of information. Later, physicist Donald MacKay published his

“Information, Mechanism and Meaning” book where he made

some of the studies from some of these symposiums available

and explained the history of how scientists started to think of

information separate from meaning [60].

1956 Physicist Leon Brillouin in his “Science and Information The-

ory” book expressed that the Clausius’ entropy and Shannon’s

entropy are identical [61].

1958 The precursor ideas to the integrated circuits (ICs) were im-

proved sufficiently and the revolutionary design of the ICs

emerged.2

1961 Physicist Rolf Landauer published his “Irreversibility and

heat generation in the computing process” paper in which

he presented the LP [4].

2There is no consensus over who invented the ICs. Jack Kilby, Kurt Lehovec, Robert Noyce and
Joerni Hoerni are all credited for their contribution. Kilby was awarded the Nobel Prize in Physics
in 2000 “for his part in the invention of the IC” [62].
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1965 Gordon Earle Moore published his infamous paper describing

Moore’s Law. His conjecture successfully predicted the trend

in the increase in number of transistors on ICs and guided

the long term strategies in semiconductor technology until

the early years of this century [1].

1982 Physicist Charles Bennett exorcised Maxwell’s Demon with

“Thermodynamics of computation - a review” in which he

clarified the basis of unavoidable dissipation in computation,

and showed that it is not the measurement but erasure that

cannot be done reversibly [63].

2020 Projected time for the end of scaling for the current CMOS

technology. The total energy dissipated per irreversible binary

decision, continued at the historical rate observed for silicon

technology, will reach Landauer’s lower bound on the physical

cost of logical irreversibility alone (∼ kBT ) [5].

Table 5.1: Chronological list of significant events in the

evolution of thermodynamics of computation.

The chronological list of events provides us with perspective on the multidis-

ciplinary nature of thermodynamics of computation. It also allows us to see how

recently this field has emerged, and that the fundamental concepts and formulations

constituting the very core of this field are still being refined and improved to apply to

emerging technologies. Among various studies, we now briefly focus on the Szilard en-

gine that serves as a tractable model to allow thermodynamic analysis of information

and memory, and later as an application for LP.
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5.2 Szilard Engine and Landauer’s Exorcism of Maxwell’s

Demon

In Oxford English Dictionary [64], the definition of Maxwell’s Demon is given

as “an entity imagined by Maxwell as allowing only fast-moving molecules to pass

through a hole in one direction and only slow-moving ones in the other direction, so

that if the hole is in a partition dividing a gas-filled vessel, one side becomes warmer

and the other cooler, in contradiction of the second law of thermodynamics.” In 1867,

James Clerk Maxwell wrote a letter to Peter Guthrie Tait in which he talked about

the this hypothetical intelligent being and the associated thought experiment for the

first time. The idea is presented to public in Maxwell’s Theory of Heat in 1871. It

was William Thompson who referred to this imaginary being as “Maxwell’s intelligent

demon” in 1874 [51]. The association between entropy and information was loose in

those days given that Shannon’s “A mathematical theory of communication” [25]

paper had not yet come into existence. Therefore, Maxwell himself did not discuss

the connection between the Second Law and information explicitly. Although, it

was implied by his definition of demon’s capability of using information to lower

information entropy [20]. As a practical example, Maxwell’s demon problem hints at

the need for unified theory of thermodynamics and information.

In 1929, Leo Szilard analyzed the implications of Maxwell’s demon to the Second

Law. Szilard proposed an engine that explains the workings of the Maxwell’s thought

experiment [57]. This engine is depicted in Fig. 5.1. As shown in the figure, the

position of the particle is not known initially. The demon measures the location of

the particle and with that information brings the box into contact with the heat

bath and allows the particle to do work on a piston with the thermal energy it gains

from the bath. The piston is then removed, and the demon can start over. It then

appears as if the demon is extracting heat from the bath and converting it into work,
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Figure 5.1. Schematics of the Szilard’s engine [65].

thus decreasing the entropy of the bath with no corresponding increase in entropy

anywhere else, which threatens the Second Law.

