
Information Sciences 566 (2021) 300–325
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Space-efficient representations of raster time seriesq
https://doi.org/10.1016/j.ins.2021.03.035
0020-0255/� 2021 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

q A preliminary partial version was published in [10].
⇑ Corresponding author.

E-mail addresses: fernando.silva@udc.es (F. Silva-Coira), jose.parama@udc.es (J.R. Paramá), guillermo.debernardo@udc.es (G. de Bernardo), dse
cl (D. Seco).

1 Although the Map Algebra can be performed on vector data, it is usually performed on raster data.
Fernando Silva-Coira a,⇑, José R. Paramá a, Guillermo de Bernardo a, Diego Seco b

aUniversidade da Coruña, Centro de Investigación CITIC, Facultade de Informática, Campus de Elviña s/n, 15071 A Coruña, Spain
bUniversidad de Concepción & IMFD, Concepción, Chile

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 July 2020
Received in revised form 19 January 2021
Accepted 12 March 2021
Available online 18 March 2021

Keywords:
Geographic information systems
Raster datasets
Data compression
Indexing
Query processing
Compact data structures
Raster time series, a.k.a. temporal rasters, are collections of rasters covering the same
region at consecutive timestamps. These data have been used in many different applica-
tions ranging from weather forecast systems to monitoring of forest degradation or soil
contamination. Many different sensors are generating this type of data, which makes such
analyses possible, but also challenges the technological capacity to store and retrieve the
data. In this work, we propose a space-efficient representation of raster time series that
is based on Compact Data Structures (CDS). Our method uses a strategy of snapshots and
logs to represent the data, in which both components are represented using CDS. We study
two variants of this strategy, one with regular sampling and another one based on a heuris-
tic that determines at which timestamps should the snapshots be created to reduce the
space redundancy. We perform a comprehensive experimental evaluation using real data-
sets. The results show that the proposed strategy is competitive in space with alternatives
based on pure data compression, while providing much more efficient query times for dif-
ferent types of queries.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The efficient processing and management of spatial data has been a topic of research and development for decades. This
has been studied by the Geographic Information Systems (GIS) and spatial databases communities, which propose two main
models to represent spatial data, namely vector and raster model. The former represents spatial objects using points and
lines connecting such points, and forming more complex representations such as polygons. This model is mainly used to rep-
resent human-made features. On the other hand, the raster model represents the space as a tessellation of fixed size tiles,
usually squares, each one storing a value. This model is traditionally used to represent real-world elements that were not
made by humans. Some examples of spatial data usually represented in rasters are temperatures, precipitations, elevations,
and chlorophyll concentrations, to name just a few examples. The Map Algebra [43] is considered a breakthrough in the use
of this model1 in GIS, as it provides a simple and powerful tool to perform geographic analysis. Map algebra was incorporated in
many GIS and remote sensing image processing packages, for example, ArcGis of ESRI, QGIS, GDMS-R, or GRASS.
co@udec.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2021.03.035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ins.2021.03.035
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fernando.silva@udc.es
mailto:jose.parama@udc.es
mailto:guillermo.debernardo@udc.es
mailto:dseco@udec.cl
mailto:dseco@udec.cl
https://doi.org/10.1016/j.ins.2021.03.035
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
In many applications, not just a single raster, but a series of rasters covering the same region at different timestamps has
to be stored and analysed. This has been called in the literature a raster time series or a temporal raster, and it has applica-
tions, for example, in weather forecast systems [13], prediction of productive fishing areas [4], monitoring forest degradation
[18], monitoring soil contamination [15], agriculture [2], data mining on Satellite Image Time Series [34], or in Big Data ana-
lytics [3].

Although a raster time series can be conceptualised as an ordered collection of independent rasters, the definition of this
new model has several advantages. Some of these advantages are: enabling general visualisation and analysis techniques
independent of the application domain, facilitating consistency checking both in the spatial and temporal dimensions, or
improving space requirements in data storage (as we show in this work, it is possible to store a raster time series in less
space than the original collection of rasters).

Therefore, temporal evolution of raster data has been studied from different perspectives. For example, regarding the
modelling of the information, in [27], the classical Map Algebra is extended to deal with temporal rasters. The conceptual
solution extends the 2D matrix to a 3D cube, where each slice of the temporal dimension is the raster corresponding to
one time instant. Each operation of Map Algebra obtains from one or two input rasters a new one. The operations of 2D
Map Algebra are usually divided in three groups. Local operations obtain a raster where each output cell is computed as a
function (i.e. sum, subtract, etc.) of the input cell/s at the same location in the input raster/s. Focal operations calculate
the new value of each output cell as a function of the input cells in a neighboring area around its position. Finally, Zonal oper-
ations compute the value of each output cell as a function of the input cells within a specified zone of the first operand, such
zones are determined by zones defined in the second operand. The extension to raster time series simply considers that a cell
has, instead of only two Cartesian coordinates X,Y, the Cartesian coordinates plus a third dimension Z, which considers the
time. Then, in Local operations, the cells used to compute the value of an output cell are those in the same exact position in
the 3D space. In Focal and Zonal operations, the 2D zones used to compute the value of an output cell are now 3D zones. The
3D Map Algebra was later extended to a multidimensional map algebra (MMA) in [28].

Regarding data storage, new technologies to collect and generate geo-referenced data, such as ubiquitous mobile devices,
Internet of Things sensors, new remote sensing devices, and so on, are creating huge spatio-temporal data sources that are
difficult to store and analyse. For example, remote sensing images are acquired each day at a rate of several terabytes per day
[26,47,48], and the archived amount of raster data of this type is slowly approaching the zettabyte scale [37].

Hence, a main challenge has been the volume of information, which is influenced by two characteristics of the temporal
raster model: spatial and temporal resolution. Spatial resolution is defined by the tile size. The smaller the tile, the higher the
precision of the model, but also the larger the space consumption. In raster time series, the time distance between two con-
secutive rasters defines the temporal resolution. The higher the temporal resolution, the higher the space consumption. For
example, increasing the precision from days to hours requires 24 times more space. Since the new devices allow increasing
spatial (e.g. sub-meter) and temporal (hourly) resolutions [5], then the space consumption problem is getting worse.

Data compression has been used to deal with this challenge and reduce storage space and transmission time of raster data
[22,45]. Most real systems capable of managing raster data (including raster time series), like Rasdaman, Grass, or even R, as
well as raster representation formats such as NetCDF (standard format of the OGC2) and GeoTiff, rely on traditional compres-
sion methods [38] such as run length encoding, Lempel–Ziv-Welch, or Deflate to reduce storage space. However, the use of these
compression methods poses an important drawback to access a given datum or portion of the data, since the whole dataset, or a
large portion, must be decompressed.

In contrast, a new family of compression methods, called compact data structures [31], are able to obtain a given datum
or portion of the data decompressing only those data. Moreover, most compact data structures are also equipped with
indexes within the same compressed space, and thus access times over the compressed data are comparable or better than
the classical methods over uncompressed data. This is also due to a better usage of the memory hierarchy, since data can be
kept in main memory in compressed from, and thus bigger portions of them can be maintained there. Several compact data

structures haven been developed for rasters [6,24,35,23]. Among them, the k2raster [23,24] is usually the most competitive
data structure in the space–time trade-off. Although this approach does not reduce the space as much as pure compression
methods, it supports several important operations without decompressing the data, such as the retrieval of a specific zone or
filtering the tiles in a zone which values are restricted to a range. These operations provide the primitives to more complex
analyses such as detecting zones with high flood risk.

In this work, we present a compact data structure for raster time series using a completely novel approach with respect to
the classical methods. The usual way to store rasters and raster time series datasets is as simple N-dimensional arrays. In
addition, when compression is required, this is achieved by means of classical compression methods, such as Deflate, which,
as explained, require decompressing the entire dataset or, at least, in large parts. This is specially unfortunate for the typical
operations on rasters, such as obtaining a given window or the Zonal operations of Map Algebra, which require to decom-
press only certain zones to response the query. In contrast, instead of using the classical N-dimensional array setup, our

method uses the data arrangement of the k2raster, which actually uses a quadtree-like data arrangement.
The first advantage of using the quadtree data structure is that we have a spatial index over the data. In addition, since our

structure is based on the k2raster, we use all its techniques specially adapted to that data arrangement, which are based on
2 https://www.opengeospatial.org/standards/netcdf

301

https://www.opengeospatial.org/standards/netcdf

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
state-of-the-art compact data structures methods. This brings even more benefits; now it is possible to decompress a given
datum or a given region without decompressing anything else. Another advantage is that the spatial index is coupled with an
index over the values stored at cells, so it is able to filter cells by content as well.

However, by simply using a k2raster per time instant we do not take advantage of the temporal regularities that arise in
many real-world raster datasets since, in that case, each time instant would be compressed isolated. Therefore, we use the
strategy of snapshots and logs, which has been used in video and spatio-temporal indexes compression [42,7,14]. This allows
us to replace repeated portions of the data by pointers to a previous appearance, thus obtaining compression.

We experimentally evaluate our proposal in multiple real raster time series, and compare it with state-of-the-art solu-
tions. Our results confirm that our method is the fastest representation, or very close to it. Although a classical compression
method for raster time series improves our compression, it is much slower in all queries, between 10 and 10,000 times
slower. Other solutions based on compact data structures are not competitive with our proposal, which yields the best
space–time trade-off across all datasets.

The rest of the article is organised as follows. First, we provide some background and basic concepts in Section 2, and
revise most relevant related work in Section 3. Then, we formalise the problem and define the basic operations in Section 4.

