34 research outputs found

    Towards a compact representation of temporal rasters

    Get PDF
    Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster data that evolve along time named Temporal k^2 raster. It faces the two main issues that arise when dealing with spatio-temporal data: the space consumption and the query response times. It extends a compact data structure for raster data in order to manage time and thus, it is possible to query it directly in compressed form, instead of the classical approach that requires a complete decompression before any manipulation. In addition, in the same compressed space, the new data structure includes two indexes: a spatial index and an index on the values of the cells, thus becoming a self-index for raster data.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 690941. Published in SPIRE 201

    Efficient processing of raster and vector data

    Get PDF
    [Abstract] In this work, we propose a framework to store and manage spatial data, which includes new efficient algorithms to perform operations accepting as input a raster dataset and a vector dataset. More concretely, we present algorithms for solving a spatial join between a raster and a vector dataset imposing a restriction on the values of the cells of the raster; and an algorithm for retrieving K objects of a vector dataset that overlap cells of a raster dataset, such that the K objects are those overlapping the highest (or lowest) cell values among all objects. The raster data is stored using a compact data structure, which can directly manipulate compressed data without the need for prior decompression. This leads to better running times and lower memory consumption. In our experimental evaluation comparing our solution to other baselines, we obtain the best space/time trade-offs.Ministerio de Ciencia, Innovación y Universidades; TIN2016-78011-C4-1-RMinisterio de Ciencia, Innovación y Universidades; TIN2016-77158 C4-3-RMinisterio de Ciencia, Innovación y Universidades; RTC-2017-5908-7Xunta de Galicia; ED431C 2017/58Xunta de Galicia; ED431G/01Xunta de Galicia; IN852A 2018/14University of Bío-Bío; 192119 2/RUniversity of Bío-Bío; 195119 GI/V

    Efficient Processing of Raster and Vector Data

    Get PDF
    [Abstract] In this work, we propose a framework to store and manage spatial data, which includes new efficient algorithms to perform operations accepting as input a raster dataset and a vector dataset. More concretely, we present algorithms for solving a spatial join between a raster and a vector dataset imposing a restriction on the values of the cells of the raster; and an algorithm for retrieving K objects of a vector dataset that overlap cells of a raster dataset, such that the K objects are those overlapping the highest (or lowest) cell values among all objects. The raster data is stored using a compact data structure, which can directly manipulate compressed data without the need for prior decompression. This leads to better running times and lower memory consumption. In our experimental evaluation comparing our solution to other baselines, we obtain the best space/time trade-offs.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690941; from the Ministerio de Ciencia, Innovación y Universidades (PGE and ERDF) grant numbers TIN2016-78011-C4-1-R; TIN2016-77158 C4-3-R; RTC-2017-5908-7; from Xunta de Galicia (co-founded with ERDF) grant numbers ED431C 2017/58; ED431G/01; IN852A 2018/14; and University of Bío-Bío grant numbers 192119 2/R; 195119 GI/VCXunta de Galicia; ED431C 2017/58Xunta de Galicia; ED431G/01Xunta de Galicia; IN852A 2018/14Universidad del Bío-Bío (Chile); 192119 2/RUniversidad del Bío-Bío (Chile); 195119 GI/V