The ingenuity of Szilard’s engine comes from its ability to turn the Maxwell’s

demon problem into a “binary” decision process. This binary decision making pro-

cess requires information acquisition, memory and subsequent information erasure

which are necessary to couple the piston and thermal bath. It is important to note

that Szilard did not identify the demon’s specific role as saving the second law but

rather simply regarded memory as an important feature in a demon’s operation [51].

Szilard’s design has fundamentally influenced the way we think about entropy, and

Maxwell’s demon led to the concept of a “bit” of information and to key concepts in

information theory.

In 1982, Bennett [63] provided a clarification to the basis of unavoidable dissipa-

tion. He showed that the fundamentally dissipative step in Demon’s process is actually

not the measurement. The measurement can be done reversibly. What is unavoidably

dissipative is the logically irreversible erasure of Demon’s memory which is required
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to make room for new measurements. This erasure cannot be done reversibly, and

hence is unavoidably dissipative. It is based on this definition that LP could be used

to exorcise Maxwell’s Demon and save the second law of thermodynamics.

Szilard’s unique contribution shed light on the relation between the laws of ther-

modynamics and theories regarding the physicality of information. However, this

study is based on a simple information processing system composed of two chambers;

it does not address the technologically relevant question regarding the effect of infor-

mation erasure on the dissipative cost in actual electronic circuit examples that can

be used in computation.

5.3 On the Validity of Landauer’s Principle

Landauer’s pioneering work has set the stage for numerous foundational studies

on the relation between information and energy in the last half-century. The majority

of research is theoretical in nature [24], [26], [66-71], however, recently the advance-

ments in science with the emergence of nanotechnology allow for experimental work

concerning the relation between information and thermodynamics [72-74].3 In this

section, we outline a set of studies regarding LP and its validity. We objectively

present the arguments made in each study to the best of our ability. In the next

section, we will comment on their implications for our approach.

In the most general sense, the point raised by researchers who argue against the

validity of LP is based on certain issues concerning the interpretation of thermody-

namics. From an information theoretic point of view, when we consider storing a bit

of information in a macroscopic thermodynamic system, thermodynamics cannot tell

us which of the possible states is used to store that bit. In the microscopic sense

one can interpret the storing of a bit as occupation of any of the available states or

3Please note that, the studies are grouped based on their theoretical and experimental nature,
as opposed to their stance towards – for or against – the validity of LP.
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even can assume that each of these states are occupied with a certain probability.

Common point raised by both Shenker [66] and Norton [67] is the issue of properly

treating the macroscopic representations of information-representing states. They

argue against the use of macroscopic variables as the probability weight magnitude

of thermodynamic physical states. The use of probability distributions over macro-

scopically distinct states, such as the thermodynamic entropy of a system, can only

be accurately defined by considering the region of state space accessible to the given

microscopic state. The physical representations of logic states assume that a physical

system cannot jump from one logic state to another. This means that certain regions

of state space representing different logic states are not accessible to others. Shenker

refers to this as “interaccessiblity” of states.

Furthermore, Norton [67] argues against the assumption that bits with random

values correspond to an ensemble. He states that LP “depends on the incorrect

assumption that memory devices holding random data occupy a greater volume in

phase space and have greater entropy than when the devices have been reset to default

data.” Shenker [66] also points out a similar problem and suggests that “the collection

of cells carrying random data is being treated illicitly as a canonical ensemble.”

Another interesting point about LP is raised by Bacon [68]. Bacon suggests that

LP “treats the two macrostates 0 and 1 in a very error-free manner” and that nothing

is perfectly digital therefore it is inaccurate to treat these variables as digital values.

To support his argument he gives the example of information stored in the hard drive

which are not only composed and 1s and 0s but also include some small fluctuations

for each bit. This fact is at odds with the statement that two bit states should not

be accessible to each other. Bacon makes a valid argument by drawing attention to

the idealization made about the true digital nature of information for computers.