Our first solution, named T � k2raster, is described in Section 5 and a variant of such method, named htkdosr, is described in
Section 6. In Section 7 we present our experimental results. Finally, in Section 8, we present our conclusions and outline
directions for future work.

2. Background

2.1. Storage methods for raster time series

A variety of formats and tools have been traditionally used for the storage of raster data. A single raster dataset (i.e. not a
time series) can be easily stored as a matrix of values in generic matrix-processing tools, or using a number of raster-based
image file formats. File formats such as GeoTIFF actually rely on classical image representations for the raster data, enhanced
with metadata to represent geographical attributes of the image.

The extension of traditional storage methods to the representation of raster time series has followed the same two tech-
niques used for single raster datasets: approaches based on generic representations of arrays or multi-dimensional matrices,
as well as classical representations of image sequences (i.e. video file formats), can be easily used to store a sequence of ras-
ter images.

In this section we will describe NetCDF, a widely-used standard for the representation of multi-dimensional data, and we
will also introduce video compression techniques and their potential applications to raster time series.

2.1.1. NetCDF
Network Common Data Form (NetCDF) [25] is a data format coupled with a set of software libraries that is able to rep-

resent different types of array-based data. Specifically, as an Open Geospatial Consortium Standard, it is widely used to rep-
resent and query raster data, and is supported by most GIS software tools that handle raster data.

Data are arranged in simple N-dimensional arrays. NetCDF can be configured to provide a compressed or uncompressed
representation of the underlying data. NetCDF compression is based on Deflate [12], and provides a space–time tradeoff: ten
compression levels are available, ranging from level 0 (no compression) to level 9 (maximum compression). When a com-
pressed representation is used, the data can be transparently accessed without performing an explicit decompression, that
is, the access procedure is the same whether the data are compressed or not. Additionally, NetCDF is designed to provide
efficient access to the data even when compression is applied, using a technique called chunking: data is compressed in
blocks, so when a specific region of the data has to be accessed only the relevant chunks of data need to be decompressed.

2.1.2. Video compression
If we consider a raster as an image, a raster time series can be assimilated to a sequence of evolving images. Therefore,

video formats can be considered related works facing compression of temporal rasters. Video formats store a sequence of
images, each of them called a frame, and try to exploit regularities in the images and similarity of consecutive images to
achieve compression.

Moving Picture Experts Group (MPEG) [14] developed several standards for video representation, all of them compressed.
They are based on three types of frames: intra frames or I frames are frames coded with a classical compression method for
still images, inter frames or P frames are represented only encoding the differences between that frame and its predecessor in
the video, and B frames are encoded based on past and future frames.

A video is compressed as a sequence of groups of pictures, each one starts with an I frame and the rest are B and P frames.
This basic idea of storing only some complete frames and encoding the rest by storing only the differences with others is

somehow used by our method. However, MPEG is a lossy method, whereas we are interested in scientific and engineering
data, where this type of compression is not feasible. In addition, MPEG standards are only designed for displaying purposes,
whereas in our tackled data, we need the ability to query the data, therefore video compression is out of the scope of this
work.
302

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
2.2. Compact data structures

Compact data structures provide space- and query-efficient representations of data. Unlike compression techniques, that
can store data in little space but usually require a decompression of the data to perform queries, compact data structures aim
at providing efficient query support over the compressed data, with no decompression being required. We refer to [31] for a
survey of the advances in the area in the last decades. In this section we will describe compact data structures to provide rank
and select operations on bitmaps, a well-studied problem that is a key building block for the related work described in Sec-
tion 3 and our own solutions.
2.2.1. Rank and select on bitmaps
Consider a bitmap B½0 . . .n� 1�, storing a sequence of n bits. We define the following useful operations:

� rankaðB; iÞ counts the occurrences of the bit a in B½0 . . . i�.
� selectaðB; iÞ locates the position for the ith occurrence of a in B.

A number of compact data structures have been proposed to efficiently support both of these operations. Theoretical solu-
tions exist [19] that can solve both rank and select in constant time while requiring only sublinear space (for a total of
nþ oðnÞ space, including the original bitmap).

Rank operations are conceptually simple and can be answered efficiently by storing sampled values of cumulative counts
at regular intervals, and sequentially counting values between samples. In order to achieve constant time, practical solutions
[17] refine this method by using multi-level sampling and precomputed tables to efficiently compute the rank value from the
stored samples. By doing this, we can provide very fast rank operations in practice with just 5% extra space in addition to the
original bitmap.

Select operations can still be answered in constant time, but solutions are more complex and slower in practice than
those for rank. Since most of the data structures used in this work rely solely on rank operations, we refer the reader to
the original articles [30,17] for additional details on specific implementations.
3. Related work

3.1. Quadtrees

Quadtress were originally designed to compress images [20,21], although since then, they have been used for different
purposes [39,41].

For our work, the most interesting variant is the region quadtree, which is a tree built from a recursive decomposition of
the space into four squares of size power of 2. From now on, we denote these squares as quadboxes; each quadbox creates a
node of the quadtree. In Fig. 1, we show the quadtree corresponding to a binary raster. The root of the tree corresponds to the
whole raster, which is divided into 4 quadboxes delimited by thick and solid lines. They are represented in the tree as the
four children of the root, whose label is 1-bit, if they contain at least one 1-bit, and 0-bit otherwise. The nodes labelled with a
0-bit are not divided anymore, while the rest are divided recursively following the same procedure, until reaching empty
quadboxes (i.e. covered by 0-bits) or reaching the individual cells of the raster.

We denote the four quadboxes children of the root as q1; q2; q3, and q4from left to right and from top to bottom (see the
children of the root in Fig. 1). The subsequent levels add one digit per level using the same procedure recursively, as shown in
the nodes labelled with a 1-bit3 in Fig. 1.

Since the original target of the quadtree was to compress images, several pointerless representations of the tree arose.
There are two approaches, the first one is to use a locational code that for each node of the tree gives its position in the space
[40], the second one is to use an implicit ordering [32].

The first example of implicit ordering is the Treecodes [32], where the quadtree is represented by a sequence of numbers,
each representing a node of the quadtree, following a breadth-first traversal.
3.1.1. k2tree

The k2tree is a compact data structure initially designed to store web graphs [9], although later it has also been used,
among other things, to store raster data [6].

Indeed, a k2tree is a region quadtree represented with an implicit ordering approach. The k2tree of the quadtree of Fig. 1

simply stores the nodes of the tree, following a breadth-first traversal, as a bit array. For practical purposes, the k2tree actu-
ally uses two separate bit arrays, L, which is formed by the bits corresponding to the last level of the tree, and T, which con-
tains the rest.
3 We only show the names of these nodes in order to avoid cluttering the figure.

303

Fig. 1. A binary raster and its corresponding quadtree.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
The k2tree is able to answer several types of queries efficiently, including retrieving the value of a single cell, row/column
queries, or general range reporting queries (i.e. report all the 1-bits in a range of rows/columns). All these algorithms are
similar, and involve emulating a top-down traversal of the conceptual tree. To allow a fast emulation of the top-down traver-
sal, T is equipped with additional data structures to perform rank operations on it.

Given a position p in T set to 1, the k2 children corresponding to that node start at position pchildren ¼ rank1ðT; pÞ � k2 of T. If
the children are leaves, that is, pchildren > jTj, the values of the cells are retrieved by accessing L½pchildren � jTj�. Thanks to the fast
rank operations on T, all the top-down traversals required to answer queries can be answered efficiently using only the bit-
maps T and L.

In addition, to obtain a more efficient data structure, instead of dividing each quadbox into four smaller quadboxes, the

k2tree can divide each quadbox into k� k quadboxes, where k is a parameter that can be set in each level.
3.1.2. k3tree

A k3tree can be obtained by simply adding a third dimension to the k2tree. Fig. 2 shows a 3-dimensional binary matrix, its

conceptual octree (a 3-dimensional quadtree), and its corresponding k3tree (the bit arrays T and L).

The k3-tree can be efficiently navigated using the same procedures of k2tree, but extended to three dimensions.
3.2. Compact representations of rasters

3.2.1. k2raster

The k2tree is only capable of storing binary matrices. In [23,24], it was presented the k2raster, a structure that is able to
compress and index matrices of integer numbers. The data structure includes not only a spatial index, like in the region

quadtree and k2tree, but also an index of the values at cells.

As the k2tree, the k2raster uses a modern compact data structure approach, which supports efficient queries like retrieving
the value of a specific cell or finding all cells containing values within a given range of values and/or in a given spatial range.

It divides the space using the same procedure as the k2tree, but now the nodes of the conceptual tree contain the max-
imum and minimum values of the corresponding quadbox. The subdivision ends when the minimum and maximum values
are equal or when the subdivision reaches the cells of the raster. The conceptual tree is compactly represented using binary
bit arrays for the topology of the tree and differential encoding for the integers.

More specifically, considering a matrix of size n� n, being n a power of k,4 the root node of the tree is filled with the min-

imum and maximum values of the matrix. If these values are different, the matrix is divided into k2 quadboxes of size n=k. Each
of these quadboxes produces a child of the root node, where its minimum and maximum values are also stored. In case that
these values are the same, the node/quadbox is not further subdivided, otherwise, the subdivision continues recursively until
finding an uniform quadbox, where all the values are the same, or until reaching the cells of the matrix.