    Space-Efficient Representations of Raster Time Series

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Raster time series, a.k.a. temporal rasters, are collections of rasters covering the same region at consecutive timestamps. These data have been used in many different applications ranging from weather forecast systems to monitoring of forest degradation or soil contamination. Many different sensors are generating this type of data, which makes such analyses possible, but also challenges the technological capacity to store and retrieve the data. In this work, we propose a space-efficient representation of raster time series that is based on Compact Data Structures (CDS). Our method uses a strategy of snapshots and logs to represent the data, in which both components are represented using CDS. We study two variants of this strategy, one with regular sampling and another one based on a heuristic that determines at which timestamps should the snapshots be created to reduce the space redundancy. We perform a comprehensive experimental evaluation using real datasets. The results show that the proposed strategy is competitive in space with alternatives based on pure data compression, while providing much more efficient query times for different types of queries.The data used in this study were acquired as part of the mission of NASA’s Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Funding: CITIC, as Research Center accredited by Galician University System, is funded by “Consellería de Cultura, Educación e Universidade from Xunta de Galicia”, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020, and the remaining 20% by “Secretaría Xeral de Universidades” (Grant ED431G 2019/01). This work was also supported by Xunta de Galicia/FEDER-UE under Grants [IG240.2020.1.185; IN852A 2018/14]; Ministerio de Ciencia, Innovación y Universidades under Grants [TIN2016-78011-C4-1-R; RTC-2017-5908-7; PID2019- 105221RB-C41/AEI/10.13039/501100011033]; ANID - Millennium Science Initiative Program - Code ICN17_002; Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED) [Grant No. 519RT0579]Xunta de Galicia; ED431G 2019/01Xunta de Galicia; IG240.2020.1.185Xunta de Galicia; IN852A 2018/14Chile. Agencia Nacional de Investigación y Desarrollo; ICN17_00

    Representations of Environmental Data in Web-based GIS

    Get PDF
    The GIS community is using the vast potential of the Internet to disseminate geospatial information. Web-based GIS software and services are key components in distribution of geospatial data. Web-based GIS provide government departments, local authorities and environmental agencies with unprecedented opportunities to offer online access to their environmental information and related services for citizens. Web-based GIS offers access to information services 24 hours a day, 7 days a week, 365 days a year. In order for web-GIS to be successful in delivering environmental information the representation of the input datasets and output delivery formats/structures must be suitable to both the Internet delivery medium and the intended audience. In the majority of cases this will involve conversion and re-modelling of existing data resources. This paper discusses representations of environmental data for delivery and dissemination using web-based GIS in order to serve a variety of stakeholders : policy makers, scientists, media, and the general public. We summarise the major issues for delivering complex geospatial data about the environment using this medium. Prioritisation of metadata collection and geospatial data interoperability are crucial factors in delivering effective web-GIS tools. The INSPIRE Directive will greatly increase the number of available data sources and the use of webbased GIS for environmental information provision in the future will be discussed

    Map algebra on raster datasets represented by compact data structures

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract]: The increase in the size of data repositories has forced the design of new computing paradigms to be able to process large volumes of data in a reasonable amount of time. One of them is in-memory computing, which advocates storing all the data in main memory to avoid the disk I/O bottleneck. Compression is one of the key technologies for this approach. For raster data, a compact data structure, called (Formula presented.) -raster, have been recently been proposed. It compresses raster maps while still supporting fast retrieval of a given datum or a portion of the data directly from the compressed data. (Formula presented.) -raster's original work introduced several queries in which it was superior to competitors. However, to be used as the basis of an in-memory system for raster data, it is mandatory to demonstrate its efficiency when performing more complex operations such as the map algebra operators. In this work, we present the algorithms to run a set of these operators directly on (Formula presented.) -raster without a decompression procedure.This work was supported by the National Natural Science Foundation of China (Grant Nos. 31171944, 31640068), Anhui Provincial Natural Science Foundation (Grant No. 2019B319), Earmarked Fund for Anhui Science and Technology Major Project (202003b06020016). Information CITIC, Ministerio de Ciencia e Innovación, Grant/Award Numbers: PID2020-114635RB-I00; PDC2021-120917-C21; PDC2021-121239-C31; PID2019-105221RB-C41; TED2021-129245-C21; Xunta de Galicia, Grant/Award Numbers: ED431C 2021/53; IN852D 2021/3 (CO3)This work was partially supported by CITIC, CITIC is funded by the Xunta de Galicia through the collaboration agreement between the Department of Culture, Education, Vocational Training and Universities and the Galician universities for the reinforcement of the research centers of the Galician University System (CIGUS). IN852D 2021/3(CO3): partially funded by UE, (ERDF), GAIN, convocatoria Conecta COVID. GRC: ED431C 2021/53: partially funded by GAIN/Xunta de Galicia. TED2021-129245B-C21; PDC2021-121239-C31; PDC2021-120917-C21: partially funded by MCIN/AEI/10.13039/501100011033 and “NextGenerationEU”/PRTR. PID2020-114635RB-I00; PID2019-105221RB-C41: partially funded by MCIN/AEI/10.13039/501100011033. Funding for open access charge: Universidadeda Coruña/CISUG.Xunta de Galicia; ED431C 2021/53Xunta de Galicia; IN852D 2021/3 (CO3)National Natural Science Foundation of China; 31171944National Natural Science Foundation of China; 31640068Anhui Provincial Natural Science Foundation; 2019B31