Aside from these points, Maroney [69] too raised an argument concerning the inter-

pretation of LP. The author drew attention to absence of a relationship between ther-
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modynamic and logical irreversibility and provided further derivations to generalize

LP. Later, he expanded the formulation to [70] “input and output states represented

by macrostates with variable mean internal energies, entropies and temperatures and

took in the account consequences for a larger group of logic operations than the reset

operation” [65] and pointed to the restrictions on LP. The derivation provided by

Turgut [71] can be used to address these restrictions. Turgut obtained results using

the Gibbs microcanonical distribution approach, which provides a stronger constraint

over LP without the need to consider probability distributions over the input logic

states.

In addition to the foundational studies presented above, experimental studies

concerning LP has also emerged in the recent years. Berut et. al. [72] reported

a measurement of small amount of heat release, when an individual bit of data is

erased, and demonstrated the relation between information and energy dissipation.

Bokor et. al. [73] too obtained a similar result using magnetic memories. There

are also studies where the measured dissipation for information erasure is less than

kBT ln(2) (Eg. Snider et. al. [74]). In order to accurately interpret the outcome of

these studies, a clear and consistent definition of information is required. Overall,

majority of studies concerning the relation between information and energy do not

provide a definition for the terms associated with information erasure.4 The question

“information about what?” becomes pivotal in interpreting the outcome of studies

concerning LP. In Snider’s work, for instance, the erasure operation is done with a

presence of a copy of the information, which means that information is not irreversibly

lost; i.e. no unavoidable dissipation cost is associated with this operation. In the next

section, we elaborate further on the distinction between our approach and LP and

comment on the implications of studies listed here for our approach.

4As we mentioned in Sec. 1.4, Landauer himself did not provide a definition for ∆Ier in Eq. (1.4)
and (1.5).
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5.4 On the Validity of Our Methodology

The referential approach serves a departure point for our methodology. As we

noted in Chapter 1, this approach and LP are fundamentally different in nature,

however, the resulting bounds resonate under certain conditions. The definition of

the concept of information plays a crucial role in the distinction between our approach

and that of Landauer’s. In the referential approach, the information5 is defined in

relation to an input referent, unlike LP where information corresponds to self entropy

(Eq. (1.4) and (1.5)). This distinction is the key in interpreting the unavoidable

energy cost associated with information erasure as demonstrated in the experimental

studies. In Snider’s paper erasure of information is performed with a presence of

the initial copy of the input, i.e. the correlation between the circuit and the input

referent is not lost. Therefore, the calculated values for the information-theoretic

dissipation are less than kBT ln(2) [40]. This can be accurately captured by the

referential approach since such erasures are indeed do not lead to information loss

and hence do not have an associated unavoidable dissipation cost.

In order to further elaborate on the distinction between our methodology and

LP, we refer to Anderson’s study based on the referential approach [75]. Anderson

emphasizes that the results obtained by using the referential approach

“ . . . follow from the specified forms of the global system states at specific

times throughout the cycle, unitary Schrödinger dynamics, established en-

tropic inequalities, energy conservation and the assumption that the bath,

B, is in a thermal state characterized by temperature T at the beginning

of each process step.”

5Recall that in Sec. 1.6, we defined the referent as a physical system that unambiguously holds
the input data throughout computation. The referent allows us to regard information erasure as
loss of correlation between the state of an erasable quantum system and the initial input; i.e. it
distinguishes the erasure of information from local changes in the structure of the erasable system’s
state [8].
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It is important to underline that, in our methodology, the state of the information

bearing system, as well as the state of the surrounding subsytems and the interactions

between them are classified and obtained by using quantum dynamics. This makes

our approach immune to the majority of arguments criticizing the foundations of

LP (eg. Shenker [66] and Norton [67]) based on a classical mechanics and classical

thermodynamics.6 In order to thoroughly address the extent to which criticism raised

along these lines apply to our approach, a common language and consistent definition

of key terms need to be developed.