Fig. 3 shows an example of the division process (top), the conceptual (centre-top), and the final representation (bottom).
The root node contains the minimum and maximum values of the original raster matrix, nodes at level 1 of the tree corre-
spond to quadboxes of size 2� 2, and the last level corresponds to the cells of the matrix. Observe that, for example, all val-
ues within the bottom-right 2� 2 quadbox are the same, therefore it is not further subdivided and thus its corresponding
node is a leaf.
4 Otherwise, the matrix is expanded to size equal to the next power of k, filling it with 0 values. This does not require significant extra space.

304

Fig. 2. A sequence of binary rasters and the corresponding k3tree.

Fig. 3. Example (using k ¼ 2) of integer raster matrix (top), conceptual tree of the k2raster, conceptual tree with differential encoding, and final
representation of the raster matrix.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
The compressed representation contains two main parts. First, the topology of the tree is represented with the same strat-

egy of a k2tree, the only difference is that the last level is not needed, that is, only the bit array T is used. Second, the max-
imum and minimum values at nodes are encoded as the difference with respect to the maximum/minimum value stored at
the parent node. These differences are stored in two sequences Lmin and Lmax, following again a breadth-first traversal of the
conceptual tree. Directly Addressable Codes (DACs) [8] are used to store Lmin and Lmax; this technique obtains compression
when storing small integers, and at the same time, provides direct access to any given position. At the last level of the tree,
which corresponds to the original cells, only the maximum value is stored. Fig. 3 shows the conceptual tree after the differ-
ential encoding (middle-right), and the final representation (bottom).

The k2raster also indexes the data, enabling fast queries on the raster matrix. It has a spatial index, using the tree struc-
ture, and an index of the values stored in the quadboxes, thanks to the minimum and maximum values stored in the nodes of
the tree. It is possible to simulate a top-down traversal over the conceptual tree by accessing the bitmap T and the Lmin and
Lmax arrays. Previous work [24] showed that some queries, such as finding cells having values within a specific range, are

solved faster in a k2raster than in a classical method for storing uncompressed rasters.
305

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
There is an enhancement to obtain further compression and speed called heuristic k2raster. This version selects some fre-
quent quadboxes of size bigger than 1� 1, which are kept in a separate dictionary. In this way, in the positions of the tree
where they would appear, a pointer to their entry in the dictionary is placed instead.
3.2.2. 3D2D-mapping

The 3D-2Dmapping [35] transforms a raster matrix into a binary matrix, which is stored in a k2tree to obtain compression
and fast queries directly on it.

The transformation from an integer matrix into a binary one is based on the Morton order [29], also known as the Z-order
curve. It is one of the most popular space-filling curves, which are functions that provide mapping from multidimensional
space to one-dimensional space. These curves have been used as multidimensional indexes, mainly for secondary memory
[41]. Morton order stands out as a computational efficient alternative with good preservation of the spatial locality (i.e. near
elements in the original space are mapped to close positions in the one-dimensional space). The Morton code of an element
can be computed in constant time using a bit interleaving of the binary codes of its indexes in each dimension.

In the left part of Fig. 4, we can see the Z-order curve over a raster matrix. In the right part, we can see the values of the
matrix following the Z-order, and over them, the corresponding Morton codes.

Given a matrixM,5 the mapping to a 2D structure begins by reading M in Z-order. This produces a vector V, which is used to
construct a binary matrix BM as follows: cell BM½x�½y� is set to 1-bit if V ½x� ¼ y, otherwise, a 0-bit is stored.

In Fig. 5, we show the resulting matrix BM using the raster matrix of Fig. 3. V contains the values of M in Z-order, just
below, BM has one row for each value, and one column for each Morton code. For each row, the 1-bits mark the cells in
M having that value. For example, the value 5 is present in the positions 10 and 11 of V, and thus, the first row of BM has
these positions set to 1-bit, and the rest store a 0-bit.

The k2tree requires to store matrices of size n� n, where n is a power of two. Therefore, if BM is of size r � c, it is extended
to size n� n with 0-bits in the created cells, being n the smallest power of 2 that is bigger than or equal to r and s. This
extended matrix is called BMn.

Fig. 5 shows the BM matrix corresponding to the raster used in Fig. 3. The matrix on the right is the extended version

BM16, which has 16 columns and rows. Finally, under the BM matrix, the k2tree representing BM16 is depicted. The k2tree
is able to compress big areas full of 0-bits and, as it can be seen in the figures, the bitmaps T and L are much smaller than
BM16, and even smaller than the original BM.

Now, using the algorithms to query the k2tree, it is possible to obtain the value of a cell or a window by using algorithms
that transform the original spatial regions into the corresponding maximal quadboxes and their associated Morton codes
[36,44].
3.3. Compact representation of raster time series

3.3.1. 4D3D-mapping
4D3D-mapping [11] is based on the 3D2D-mapping introduced in Section 3.2.2. The basic idea is to use that mapping to

obtain a binary matrix from each original raster representing a time instant. Those binary matrices are extended with 0-bits
to obtain a perfect 3D cube of size m�m�m, being m the smallest number power of 2 bigger than r; s, and s, where r � s is
the size of the BM matrices resulting from the 3D2D mapping of the original rasters, and s is the number of time instants.

Then, the resulting binary cube is stored using a k3tree, which provides compressed storage and fast queries directly on it.
More formally, given the original rasters M¼ hM1;M2; . . . ;Msi, the 3D2D mapping is applied to each Mi, thus obtaining

hBM1;BM2; . . . ;BMsi binary matrices. Recall that all these matrices have the same size r � c. Let BMm
i be:

� For 1 6 i 6 s;BMi extended with 0-bits until obtaining a matrix of size m�m.
� For sþ 1 6 i 6 m, a matrix of size m�m full of 0-bits.

Finally, the 4D3D-mapping is obtained by storing hBMm
1 ;BM

m
2 ; . . . ;BM

m
mi into a k3tree of size m�m�m, called BC (from bin-

ary cube).
Fig. 6(a) shows a raster time series of three time instants. Fig. 6(b) shows the 3D2D mapping (BMi) of each time instant. In

the part (c), it is shown the resulting cube after extending hBM1;BM2;BM3i to obtain hBM16
1 ;BM16

2 ; BM16
3 i (i.e. matrices of size

16� 16), and filling the cube with 13 additional matrices of size 16� 16 full of 0-bits, in this way we obtain a cuboid of size

16� 16� 16. Finally, the part 6(d) depicts the final representation of the raster time series, as the bitmaps T and L of a k3tree.
5 We consider it as a 3D structure since the first 2 dimensions are the (x,y) coordinates, and the third one is formed by the values stored at cells.

306

Fig. 4. Z-order curve (left) and the corresponding Morton codes (right).

Fig. 5. 3D2D-mapping of the matrix of Fig. 3.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
4. Basics

4.1. Problem definition

Let M be a raster matrix of size n�n that evolves along time with a timeline of size s time instants. We can define
M¼ hM1;M2; . . . ;Msi as the sequence of raster matrices Mi of size n�n for each time instant i 2 ½1; s�. We assume that each
cell of the rasters stores an integer value.

4.2. Query types

In this paper, we deal with the following query types:

� accessðr; c; tÞ retrieves the value of the cell ðr; cÞ at time instant t. E.g. temperature in 100 Serrano Street, Madrid6 at 2019–
08-21 11 am.
� windowQueryðr1; r2; c1; c2; t1; t2Þ retrieves all the cell values in a rectangular cuboid defined by its corners ðr1; c1Þ and
ðr2; c2Þ and a time interval ½t1; t2�. E.g. temperatures in Madrid from January to February.
� rangeQueryðr1; r2; c1; c2; t1; t2ÞrMinrMax retrieves all the cells inside a rectangular cuboid defined by the corners ðr1; c1Þ and
ðr2; c2Þ, and a time interval ½t1; t2�, whose values are within the range ½rMin; rMax�. E.g. zones (cells) in Madrid from January
to Febraury with moderate temperatures, i.e. between 10 and 25 degrees Celsius. Note that this is the most general query
type and some others (including the two above) can be described as particular cases. Another interesting particular case is
when t1 ¼ t2, which is usually referred in the literature of spatio-temporal databases as timestamp queries (in opposition
to time-interval queries, when t1 – t2).

4.3. Definitions: q-rows and q-cols

Given a matrix of size n, we divide it into k groups of consecutive rows, each one containing ðn=kÞ rows of the original
matrix, and k groups of columns, each one containing ðn=kÞ columns of the original matrix. We call those groups of rows
q-rows and the groups of columns q-cols.
6 For readability, in examples, we use place names, but query parameters are actually the rows and columns of the raster, either to define a point or a
window.

307

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Observe in Fig. 7(a) that, with k ¼ 2, a matrix of size 8� 8 has two q-rows (0,1), each one having 4 rows. In Fig. 7(b), we
can see the two q-cols.

In addition, given a q-row q� rowi (with n=k rows) and the original row r 2 f0; . . . ;n� 1g, we define
relative rowðq� rowi; rÞ as follows:

� If r 2 q� rowi, it returns the relative position of row r within q� rowi.
� If r is in a q-row prior to q� rowi, it returns a 0.
� If r is in a q-row after q� rowi, it returns ðn=kÞ � 1.

A second function relative colðq� coli; cÞ works analogously, but with q-cols.
In Fig. 7(c), relative rowð1;6Þ returns 2, whereas relative rowð0;5Þ returns 3 and relative rowð1;1Þ ¼ 0.

4.4. Naive solution

A straightforward baseline representation for the temporal raster matrix M can be obtained by simply representing each
raster matrix Mi in a compact way with any of the compact representations in Section 3.2.