    Space- and Time-Efficient Storage of LiDAR Point Clouds

    Full text link
    LiDAR devices obtain a 3D representation of a space. Due to the large size of the resulting datasets, there already exist storage methods that use compression and present some properties that resemble those of compact data structures. Specifically, LAZ format allows accesses to a given datum or portion of the data without having to decompress the whole dataset and provides indexation of the stored data. However, LAZ format still have some drawbacks that should be faced. In this work, we propose a new compact data structure for the representation of a cloud of LiDAR points that supports efficient queries, providing indexing capabilities that are superior to those of LAZ format.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    COMTILES: A CASE STUDY OF A CLOUD OPTIMIZED TILE ARCHIVE FORMAT FOR DEPLOYING PLANET-SCALE TILSETS IN THE CLOUD

    Get PDF
    The container formats commonly used for managing map tiles, such as MBTiles and GeoPackage, were originally designed with only POSIX filesystem access in mind. This makes these file formats inefficient to use in a cloud native environment, especially in combination with large tilesets. The Cloud Optimized GeoTIFF format solves the problem of providing large satellite data in the cloud, creating a new category of so-called cloud optimized data formats. This type of format allows geospatial data to be deployed as a single file on a cheap and scalable cloud object storage such as AWS S3 and accessed directly from a browser without the need for a dedicated backend. Based on the concepts of the COG format, this contribution proposes a new cloud optimized file format called COMTiles, specially designed for planet-scale tilesets. This format has the potential to simplify the deployment workflow of large tilesets in a cloud-native environment, while simultaneously reducing the hosting costs. In comparison to PMTiles, another cloud-optimized tile archive solution, COMTiles can reduce the number of transferred data and the performance of decoding portions of the file. COMTiles also adds support for different coordinate systems

    Compact and indexed representation for LiDAR point clouds

    Get PDF
    [Abstract]: LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them, and adding additional attributes to each point such as color, position, time, etc. LiDAR datasets are usually large, and compressed data formats (e.g. LAZ) have been proposed over the years. These formats are capable of transparently decompressing portions of the data, but they are not focused on solving general queries over the data. In contrast to that traditional approach, a new recent research line focuses on designing data structures that combine compression and indexation, allowing directly querying the compressed data. Compression is used to fit the data structure in main memory all the time, thus getting rid of disk accesses, and indexation is used to query the compressed data as fast as querying the uncompressed data. In this paper, we present the first data structure capable of losslessly compressing point clouds that have attributes and jointly indexing all three dimensions of space and attribute values. Our method is able to run range queries and attribute queries up to 100 times faster than previous methods.Secretara Xeral de Universidades; [ED431G 2019/01]Ministerio de Ciencia e Innovacion; [PID2020-114635RB-I00]Ministerio de Ciencia e Innovacion; [PDC2021-120917C21]Ministerio de Ciencia e Innovación; [PDC2021-121239-C31]Ministerio de Ciencia e Innovación; [PID2019-105221RB-C41]Xunta de Galicia; [ED431C 2021/53]Xunta de Galicia; [IG240.2020.1.185
    corecore