Furthermore, in order to address Bacon’s argument, we emphasize that our method-

ology is applied to information processing artifacts where the inputs are represented

by orthogonal states7. In addition, the idealized circuit operation consider for the

artifact excludes any affect of error or noise in the fundamental bounds. Due to the

orthogonal and error-free nature of information states our methodology is not sub-

ject to the criticism raised in [68]. The methodolgy presented here can be expanded

to address the fundamental energy requirements of noisy computation [9], however,

such modification is beyond the scope of this work. We conclude that based on the

functional features of the information processing artifact considered in our approach,

the argument made by Bacon does not have an implication for our methodology in

its current form.

In conclusion, a brief survey of studies concerning information processing and the

associated energetic cost suggests that the referential approach provides us with a

strong basis to determine the fundamental lower bounds on energy at the circuit

level. The criticisms leveled against the validity of LP have no direct implications

6Hemmo and Shenker [76], in their book chapter on erasure, argue that LP cannot be obtained
by using the principles of classical mechanics. The referential approach, however, logically follows
from the principles of quantum dynamics.

7Eg., recall Sec. 3.1.1, where we employed six-dot quantum cells to represent the logic-0, logic-1
and null states orthogonally.
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for our methodology. However, as we expand the breadth of our methodology to

accommodate the treatment of a wider range of nanocomputing proposals, we will

continue to pay attention to such counter arguments and persistently scrutinize the

foundations of our approach.
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CHAPTER 6

CONCLUSION

In this dissertation, we proposed a methodology for determining fundamental

lower bounds on the dissipative energy cost of logically irreversible computation,

which can be tailored to specific nanocomputing paradigms. The bounds we evaluated

derive solely from the underlying computational strategy employed in a given circuit

and the physical laws that govern its operation. They represent the fundamental

physical limits for a given technology base which can be obtained by analyzing the

connection between the logic operations and the physics of information processing

carried out by the circuit.

In Chapter 1, we provided a technical background for concepts, theories, and laws

that govern the physical interactions required for computation and are required for

the determination of energy dissipated to erase information irreversibly. The physical

cost of information loss is often studied independent of thermodynamic processes

that take place as a result of the erasure. To this date, a number of studies have

been pursued to shed light on the relation between the laws of thermodynamics and

theories regarding the physicality of information. However, these studies are all based

on simple information processing systems composed of pistons and chambers; they do

not address the technologically relevant question regarding the effect of information

erasure on the dissipative cost in actual electronic circuit examples that can be used

in computation.

In Chapter 2, we laid out the foundations of our methodology for establishing

dissipation bounds for arbitrary circuits. We introduced the theoretical constructs
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of our approach in the most general form, independent of a given nanocomputing

technology. We introduced mathematical representations and dynamic assignments

that allow us to tailor the fundamental bounds for a nanocomputing paradigm. We

accomplished this by bringing physical laws to bear directly on the underlying com-

putational strategy that defines the paradigm.

In Chapter 3, we illustrated applications of our methodology to non-transistor-

(QCA half adder) and transistor-based (NASIC half and full adders, np-CMOS half

adder) circuits. The lower bounds we obtained are tailored for specific features of

the underlying computational paradigm. Our results show that the fundamental

energy requirements of a given technology depend not only on the physical structure

but also on the details of the circuit operation. This kind of technology-dependent

analysis can be of paramount importance in developing long-term design strategies

for potential CMOS replacement technology proposals. We also analyzed an np-

CMOS half adder from a fundamental energy requirement point of view, which stands

out as an academic endeavor to illustrate an application of our methodology via a

widely-known conventional circuit structure. In addition to these dynamically clocked

circuits, we also discussed application to static circuits, and certain limitations of our

methodology. We showed that the analysis of static circuits is tractable within our

approach, however, the methodology needs to be expanded to accommodate this

computing strategy, which lies beyond the scope of this work.