From the queries described above, the first one, accessðr; c; tÞ, can be easily, and efficiently, solved by performing the
equivalent query on the representation of the t-th raster. The same approach holds for the timestamp version of the other
types of queries. Their general time-interval version involves querying several compact raster representations.

This kind of solution cannot take advantage of the similarities that are expected to exist between two consecutive rasters
in the sequence, namely the same cell in two consecutive timestamps usually contains similar values. Hence, in the following
two sections we describe a new approach that is designed precisely to take advantage of the temporal locality.

5. T � k2raster

In a nutshell, our proposal is based on the k2raster introduced in Section 3.2.1, and a combination of snapshots and logs,
which have been also used by space-efficient indexes in other domains such as trajectories of moving objects [7] or in image
compression [14]. The idea is to use sampling at regular intervals of size td. That is, we represent the full raster matrices at
some time instants, called the snapshots, and use a differential encoding for the remaining time instants, the logs.

More formally, raster matrices corresponding to sampled time instants, Ms; s ¼ 1þ i � td; i 2 ½0; ðs� 1Þ=td�, are represented

in full with a k2raster and we will refer to them as snapshots. The td � 1 raster matrices Mt ; t 2 ½sþ 1; sþ td � 1� that follow a

snapshot Ms are encoded using Ms as a reference. To do this, we create a modified k2rasterp to represent Mt . The k2rasterp is

similar to a k2raster but, at each step of the construction process, the values in the quadboxes are encoded as differences with
respect to the corresponding quadboxes in Ms, rather than as differences with respect to the parent node, as in a regular

k2raster.

In the k2rasterp, we also encode the maximum andminimum values at nodes of the conceptual tree ofMt as differences to
the corresponding values at the nodes of the snapshot. In addition, when a quadbox inMt is identical to the same quadbox in
Ms, or when all the values in both quadboxes differ only in a unique gap value a, we stop the recursive splitting process and
simply keep a reference to the corresponding quadbox of Ms and the gap a (when they are identical, we just set a ¼ 0). In
practice, keeping that reference is rather cheap as we only have to mark, in the conceptual tree ofMt , that the subtree rooted
at a given node p has the same structure as the one of the conceptual tree of Ms. For such purpose, in the final representation

of k2rasterp, we include a new bitmap eqB, aligned to the zeroes in T. That is, if we have T½i� ¼ 0 (node with no children), we
set eqB½rank0ðT; iÞ� 1and set Lmax½i� a. Also, if we have T½i� ¼ 0, we set eqB½rank0ðT; iÞ� 0and Lmax½i� b (where b is the
difference between the maximum values of both quadboxes, as the value of the time instant is stored as that difference) to

handle the case when the corresponding quadbox of Mt have all cells with the same value (as in a regular k2raster).

The overall construction process of the k2rasterp for the matrix Mt related to the snapshot Ms can be summarised as fol-

lows. Let Tt be a bitmap with the same functionality of the bitmap T of the normal k2raster; equally, we also have the arrays
Lmaxt and Lmint . Starting with the complete matrix Mt , we follow a recursive process. Let us consider qtj

the quadbox of Mt

processed in a call of the recursive process, and qsj
the related quadbox inMs. Let the corresponding maximum andminimum

values of qtj
be maxvalt and minvalt , those of qsj

be maxvals and minvals, and let ztj be the position in the bitmap Tt corre-

sponding to qtj
:

� If qtj
is a 1�1 quadbox, Lmaxt ½ztj � ðmaxvalt �maxvalsÞ, and the recursion stops. Since in k2rasterp, we have to deal both

with positive and negative values, we actually apply the folklore zig-zag7 encoding for the gaps ðmaxvalt �maxvalsÞ.
� If maxvalt and minvalt are equal, the recursive process stops. we set Tt ½ztj � 0; eqB½rank0ðTt ; ztj Þ� 0, and
Lmaxt ½ztj � ðmaxvalt �maxvalsÞ.
308

Fig. 6. 4D3D-mapping for the top left submatrices in Fig. 8.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
� Let us consider the case when the values of cells at the same position of qtj
and qsj

differ by the same gap a (also, if the

values are identical, hence a ¼ 0), more precisely, for each cell cjlk of qtj
; cjlk ¼ cslk þ a, being cslk the cell at the same position

in qsj
. Then, we set Tt ½ztj � 0; eqB½rank0ðTt ; ztj Þ� 1, and Lmaxt ½ztj � ðmaxvalt �maxvalsÞ.

� Otherwise, we split qtj
into k2 quadboxes and continue recursively. We set Tt ½ztj � 1; Lmaxt ½ztj � ðmaxvalt �maxvalsÞ,

and Lmint½rank1ðTt ; ztj Þ� ðminvalt �minvalsÞ.

Algorithm1 shows the pseudocode. The arrays Lmax½0 . . . logkðnÞ�; Lmin½0 . . . logkðnÞ�; Tt ½0 . . . logkðnÞ�, and eqB½0 . . . logkðnÞ� store
a stack in each entry. Each stack Tt ½i� (resp. Lmax½i�; Lmin½i�, and eqB½i�) keeps the portion of Tj (resp. Lmax; Lmin, and eqB) cor-
responding to level i of the tree. We assume that these arrays, as well as the original matricesMs andMt , are global variables.

The Algorithm is initially launched with buildðn;0;0;0Þ, being n the number of rows/columns of the matrix. When it fin-
ishes, to obtain Tt , we simply join Tt ½0�; Tt ½1�; . . . into a single bit array. The same applies to Lmax; Lmin, and eqB. Each call to
build processes one quadbox, initially the entire matrix, and recursion is applied to continue processing quadboxes of sub-
matrices. Each recursive call returns a record containing 5 values: the maximum value of the quadbox in the snapshot, the
maximum value of the quadbox in the current time instant, the corresponding minimum values in the snapshot and in the
time instant, and a difference value; this difference will be set to 1 in the general case, but if the snapshot and the time
instant have a similar distribution of values (i.e. if all cells have the same value, or all of them differ by the same amount,
between the current time and the snapshot), the fifth return value will be this difference.

lines 1–3 cover the simplest base case for recursion, when the processed quadbox is of size 1� 1, i.e., an individual cell. In
that case, the difference between the value of the processed cell at the time instant and the corresponding value at the snap-
shot (i.e.Mt ½r; c� �Ms½r; c�) is added to Lmaxt ½l� (the Lmax stack corresponding to the processed level l). The return record con-
tains Ms½r; c� and Mt½r; c� as both maximum and minimum values of the corresponding quadboxes, and the difference of both
as last element.
7 1 is represented as 1, �1 as 2, 2 as 3, �2 as 4, and so on.

309

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
lines 6 and 7 iterate over the q-rows and q-cols of the processed quadbox, in reverse order. Each iteration of the inner loop
corresponds to one of the child quadboxes of the processed quadbox. Therefore, line 8 issues one recursive call for each child
quadbox of size ðn=kÞ � ðn=kÞ. As explained above, each recursive call returns the maximum value of the child quadbox in the
snapshot (maxvalsij), the maximum value of the child quadbox in the time instant (maxvaltij), the minimum values in both
quadboxes (minvalsij and minvaltij), and the difference diffij that may be set to 1 or a value a.

The checks in lines 9–14 are also run for each child quadbox of the processed quadbox. lines 9–10 determine the value of
diff from the value of the child quadboxes: line 9 sets diff to the value returned by the first child, since initially diff ¼ �1. In
subsequent iterations, if another child returns a different value for diffij, we know that the distribution of values, or structure,
is not similar in the current quadbox, so diff is set to1. lines 11–14, similarly, compute the maximum and minimum values
of the current quadbox from those of its children.

If the check of line 15 is true, that means that all cells of the processed quadbox have the same value, so we have to
remove the entries in Lmax; Tt ; eqB corresponding to the child quadboxes. Recall that if a quadbox has the same value in
all cells, then the corresponding node of the tree becomes a leaf. Note that we know this after processing the children of
the processed quadbox, through a set of recursive calls (line 8). Those recursive calls to build have filled Lmax; Tt ; eqB of level
lþ 1 with the corresponding information of the children of the processed quadbox. Therefore, lines 16–20 need to remove
the values of Lmax; Tt; eqB corresponding to those children. The if of line 18 checks if l is the level before the last one of the
tree, since bitmaps Tt and eqB are not filled for the last level of the tree. Then, lines 21–22 mark the current quadbox as a leaf,
and line 23 stores the difference in maximums between the time instant and the snapshot in Lmax. lines 24–32 do the same
process, but when the processed node has the same structure in the snapshot and the time instant. This is signalled with a
value of diff different from1. The only difference with respect to the case shown above is that the epB gets a 1 in the position
of the processed quadbox, to signal the type of leaf.

If the flow reaches line 33, that means that the node corresponding to the processed quadbox is not a leaf, and thus its
corresponding position in Tt is set to 1 (line 34), and its positions in Lmax and Lmin are filled with the differences between
the maximum and minimum values, respectively, between the values of the time instant and the snapshot.

Finally, as explained above, the Algorithm must return the maximum and minimum values in the current time and in the
snapshot and the difference diff, that have been computed in lines 6–14.
310

Fig. 7. Definitions.

Fig. 8. Structures involved in the creation of a T � k2raster considering s ¼ 3.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Fig. 8 includes an example of the structures involved in the construction of a T � k2raster over a temporal raster of size
8�8, with s ¼ 3. The raster matrix corresponding to the first time instant becomes a snapshot that is represented exactly as

the k2raster in Fig. 3. The remaining raster matricesMsþ1 andMsþ2 are represented with two k2rasterp that are built takingMs

as a reference. We have highlighted some particular nodes in the differential conceptual trees corresponding to Msþ1 and
Msþ2.