In Chapter 4, we presented a modularized approach to accommodate the treat-

ment of large and complex circuits. We discussed the scalability of our methodology

to multi-tile circuits by means of modular analysis, and compared our results with the

calculations presented in Chapter 3, where we addressed the problem of determining

fundamental heat dissipation bounds associated with irreversible logic transforma-

tions in a single tile computation. Our study of the modular analysis showed that

details of the circuit design play a significant role in localizing the information loss
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that allows us to obtain the fundamental bounds. We illustrated our modular ap-

proach via applications to QCA and NASIC circuits, and demonstrated that modular

analysis of QCA requires us to specify design rules, whereas the NASIC structure is

inherently premodularized. The approach presented here allows us to facilitate and

possibly automate the determination of fundamental dissipation bounds for large,

complex circuits designed according to specified rules.

In Chapter 5, we provided a brief and qualitative background on thermodynam-

ics of computation, and a list of arguments directed against the validity of LP. This

chapter provides an overview of the disputes concerning the study of irreversible infor-

mation processing and associated energy cost, as well as the foundations of thermody-

namics of computation. We discussed the extent to which the arguments against LP

have implications for our methodology. We concluded that the referential approach

provides a strong basis to study fundamental lower bounds on energy dissipation at

the circuit level, and makes our methodology immune to the criticism leveled against

the validity of LP.

We provided guidelines on how to obtain the lower bounds on the fundamen-

tal energetic cost of computation at the circuit level for post-CMOS nanocomputing

technology proposals. This was done by juxtaposing the energetic cost of irreversible

information processing and physical operations that take place as a result of it. The

bounds resulting from our approach are truly fundamental and they depend only

on the circuit structure, clocking scheme, and temperature of the circuit’s environ-

ment. Therefore, implementation-specific quantities (such as the kink energy for QCA

cells, or parasitics for the NASICs) do not appear in these energy bounds. Combin-

ing results from such analyses with assumptions on circuit scale and clock rate for

specified circuits, lower bounds on areal heat dissipation can be obtained at any de-

sired computational throughput for arbitrary circuits. These fundamental dissipation

bounds can serve as tools for the assessment of proposed post-CMOS nanocomputing
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technologies. They can be used to verify the fundamental compatibility of speed and

density projections (e.g. those required to outperform ultimate CMOS) with assump-

tions regarding the capacity for heat removal, which will become crucial for emerging

technologies.

The methodology we presented here can be expanded to increase the breadth of

circuit structures and operations that can be treated by using our approach. In Chap-

ter 3, we commented on the limitations of our methodology in obtaining fundamental

lower bounds on energy for static transistor-based circuits and dynamically clocked

transistor-based circuits that do not have output complements. The abstraction can

be generalized to accommodate a wider range of subsystem interactions as present in

static transistor-based circuits. In addition, the relation between the two terms in the

general fundamental lower bound for the transistor-based circuits, the information-

theoretic cost and particle supply cost, can be generalized. This would allow for the

treatment of circuits in which the number of particles and the associated transport

cost for each input depends on the probability of that input as is the case for cir-

cuits without output complements. The analysis of these circuits, as well as other

paradigms, can be tractable within our methodology if the necessary modifications

are made on the present formulation.

We emphasize that the viability of any nanocomputing technology proposal will

hinge on a complex mix of various physical, technological, and economic factors. The

fundamental dissipation bounds provide us one necessary but insufficient condition

regarding the performance limits of a proposed technology; the physical possibility

that specified performance targets can be met under best case assumptions regarding

circuit fabrication and computational control. These lower bounds can be used as a

“litmus test’ in nanocomputing technology assessment, providing a check for consis-

tency of performance projections with assumed resources and fundamental physical

constraints. Analyzing the thermodynamic limits of a nanocomputing paradigm pro-
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vides insights into how far it can be improved in principle and how much room there

is at the bottom.1

The emergence of nanoscale electronics brings about a new era in the evolution

of computer processors where the Moore’s law remains arrears in predicting the tra-

jectory of computation. Proposals for a candidate successor technology face a broad

range of disparate concerns at practical and conceptual levels where overcoming these

challenges will require the involvement of a diverse community of researchers. The

post-CMOS nanocomputing paradigms are expected to operate near the energetic

limits of what nature will allow, therefore the fundamental performance limits are

likely to be of key importance in assessing the viability of a proposed successor tech-

nology. The evolution of the field will depend on breakthroughs in nanoelectronics

and emerging trends in computing with implications for nanoscale computation. By

pursuing this research we hope to have contributed to the performance assessment

tools that are essential for determining the course of post-CMOS computing. As Pat-

terson [78] suggests, the endeavors on the path to the future of computation is much

like a sports game full of surprises and uncertainties, and “no matter how the ball

bounces, it’s going to be fun to watch, at least for the fans. The next decade is going

to be interesting.”

1Feynman’s lecture [77], “There is plenty of room at the bottom,” inspired the conceptual foun-
dations of nanotechnology, and is considered to be a seminal work in the field. As we approach the
end of scaling, however, it is a good time to ask “how much room there is at the bottom?”
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APPENDIX

GRANULARITY OF HEAT DISSIPATION ANALYSIS
FOR THE QCA HALF ADDER

We assume that the circuit inputs are equally probable, i.e. for the input vector

xi = {00, 01, 10, 11} the associated probabilities are pi = {1
4
, 1

4
, 1

4
, 1

4
}. Below, based

on this assumption, we map the transition probabilities for the complete circuit, as

well as for each gate and cell.

Circuit Level

In the circuit level, the inputs map out to the outputs as shown in Table. A.1.

Inputs : AB Outputs : CS

p1 = 1
4
{00} q1 = 1

4
{00}

p2 = 1
4
{01} q2 = 1

2
{01}

p3 = 1
4
{10}

p4 = 1
4
{11} q3 = 1

4
{10}

p1|1 = 1

p2|2 = 1/2

p3|2 = 1/2

p4|3 = 1

Table A.1. Transition probabilities for a 1-bit half adder.

Based on the probabilities outlined above, the Shannon self entropy of the input

set and the output set are

H(X) = −
4∑
i=1

pi log2 pi = −1

4
log2

(
1

4

)
× 4 = 2bits. (A.1)
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H(Y ) = −
3∑
j=1

qj log2 qj = −1

4
log2

(
1

4

)
× 2− 1

2
log2

(
1

2

)
= 1.5bits. (A.2)

And the information loss associated with the logic operation is

H(X|Y ) = −qj
3∑
j=1

pi|j log2 pi|j = −1

2
× 1

2
log2

(
1

2

)
× 2 = 0.5bits. (A.3)

Therefore, for the circuit level analysis, the dissipation associated with a computa-

tional cycle of a half adder is 0.5× kBT ln(2) .

Data-Zone Level

Data-Zone level analysis assumes that certain zones of the circuit which get ac-

tivated simultaneously at a given clock step form a data-zone and that the total

dissipative cost of a computational cycle of the QCA half adder is equal to the sum

of individual dissipations associated with these zones. Based on this division, first

zone corresponds to the NAND gate, second zone corresponds to the two AND gates

with inputs A, B, and M , and outputs N1 and N2, the third zone corresponds to the

AND and OR gates with inputs M , N1 and N̄2, and outputs S and C.

Accordingly, the dissipation at the first zone is the dissipation of an individual

NAND gate, i.e. H(X|Y ) = 1.1887bits. The dissipation in the second zone is calcu-

lated based on the probability distribution of the three input two output logic opera-

tion shown in Table. A.2 Hence, the information loss associated with the second data

zone logic operation is H(X|Y ) = 0.5bits. Finally the dissipation in the third zone is

calculated similar to the second data zone and the information for the four input two

output logic operation is obtained, i.e for the third data zone H(X|Y ) = 0.5bits. In

total, based on the data-zone level analysis, dissipation throughout a computational

cycle of the QCA half adder is 2.1887× kBT ln(2) .

Data-Subzone Level
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Inputs : ABM Outputs : N1N2

p1 = 1
4
{001} q1 = 1

1
{00}

p2 = 1
4
{011} q2 = 1

4
{01}

p3 = 1
4
{101} q3 = 1

4
{10}

p4 = 1
4
{110}

p1|1 = 1/2

p2|2 = 1

p3|2 = 1

p4|3 = 1/2

Table A.2. Transition probabilities for the second data zone of the QCA 1-bit half
adder operated under Landauer clocking.