(i) the node labelled h0 : 0i highlighted with vertical lines inMsþ1 indicates that the 4� 4 quadboxes q1 ofMs andMsþ1 are
identical. Therefore, node h0 : 0i has no children, and we set: T½1� 0; eqB½0� 1, and Lmax½1� 0. Note that
T; eqB; Lmax and Lmin start numbering at position 0, although we introduced blank spaces in eqB and Lmin to align
their bits to the corresponding positions in T.
8 Observe in Fig. 1 that the rows and columns are numbered starting at 0.

311

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
(ii) the node labelled h1 : 1i highlighted with horizontal lines in Msþ2 illustrates the case in which all the values of q13 are
increased by a 1. In this case, the values h6;6;5;5i of q13 in Ms become h7;7;6;6i in q13 of Msþ2. Again, the recursive
traversal stops at that node, and we set: T½7� 0; eqB½2� 1, and Lmax½7� 1 (values are increased by 1).

(iii) the node labelled h1 : 2i highlighted with horizontal lines in Msþ1. In this case, q22 in Msþ1 has the same maximum and
minimum values (set to 4), consequently, the recursive process stops again. In this case, we set T½6� 0; eqB½2� 0,
and Lmax½6� 1.

5.1. Querying

5.1.1. Obtaining a cell value in a time instant
As defined in Section 4.2, accessðr; c; tÞ retrieves the value of the cell at row r and column c 8 of the raster at time instant t.

For solving this query, there are two cases: if t is represented by a snapshot, then the Algorithm to obtain a cell in the regular

k2raster is used (see Algorithm 2, getCell, in [24]), otherwise, a synchronised top-down traversal of the trees representing such
time instant (Mt) and the closest previous snapshot (Ms, where s ¼ t � tmodtd) is required. Algorithm 2 is a wrapper that del-
egates in the appropriate procedure according to the case.

Algorithm 2: accessðr; c; tÞ returns the value of the cell ðr; cÞ of the raster t

if tðmodtdÞ ¼ 0 then /* snapshot */
returnMt .getCell_Normal_k2-rasterðr; cÞ// Algorithm 2 in [24]

else
return Mt .getCellðn; r; c;0;0; Lmaxs½0�; Lmaxt ½0�Þ// Algorithm 3

Focusing on the second case, the synchronised traversal inspects the two nodes at each level corresponding to the quad-
box that contains the queried cell. The main issue here is that the shape of the trees representing Mt and Ms will be different
in most cases. Therefore, it is possible for one of the traversals to reach a leaf earlier than the other. In that case, the traversal
that did not reach a leaf continues, but the process must remember the value reached in the leaf of the other tree, since that
is the value that will be added to or subtracted from the one found when the other traversal reaches a leaf. Indeed, three
cases are possible: (a) the processed quadbox of Mt is uniform, (b) the quadbox ofMs is uniform and, (c) the processed quad-
box after applying the differences with the snapshot has the same value in all cells.

Algorithm 3 describes this synchronised traversal. Variable zs is used to store the current position in the bitmap T of Ms

(i.e. Ts) during the downward traversal at any given step of the algorithm; similarly, zt stores the position in T of Mt (i.e. Tt).
When zs (resp. zt) has a �1 value, it means that the traversal reached a leaf and, in maxvals (resp. maxvalt) the Algorithm
keeps the maximum value stored at that leaf node. Note that, Ts; Tt ; Lmaxs; Lmaxt , and k are global variables. As shown in
312

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Algorithm 2, this auxiliary procedure is invoked with zs ¼ zt ¼ 0;maxvals ¼ Lmaxs½0� and maxvalt ¼ Lmaxt ½0�. We assume
that the cell at position ð0; 0Þ of a raster is the one in the upper-left corner.

In lines 1–8, the Algorithm obtains the child of the processed node that contains the queried cell, provided that in a pre-
vious step, the Algorithm did not reach a leaf node (signalled with zs or zt set to�1). Inmaxvals (resp.maxvalt), the Algorithm
stores the maximum value stored in that node.

If the condition in line 9 is true, the Algorithm has reached a leaf in both trees, and thus the values stored in maxvals and
maxvalt are added to obtain the final result. If the condition in line 11 is true, the Algorithm has reached a leaf in the snap-
shot. This is signalled by setting zs to �1 (it may already contain such value) and then a recursive call continues the process.

The condition in line 14 deals with the case of reaching a leaf in Mt . If the condition of line 15 is true, the Algorithm uses
bitmap eqB to check whether the quadbox of Mt has the same structure as that of the original Ms quadbox or the quadbox of
Mt has the same value in all cells. A 1-bit in eqB implies the latter case, and this is solved by setting zt to �1 and performing a
recursive call. A 0-bit implies that we can obtain the value in all the cells by adding the values stored inmaxvals andmaxvalt ,
since that value is encoded as a difference between the maximum values of both quadboxes, and thus the traversal ends.

The last case is when the nodes are internal, which simply requires a recursive call.
Fig. 9 illustrates how the Algorithm computes the value of cell (3,2) atMt ¼ Msþ1. The call access(3,2,Mt) launches getCell

(8,3,2,0,0,9,0) over Msþ1.
In lines 2–4, the Algorithm computes the bit position in Ts corresponding to the child of the root that contains the queried

cell. First, it computes zs ¼ ðrank1ðTs;0Þ � 1Þ � k2 þ 1 ¼ ð1� 1Þ � 22 þ 1 ¼ 1 and then zs ¼ 1þ bð3=4Þc � 2þ b2=4c ¼ 1, corre-
sponding to the quadbox, q1. Line 4 computes the maximum value in that quadbox,
maxvals ¼ maxvals � Lmaxs½1� ¼ 9� 0 ¼ 9.

lines 6–8 do the same with Tt : zt ¼ 1 and maxvals ¼ Lmaxt ½1� ¼ 0. In this case, the conditions in lines 9 and 11 are false,
but Tt ½1� ¼ 0, which indicates that the corresponding node is a leaf (see the node labelled with q1 in the tree corresponding to
Msþ1). Therefore the condition in line 14 returns true. Since zt – � 1, then the condition in line 15 is also true, and then the
Algorithm obtains the value in the eqB bitmap eq ¼ eqB½rank0ðTt ; ztÞ � 1� ¼ eqB½1� 1� ¼ 1, so zt is set to �1. This means that
the subtree corresponding to q1 of Msþ1 is equal to that of the snapshot, possibly adding (or subtracting) a value a. Next, we
reach line 19, which launches the call getCell(4,3,2,1,-1,9,0). This recursive call processes q1.

lines 2–4 obtain the position in Ts of the child of q1 that contains the queried cell:

zs ¼ ðrank1ðTs;1Þ � 1Þ � k2 þ 1 ¼ ð2� 1Þ � 4þ 1 ¼ 5 and zs ¼ 5þ bð3=2Þc � 2þ b2=2c ¼ 8is the position corresponding to the
quadbox q14. The maximum value in that quadbox is maxvals ¼ maxvals � Lmaxs½8� ¼ 9� 3 ¼ 6. Since, zt ¼ �1, lines 6–7
are not executed.

The condition in line 9 returns true since Ts½8� ¼ 0, as we also reached a leaf in the snapshot (see the node labelled q14 in
the tree corresponding toMs), and zt ¼ �1. Therefore, the Algorithm returnsmaxvals þ ZigZag DecodedðmaxvaltÞ ¼ 6þ 0 ¼ 6.

5.1.2. Obtaining a spatial range
Operation windowQueryðr1; r2; c1; c2; t1; t2Þ retrieves all the values in a region, and a time interval. For solving it, our Algo-

rithm has to query each raster in the time interval ½t1; t2�.
As in the previous operation, for each ti 2 ½t1; t2� there are two possible cases: (i) ti is a snapshot, represented as a k2raster,

and thus a getWindow operation for normal k2raster (see [Algorithm 3][24]) is issued; (ii) ti is a log and therefore a synchro-

nised traversal of the k2rasterp representing the time instant ti and the k2raster representing the closest previous snapshot is
required. A main change in this traversal, with respect to the one used in the previous operation, is that the traversal may
require following several branches of both trees, since the queried region can overlap quadboxes corresponding to several
nodes of the tree.

Algorithm 4: windowQueryðr1; r1; c2; c2; t1; t2Þ returns the value of the cuboid defined by the spatial corners ½r1; c1�,
½r2; c2� and time interval ½t1; t2�
for ti 2 ½t1 . . . t2� do
if tiðmodtdÞ ¼ 0 then /* snapshot *

R½ti� Mti .getWindow_Normal_k2-rasterðr1; r2; c1; c2ÞAlgorithm 3 in [24]
else

R½ti� Mti .getWindow(n; r1; r2; c1; c2;0;0; Lmaxs½0�; Lmaxt ½0�Þ Algorithm 4
returnR
313

Fig. 9. Obtaining the cell (3,2) of Msþ1.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Algorithm 4 traverses each of the time instants of the queried time interval and calls the appropriate Algorithm for each
time instant.

Next, we illustrate the steps of Algorithm 4 for obtaining the window ½0;3� � ½1;4� (see the box with very sparse and thick
dotted lines in the matrix Msþ1 of Fig. 10) in the time interval ½Msþ1;Msþ1�. Since our query covers only one time instant (the
raster Msþ1), the query is solved with only the call getwindow(8,0,1,3,4,0,0,9,0) on Msþ1, which is solved with Algorithm 5.
314

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Each call to getWindow processes one quadbox. The call getwindow(8,0,1,3,4,0,0,9,2) processes the complete matrixMsþ1.

From line 1 to line 13, the Algorithm cuts the query window into the parts that overlap each of the k2 quadboxes that com-
prise the processed quadbox. Then, as it can be seen in Fig. 10, our query region overlaps q1 and q2. Therefore, each of these
two pieces are processed separately.

lines 1–2 set the pointers of Ts and Tt to the position of the first child of the processed quadbox. In getwindow
(8,0,1,3,4,0,0,9,2), zs and zt are set to 1, which points to q1, the first child of the root. The variable i iterates over the q-
rows and j iterates over the q-cols that overlap the query window. In our example, i only takes the value of q-row 0 and j
iterates between the q-cols 0 and 1.

Each combination of q-row and q-col (i; j) designs a quadbox, for example, the combination i ¼ 0 and j ¼ 0 corresponds to
the quadbox of size 4� 4; q1. Then, the variables r10; r20; c10, and c20 are set to the relative rows and columns of the queried
windowwithin the processed q-row and q-col. In q1, the queried window covers from relative row r10 ¼ 0 to row r20 ¼ 1 of q-
row 0 and from relative column c10 ¼ 3 to c20 ¼ 3 of q-col 0. Observe in Fig. 10 that those are the rows and columns of q1 that
overlap the queried region (see in matrix Msþ1, the part of the queried region with vertical lines).

Line 9 moves an auxiliary pointer zs0 to point to the position in Ts corresponding to the processed child, in this case, zs0
continues pointing to position 1, since q1 is the first child of the root node. The maximum value of q1 is computed in line 10,
which is maxvals ¼ maxvals � Lmaxs½1� ¼ 9� 0 ¼ 9. lines 12–13 set zt0 ¼ 1 and maxvalt ¼ 0.

The conditions in lines 14 and 16 are false since Ts½1� ¼ 1, but that of line 19 is true since Tt ½1� ¼ 0. Given that eq ¼ 1, then
zt 0 is set to �1, indicating that we reached a leaf in the tree corresponding to Msþ1. Then, in line 24, a new call is issued
getwindow(4,0,1,3,3,1,-1,9,0). This call processes q1.

In the recursive call, line 1 sets zs ¼ ðrank1ðTs;1Þ � 1Þ � k2 þ 1 ¼ ð2� 1Þ � 4þ 1 ¼ 5. From line 3 to line 13, we find that the
only quadbox of size 2� 2 that overlaps the queried window is q12 (we highlighted it inMs, both the region in the matrix and
the corresponding node in the tree), signalled by q-row i ¼ 0 and q-col j ¼ 1. Line 9 sets zs0 to point to the bit in Ts corre-
sponding to that quadbox: zs0 ¼ zs þ ðk � iÞ þ j ¼ 6. Line 10 obtains maxvals ¼ maxvals � Lmaxs½6� ¼ 9� 2 ¼ 7.

The variables r10; r20; c10, and c20 are set to relative row r10 ¼ 0 to relative row r20 ¼ 1 and from relative column c10 ¼ 1 to
c20 ¼ 1, since those are the relative rows and columns within q12 that overlap the queried region.

At this point, since Ts½6� ¼ 0 (we reached a leaf) and we had already reached a leaf in Tt , the condition in line 14 is true,
and the call returns maxvals þ ZigZag DecodedðmaxvaltÞ ¼ 7þ 0 ¼ 7
ððr20 � r10Þ þ 1Þ � ððc20 � c10Þ þ 1Þ ¼ ðð1� 00Þ þ 1Þ � ðð1� 10Þ þ 1Þ ¼ 2 times, that is, two 7 values, corresponding to the frag-
ment of the query window that overlaps q12. In Fig. 10, in Msþ1, the portion of the queried region is highlighted with vertical
lines. This ends the call getwindow(4,0,1,3,3,1,-1,9,0).

Next, the flow returns to the first call getwindow(8,0,1,3,4,0,0,9,2). The for each in line 5 sets j to the q-col 1 (maintaining
the q-row i ¼ 0), this signals the quadbox q2. lines 9–10 adjust zs0 ¼ zs þ k � iþ j ¼ 1þ 2 � 0þ 1 ¼ 2, to point to q2 and sets
maxvals ¼ maxvals � Lmaxs½2� ¼ 9� 3 ¼ 6. lines 12–13 set zt 0 ¼ 2 and maxvalt ¼ Lmaxt ½2� ¼ 1.

Conditions in lines 14, 16, and 19 are false, thus the flow reaches line 26 and then the call getwindow(4,0,1,1,1,2,2,6,1) is
issued. This call processes q2, and thus, the remaining part of the query window. lines 1–2 set zs ¼ 9 and zt ¼ 5. lines 3 and 5
set i ¼ j ¼ 0, thus in lines 9–10 we set zs0 ¼ 9 and maxvals ¼ maxvals � Lmaxs½9� ¼ 6� 0 ¼ 6, and lines 12–13 set zt 0 ¼ 5 and
maxvalt ¼ Lmaxt ½5� ¼ 1.

Finally, since Ts½9� ¼ 0 and Tt ½5� ¼ 0, we reached a leaf in both trees, and then the condition in line 14 is true, thus return-
ing maxvals þ ZigZag DecodedðmaxvaltÞ ¼ 6þ 1 ¼ 7; ððr20 � r10Þ þ 1Þ � ððc20 � c10Þ þ 1Þ ¼ ðð1� 00Þ þ 1Þ � ðð0� 00Þ þ 1Þ ¼ 2
times, that is, two 7 values, corresponding to the slice of the queried region that overlaps q2, see in Fig. 10 the portion of
the queried region with vertical lines. This ends the query.

5.1.3. Obtaining cells with a range of values

Algorithm 6: rangeQueryðr1; r2; c1; c2; t1; t2; rMin; rMaxÞ returns the value of the cuboid defined by the spatial corners
½r1; c1�, ½r2; c2� and time interval ½t1; t2� whose values are within the range ½rMin; rMax�
for ti 2 ½t1 . . . t2� do

if tiðmodtdÞ ¼ 0 then /* snapshot */

R½ti� Mti .searchValuesInWindow_Normal_k2-rasterðr1; r2; c1; c2Þ Algorithm 2 in [24]
else
R½ti� Mti .sValWin(n; r1; r2; c1; c2;0;0; Lmaxs½0�; Lmaxt½0�; Lmins½0�; Lmint½0�; rMin; rMaxÞ Algorithm 3

return M
315

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
The most general query type, rangeQueryðr1; r2; c1; c2; t1; t2ÞrMinrMax, retrieves all the cells inside a rectangular cuboid
defined by ½r1; c1�, ½r2; c2�, and a time interval ½t1; t2�, whose values are within the range ½rMin; rMax�. The Algorithm is similar
to the previous one, being the only difference that, at each node, we must check whether the maximum andminimum values
in that quadbox are compatible with the queried range, discarding those that fall outside the range of values sought.

Algorithms 6 and 7 show the pseudocode of this query. As in previous queries, Algorithm 6 checks if the queried time
instant is represented with a snapshot or with a log, and then it delegates to the appropriate algorithm.

Algorithm 7 shows the Algorithm for a time instant represented with a log. In lines 1–2, it computes the maximum and
minimum values of the processed quadbox, in order to check, in line 3, if those values are completely within the queried
range. In that case, the part of the quadbox overlapping the queried region is reported as part of the solution without check-
ing the individual values of the cells. On the contrary, the if in line 6 checks whether the maximum and minimum values of
the processed quadbox are completely outside of the queried range, and in that case, the Algorithm can safely discard the
entire quadbox, again without accessing the individual cells of the quadbox.

If the flow reaches line 8, this means that some of the cells of the processed quadbox meet the queried range, while others
do not.

As in previous algorithms, zs ¼ �1 means that the traversal reached a leaf in the snapshot, and a zt ¼ �1 means the same
but for a time instant. lines 9 and 10 compute the positions in Ts and Tt of the first child of the processed quadbox in both the
snapshot and the log, provided that the Algorithm has not reached a leaf in a previous step.

lines 11–14 cause the i and j variables iterate over the q-rows (i) and q-cols (j) that overlap the queried region. Recall that
each combination of values of i and j corresponds to one of the child quadboxes of the processed node, which overlaps the
queried region.

Line 17 sets zs0 to point the position in Ts corresponding to the current processed child. Line 18 computes the maximum
value of that quadbox, and line 19 obtains the minimum value, provided that the child is not an individual cell. lines 20–22
do the same for the time instant.

If the check of line 24 is true, that means that the processed child is a leaf in the snapshot, and thus this is signalled setting
zs0 ¼ �1, and the minimum value is set to the maximum value, as this always holds in leaves.
316

Fig. 10. Obtaining the highlighted region of Msþ1.

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
The check in line 27 is true when the traversal of the time instant reached a leaf. This is again signalled setting zt 0 ¼ �1.
lines 28 and 29 compute the minimum value when the eqB bitmap signals a quadbox with all cells having the same value,
whereas lines 30–31 do the same in case eqB bitmap signals a quadbox with the same structure as the snapshot. Finally, if
the flow reaches line 33, a recursive call is issued for the processed child quadbox.
6. Heuristic T � k2raster

T � k2raster is well suited for raster series where rasters representing close time instants do not differ much. Therefore,

depending on the dataset, it may be more convenient to use the naive solution of using a normal k2raster per time instant.

Moreover, it could be the case that in a dataset some time instants are better compressed with a normal k2raster and others

are better compressed if we use a T � k2raster approach.