Data-subzone level analysis assumes that each gate within the circuit dissipates

heat independent from one another, therefore the total dissipative cost of a com-

putational cycle of the QCA half adder is the sum of dissipations associated with

each gate. Above, the dissipation of a NAND gate is given as H(X|Y ) = 1.1887bits.

For the two AND gate with outputs N1 and N2 the probability distribution can be

obtained as shown in Table A.3.

Input : AM Output : N1

p1 = 1
2
{01} q1 = 3

4
{0}

p2 = 1
4
{10}

p3 = 1
4
{11} q2 = 1

4
{1}

p1|1 = 2/3

p2|1 = 1/3

p3|2 = 1

Table A.3. Transition probabilities for the AND gate with inputs AM and output
N1.

Based on the above probability distribution the information loss associated with

this operation is H(X|Y ) = 0.6887bits. The dissipation from the second AND gate

with input BM and output N2 is also H(X|Y ) = 0.6887bits. For the OR gate with

output S the probability distribution is given in Table A.4.
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Input : N1N2 Output : S

p1 = 1
2
{00} q1 = 1

2
{0}

p2 = 1
4
{01}

p3 = 1
4
{10} q2 = 1

2
{1}

p1|1 = 1

p2|2 = 1/2

p3|2 = 1/2

Table A.4. Transition probabilities for the OR gate with inputs N1N2 and output
S.

Hence, the information loss in this operation, based on the above probability

distribution, is H(X|Y ) = 0.5bits. For the AND gate with output C the probability

distribution is given in Table A.5.

Input : BM Output : C

p1 = 1
2
{01} q1 = 3

4
{0}

p2 = 1
4
{10}

p3 = 1
4
{11} q2 = 1

4
{1}

p1|1 = 2/3

p2|1 = 1/3

p3|2 = 1

Table A.5. Transition probabilities for the AND gate with inputs BM and output
C.

Therefore, the information loss is H(X|Y ) = 0.6887bits. In total, based on the

data-zone level analysis, dissipation throughout a computational cycle of the QCA

half adder is 3.7546× kBT ln(2) .

Cell Level

Cell level analysis corresponds the summation of the dissipative cost of erasing

the memory of input from each cell, which corresponds to the sum of self entropy of

each cell in the circuit. Each of the inputs A and B occur with equal probabilities,

i.e. xi = {0, 1} with the associated probabilities being pi = {1
2
, 1

2
}, i.e. H(X) = 1bit.
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Based on this assumption there are 23 cells that hold the 1bit memory of A and 42

cells that hold the 1bit memory of B. The self entropy of the 4 cells carrying the

information regarding S is also 1bit. As for the rest of the cells, we assume that the

probability distribution of the cells at the gate regions change at the ’center’ cell of

that gate, i.e. the self entropy of the cells change after the center cell of the AND

gate with the output M . The self entropy of these cells is calculated from xi = {0, 1}

with the associated probabilities pi = {1
4
, 3

4
} and obtained to be H(X) = 0.8113bits.

The probability distribution is the same for cells carrying the information regarding

N1, N2, N̄2 and C. Therefore, in total, There are 69 cells in the circuit carrying 1-bit

memory, and 56 cells carrying 0.8113 bit, based on the cell level analysis, dissipation

throughout a computational cycle of the QCA half adder is 114.4328× kBT ln(2) .

Conclusion

The calculations presented above outlines various interpretations of the funda-

mental heat dissipation bounds for a QCA half adder circuit. The three orders of

magnitude discrepancy between the circuit and cell level analysis underlines the sig-

nificance of identifying the accurate level of dissipaton analysis for a given circuit.