In this section, we present a heuristic version of T � k2raster that analyses the dataset and decides when it is appropriate

to compress the raster corresponding to a time instant with a normal k2raster and when as a difference with respect to the

last time instant represented with a normal k2raster, or even if it could be more convenient to transform the previous time
instant into a snapshot and then compress the current one as a log with respect to that new snapshot. Therefore there are not

snapshots at regular time intervals, any time instant represented with a normal k2raster is considered as a snapshot. There-
fore, this method requires a new bitmap sB that marks for each time instant which method was used to compress its data.
This bitmap is also used to find the reference snapshot that was used to encode a particular log.

Next we present the construction method. Let us consider that, at a given step of the process, we are compressing the
matrix Mt corresponding to the time instant t.

� If sB[t-1]=1, that is, if the previous time instant is represented with a snapshot. Then, the Algorithm simply compressesMt

using the two approaches: a normal k2raster and a k2rasterp using the compressed matrix of t � 1 as snapshot. Consid-

ering the compressed version corresponding to Mt using k2raster and that using k2rasterp, the Algorithm uses the version
that requires less space to represent Mt .
� If sB[t-1]=0, that is, if the previous time instant is not represented with a snapshot. Let s be the closest time instant to t
represented with a snapshot. The process chooses the smallest configuration among these three:
1. Use a normal snapshot.

2. Represent t using a k2rasterp with respect to the snapshot at s.

3. Change the representation of t � 1 to use a snapshot, and then represent t as k2rasterp with respect to the new snap-
shot at t � 1. In this case, to take a decision, we consider the space needed for storing the data of t � 1 and t.
317

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
The rest of the operations are the same as in the case of the normal T � k2raster except that to query a given time instant, the
Algorithm has to check whether t is represented with a snapshot or with a log. For this, the process simply accesses sB½t�. If it
is represented as a log, then it has to find the last snapshot before t, which is simply obtained as select1ðsB; rank1ðsB; tÞÞ.
7. Experiments

7.1. Experimental framework

In this section, we present experimental results to show the space requirements and processing time of our proposed data
structure. For processing time, we evaluate the three types of queries defined in Section 4.2.

We display results of two main variants of our proposal. The first one, T � k2raster, is our basic representation, placing

snapshots at regular time intervals. Recall that, for normal rasters, there are two variants of the k2raster. In Section 3.2.1,

we described the normal one, but we also mentioned an improvement termed heuristic k2raster. The T � k2raster uses the

normal k2raster.
The second variant, htkdosr, is the heuristic version described in Section 6 that is able to adaptively select whether to cre-

ate a snapshot or a log at each time instant. In addition, instead of using the normal k2raster, this variant is built using the

more efficient heuristic k2raster implementation.
We compare our proposals with three baseline implementations. The first one, NetCDF, is a classical method to store ras-

ter data with the possibility of using Deflate compression over the data. The NetCDF library9 (v.4.7.4) was used to implement

the query operations. The second baseline is a naive solution based on the heuristic k2raster10, denoted k2rasterh. This approach
stores a full snapshot for each time instant. The third baseline is the 4D3D-mapping described in Section 3.3.1, that maps 2-

dimensional space into a single dimension and uses a k3tree to store the complete temporal raster.
For NetCDF, ten different levels of compression can be configured, where Level 0 means no compression and Level 9

obtains the best compression but with higher cost of access time. In these experiments, we build a three-dimensional raster
with a level 2 of compression, which obtains a good trade-off between space and access time. For the 4D3D-mapping, we use
the implementation with default configuration parameters as provided by the authors. For all the implementations based on

the k2raster, including the baseline and our proposals, we use a hybrid configuration, which uses a value of k (k1 ¼ 4) for the

first 4 levels of the tree, and a different k (k2 ¼ 2) for the rest of levels. In k2rasterh and htkdosrwe use kLst ¼ 4, i.e. the heuris-

tic k2raster replaces the leaves of size 4� 4 by pointers to a dictionary. For T � k2raster we use td ¼ 6, that is, a snapshot is
built every 6 instants. These structures were implemented with the SDSL11 library [16] and C++.

All the experiments were run on a dedicated Intel� CoreTM i7-3820 CPU @ 3.60 GHz (4 cores) with cache sizes 32 KB (L1),
256 KB (L2), and 10 MB (L3), and 64 GB of RAM. The operating system was Debian 9.12 with kernel 4.9.0–9-amd64. The code
was compiled with gcc version 6.3.0 with -O3.

7.2. Datasets

We use real datasets obtained from the following sources:

� NWC collection. This collection contains temperatures from the data provided by the National Weather Service [33].
Among other products, this service provides hourly information of temperatures for Guam (Gurtma) and Hawaii (Hirtma).
As these data are just available for 48 h, we downloaded them during four months from September to December 2017.
These time series have a space resolution of 2:5 km and their temporal resolution is blocks of 3 h for Gurtma and hourly
for Hirtma. The temperatures have been converted to integers by truncating floating point figures.
� NLDAS-2 collection. This collection was generated by the North American Land Data Assimilation System (NLDAS). More
concretely, we used data from the NLDAS_FORA0125_H dataset [46] that contains information about the precipitation
and fluxes of North America from 1979 to present, e.g., surface temperature, humidity, and radiation. These time series
have a space resolution of 1=8 degrees and their temporal resolution is hourly. Data used in these experiments correspond
from January to December 2018 for four variables: fraction of total precipitation that is convective (CONVAPCP), precip-
itation hourly total [kg=m2] (APCP), potential evaporation hourly total [kg=m2] (PEVAP), and 2-m above ground Temper-
ature [K] (TMP).12 These variables have been converted to integers considering 2 decimal digits multiplying each value by
100.
9 https://www.unidata.ucar.edu/software/netcdf/
10 https://lbd.udc.es/research/k2-raster/
11 https://github.com/simongog/sdsl-lite

318

https://www.unidata.ucar.edu/software/netcdf/
https://lbd.udc.es/research/k2-raster/
https://github.com/simongog/sdsl-lite

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Table 1 shows more details about these datasets. We display the spatial dimensions and the number of time instants
included in each dataset, as well as the number of different values stored in the raster dataset. The last column displays
the change rate of each dataset, computed as the average proportion of cells that change their value between consecutive
time instants. Note that the selected datasets cover a variety of cases, since they have very different number of unique values
(from 18 in agurtma to almost 7,000 in TMP) and change rate (from 0.02 in CONVAPCP to 0.77 in TMP).
7.3. Space requirements

Table 2 shows the space requirements for datasets in the NWC (top) and NLDAS-2 (bottom) collections, for all the rep-
resentations. In the NWC collection, NetCDF and especially the 4D3D-mapping (4D3D) require significantly more space than

all the alternatives based on the k2raster. In the agurtma dataset, T � k2raster obtains the best compression, since it is able to
efficiently exploit temporal regularities; the reduced size of the dataset and the small number of unique values make it dif-

ficult for the htkdosr to take advantage of its enhanced compression. In the hirtma dataset, the baseline k2rasterh and our
proposal htkdosr obtain the best results. This result shows that the best strategy in this dataset is essentially to build a snap-
shot per time instant, since our adaptive encoding of logs is unable to improve on the baseline. However, the differences

among proposals based on the k2raster are small in both datasets.
The datasets in the NWC collection are relatively small, and contain a very small number of unique values, which leads to

some unexpected results that do not appear in larger datasets. Particularly, the poor compression of NetCDF is an outlier that

only occurs in these datasets. However, the comparison between 4D3D and the solutions based on k2raster is fair even in
smaller datasets, since all the implementations are based on similar compact data structures. Our results show that solutions

based on k2raster variants are more efficient in general, even if 4D3D is reasonably competitive in agurtma.
The last four rows in Table 2 display the results obtained for the NLDAS-2 collection. Note that results for 4D3D are omit-

ted for two of the datasets, because we were unable to build the data structure. The reason of these crashes is that the size of

the k3tree BC of the 4D3D drastically increases with the size of the matrices and the number of different values. The k3tree
construction requires large amounts of memory, and thus this easily produces a crash in the construction process. However,
observe that PEVAP crashed while APCP did not, having both the same size, although, APCP has much more different values.

The explanation is the distribution of the 1s in the BC matrix. The k3tree compresses well the cubes full of 0s as such regions
are represented with only one bit. However, as soon as a cube has at least one 1, then it has to be decomposed and then more
space is required. Therefore the 1s are more clustered in the case of APCP than in the case of PEVAP, where the 1s are scat-

tered, and hence, the memory consumption of the construction process of the k3tree BC causes the crash.
In this collection, as expected, NetCDF obtains the best compression in all cases. Among compact data structures, we find

different results depending on the dataset. In APCP, that has a very low change rate, 4D3D obtains the best compression, but
our proposal htkdosr is relatively close. In the remaining datasets, htkdosr is the smallest representation: it is 40% smaller

than the baseline k2rasterh in CONVAPCP, 65% smaller in PEVAP and less than 1% smaller in TMP. The similar compression
in TMP is due to the high change rate in this dataset: in rapidly-evolving time series, the htkdosr will contain only snapshots

and behave as the k2rasterh. Therefore, this result shows the effectiveness of the proposed heuristic for the selection of snap-
shots and logs, that is able to improve compression even in datasets with a high change rate. On the other hand, the regular

sampling used in the T � k2raster leads to less consistent results: it requires more space than htkdosr, and even than the

k2rasterh baseline, in TMP and PEVAP, but it is still competitive in CONVAPCP and APCP.
These experiments demonstrate that our solutions can deal with datasets of different nature, by maintaining good com-

pression ratios. Additionally, our results show the consistency achieved by htkdosr, that is either the smallest solution based
on compact data structures or very close to it. The number of unique values in the dataset has some effect on compression,
with datasets with a higher number of unique values being larger in htkdosr, but this effect is limited thanks to the ability to

deferentially encode values in the k2raster; for instance, the k2rasterh and T � k2raster representations are larger for APCP
than for PEVAP, even though the latter has 10 times more unique values. The change rate of the dataset seems to have more
impact on space results, since the compression results are significantly worse in TMP, that has much higher change rate.
However, this is also not consistent in all the datasets, as the representations are able to take advantage of many regularities
in the data.