The lower bound on unavoidable energy disspation obtained by using all four levels

of analyses for the QCA circuit is depicted in Fig. A.1 on the next page. The signa-

ture feature of our methodology is that it allows us to identify the irreversibility based

on the structure and operation of the information processing artifact and assign the

accurate level of analysis for the associated unavoidable energy dissipation.
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Figure A.1. The lower bound value for the energy dissipation obtained by using
circuit, data-zone, data-subzone and cell levels of analyses for QCA 1-bit half adder
operated under Landauer clocking.
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Nach. vol. 1, pp. 273-291, 1927.

[56] R. V. L. Hartley, “Transmission of information,” Bell System Technical Journal,
vol. 7, pp 535-563, 1928.

[57] L. Szilrd, “ber die Entropieverminderung in einem thermodynamischen System
bei Eingriffen intelligenter Wesen,” Zeitschrift fr Physik, vol. 53, pp. 840-856,
1929.

[58] A. Turing, “On computable numbers, with an application to the Entscheidungs
problem,” Proceedings of the London Mathematical Society, ser. 2, vol. 42, 1937.

[59] C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Trans.
AIEE, vol. 57 no..12, pp. 713723, 1938.

[60] D. M. MacKay, Information, mechanism and meaning, The M.I.T. Press, 1969.

[61] L. Brillouin, Science and information theory, Academic Press, 1956.

[62] J. S. Kilby, “Turning potentials into realities: The invention of the integrated
circuit,” Int. J. Mod. Phys. B, vol. 16, p. 699 2002.

[63] C. H. Bennett, “Thermodynamics of computation - a review,” International
Journal of Theoretical Physics, vol. 21, no. 12, 1982.

[64] Retrieved on August 14, 2011, from Oxford English Dictionary,
http://www.oed.com

[65] Retrieved on August 18, 2011, from Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/information-entropy/

[66] O. R. Shenker, “Logic and entropy,” [Preprint] 2000.

[67] J. D. Norton, “Eaters of the lotus: Landauer’s principle and the return of
Maxwell’s demon,” Studies in History and Philosophy of Science Part B vol. 36
no. 2, pp.375-411, 2005.

[68] Retrieved on September 19, 2011, from http://dabacon.org/pontiff/?p=977

[69] O. J. E Maroney, “The (absence of a) relationship between thermodynamic and
logical irreversibility,” Studies in the History and Philosophy of Modern Physics,
vol. 36, pp. 355-374, 2005.

[70] O. J. E Maroney, “Generalising Landauer’s principle,” Physical Review E, vol.
79, pp. 031-105, 2009.

145



[71] S. Turgut, “Relations between entropies produced in non-deterministic thermo-
dynamic processes,” Physical Review E, vol. 79, pp. 041-102, 2009.

[72] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider and E.
Lutz, “Experimental verification of Landauers principle linking information and
thermodynamics,” Nature, vol. 483, pp. 187-189, 2012.

[73] B. Lambson, D. Carlton, and J. Bokor, “Exploring the thermodynamic limits of
computation in integrated systems: Magnetic memory, nanomagnetic logic, and
the Landauer limit,” Phys. Rev. Lett., vol. 107, 2011.

[74] A. O. Orlov, C. S. Lent, C. C. Thorpe, G. P. Boechler, and G. L. Snider, “Exper-
imental test of Landauer’s principle at the Sub-kBT Level,” Jpn. J. Appl. Phys.,
vol. 51 2012.

[75] N. G. Anderson, “Conditioning, correlation and entropy generation in Maxwell’s
Demon,” Entropy, vol. 15, pp. 4243-4246, 2013.

[76] M. Hemmo and O. R. Shenker, The road to Maxwell’s demon: Conceptual foun-
dations of statistical mechanics, Cambridge University Press, 2012.

[77] Editorial, “‘Plenty of room revisited,” Nature Nanotechnology, vol. 4, p. 781
2009.

[78] D. Patterson, “The trouble with multicore,” IEEE Spectrum, June, 2010.

146


	Heat Dissipation Bounds for Nanocomputing: Methodology and Applications
	Recommended Citation

	tmp.1396459219.pdf.FS5sY