The comparison of our proposals with 4D3D, albeit an incomplete one due to the inability to build 4D3D for all the data-
sets, suggests that htkdosr is more compact, or at least achieves comparable compression, in most real-world datasets. 4D3D
improves our results only in APCP, and by a relatively small margin. Finally, in agurtma;hirtma and TMP;htkdosr is unable to

significantly improve the compression of the k2rasterh baseline, since it is forced to use snapshots at most time instants. In
the following sections we will complement this analysis by focusing on query times, to obtain the space–time trade-off pro-
vided by all the implementations.
12 We present these datasets as a representative subset of this collection. We performed the same experimental evaluation on the remaining datasets of the
collection, obtaining similar comparison results to those included in the paper.

319

Table 1
Details of NWC (top) and NLDAS-2 (bottom) collections.

Name #rows #cols #times Values Change

min max #unique rate

gurtma 193 193 936 19 36 18 0.21
hirtma 225 321 2806 �2 37 40 0.24
CONVAPCP 464 224 2,665 �1 100 101 0.02
APCP 464 224 2,665 �1 10,258 3,267 0.11
PEVAP 464 224 2,665 �79 185 262 0.20
TMP 464 224 2,665 23,421 31,223 6,889 0.77

Table 2
Space requirements (in Megabytes) over NWC (top) and NLDAS-2 (bottom) collections.

Name NetCDF 4D3D k2rasterh T � k2raster htkdosr

gurtma 3,1 4,3 2,4 2,0 2,4
hirtma 34 61 24 26 24
CONVAPCP 15 50 50 37 30
APCP 42 85 127 112 95
PEVAP 63 – 192 233 65
TMP 246 – 423 471 421

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
7.4. Query times

In this section we present the results of the experiments for the queries described in Section 4.2. First, we analyse access
queries, that ask for a cell in a single raster of the time series, and therefore provide a rough estimation of the cost of accessing
random elements in the representation. Then, we study windowQuery that involves cells in a spatial window and a time interval,
and finally rangeQuery that also queries for a range of valid values. These last two queries are expected to be the most usual real-
world queries and provide a more realistic estimation of the actual space–time trade-off achieved by each implementation.

7.4.1. Times of access
Fig. 11 shows the space/time trade-off for the access operation, that obtains the value of a single cell at a specific time

instant. In these experiments, we build a set of 100,000 random queries for each dataset. We run the full query set for each
dataset 10 times and average the results in microseconds per query. Even though the most compact solution may vary
among datasets, query times follow the same pattern in all our tests. NetCDF is very inefficient, roughly 1,000 times slower
than the other techniques; this is expected, since it is not designed for efficient direct access to individual positions. 4D3D is
also very inefficient in the first four datasets, as it is 4–10 times slower than htkdosr and still requires more space in most of
them. Hence, even if NetCDF and 4D3D are not always dominated by other solutions, they are clearly ill-suited for this type of
queries.

Focusing on the solutions based on the k2raster, query times are very similar in all the datasets. In the smaller datasets of
the NWC collection (Fig. 11a and 11b) query times are well below 1 ls/query, and in the remaining datasets they average

around 1 ls/query. Particularly, both T � k2raster and htkdosr obtain query times similar to those of k2rasterh in all the data-
sets. This shows that the overhead of our getCell Algorithm is small in general when compared with the equivalent operation

in a single heuristic k2raster. In CONVAPCP; htkdosr is even 20% faster than k2rasterh. Several factors contribute to explain this
improvement. First, note that the getCell algorithm, in some specific cases, is able to avoid the full traversal of the snapshot.
Additionally, the traversal of logs should be much faster than the traversal of snapshots, since they are significantly smaller
on average. Finally, in htkdosr the snapshots will be more frequently accessed, and logs are much smaller; this improves the
locality of access, significantly reducing the number of cache misses, at least in the lower levels of the cache.

For datasets agurtma;hirtma and TMP, as explained in the previous section, the htkdosr is forced to use snapshots for most

time instants, and obtains compression very similar to k2rasterh. This also means that the direct comparison between htkdosr

and k2rasterh in these datasets provides a rough estimation of the overhead in query times required by htkdosr, where we
need to query a bitmap to determine whether the current time instant is a log or a snapshot, and to locate the previous snap-
shot if necessary. This additional cost is shown to be negligible in practice in our experiments, considering that access oper-

ations require the simplest traversal of the k2raster structures. Therefore, in the following sections, we will not further
discuss the effect of this additional bitmap, since the cost of the operations will be completely dominated by the traversal

of the k2raster structures.

7.4.2. Times of windowQuery
Next, we analyse the performance of the more complex windowQuery operation, that recovers the values of all cells in a

cuboid defined by a spatial window and a time interval. We run a set of 100 queries per dataset, selecting the corners of the
320

Fig. 11. Time results for access over NWC (top) and NLDAS-2 collections. We show the average time per query (in microseconds).

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
spatial window and the limits of the time interval at random, in order to cover different window sizes and time interval
lengths.

Fig. 12 displays the results obtained for all the datasets. In the agurtma and hirtma datasets, NetCDF and 4D3D are 5–10
times slower than any of the other alternatives. In the remaining datasets, 4D3D is still much slower than the other imple-

mentations, but NetCDF and k2rasterh are much more competitive in windowQuery than in the simpler access operation.
NetCDF is still slower than htkdosr in all the datasets, ranging from 10% extra time to being roughly two times slower. On

the other hand, k2rasterh is faster than our solutions in most of the datasets, since it has the simplest access operations.
Unlike the access query, now the rags of the htkdosr no longer exceed the costs in most cases, as the access to a single tree

structure per time instant of k2rasterh is the most decisive factor. The only exception is agurtma, where our implementation
is still slightly faster.

Focusing on our proposals, T � k2raster is much slower than htkdosr in general. This difference in performance is relatively

small in the datasets of the NWC collection, but much more significant in the NLDAS-2 collection, where T � k2raster is 3–5
times slower depending on the dataset. Two factors contribute to this difference: the first one is the adaptive creation of
snapshots in htkdosr, that yields smaller space and more balanced logs, in which a higher or lower number of snapshots
321

Fig. 12. Time results for windowQuery over NWC (top) and NLDAS-2 collections. We show the average time per query (in milliseconds).

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
may be used if necessary; the second main factor is the difference in the underlying data structure used in each represen-

tation: htkdosr is built using heuristic k2raster, that is usually smaller but also faster, whereas T � k2raster uses the basic

k2raster.

Notice that both of our techniques need to perform a synchronised traversal of a k2raster and a k2rasterp for all time
instants that are not stored as snapshots. This synchronised traversal is expected to be slower than a single-structure traver-

sal. However, our results show that, in practice, htkdosr obtains query times very close to those of k2rasterh. These results
show, firstly, that the cost of synchronised traversal is not too high, and more importantly, that the adaptive selection of
snapshots provides enough compensation for the htkdosr to be competitive in query times even in complex operations, such
as windowQuery, where the naive baseline could be expected to be significantly faster.
7.4.3. Times of rangeQuery
In this section, we analyse the performance of all the methods for the rangeQuery operation, which adds an additional

constraint on the range of values to the previous windowQuery. Therefore, this query retrieves cells within the cuboid deter-
mined by given spatial and temporal bounds, and only returns the cells in the cuboid whose values fall in a predetermined
range of values. We run sets of 100 queries for each dataset, selecting the corners of the spatial window, limits of the time
interval and limits of the range of values uniformly at random.
322

Fig. 13. Time results for rangeQuery over NWC (top) and NLDAS-2 collections. We show the average time per query (in milliseconds).

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
Fig. 13 displays the space/time trade-off of all implementations. The baselines NetCDF and 4D3D are very inefficient in

general, the first being 1.5–40 times slower than htkdosr and k2rasterh depending on the dataset, and the latter being 2–
10 times slower in the datasets where it could be built. This confirms the results of previous sections regarding 4D3D, that
is unable to compete in compression or query performance with our solutions. On the other hand, the difference in perfor-
mance with NetCDF is expected in this query, since our solutions can easily handle filters on ranges of values, whereas
NetCDF is forced to retrieve and sequentially process large portions of the raster to identify regions of interest. The effect
of this additional filter on ranges of values can also be confirmed by comparing the query times obtained by all the imple-
mentations in Fig. 13 (rangeQuery operation) with those of Fig. 12 (windowQuery operation): average query times in NetCDF

are similar for both operations, whereas the k2rasterh baseline and our proposals become up to 5–6 times faster in the
rangeQuery thanks to being able to efficiently filter out portions of the datasets based on their value.

As in previous experiments, our improved proposal, htkdosr, obtains slightly slower query times than the k2rasterh base-

line on average, but is very competitive and much faster than T � k2raster. Even though htkdosr is slightly slower than the

k2rasterh baseline, this difference in query times is below 10% in the worst case, whereas the difference in compression is
very relevant in most datasets. The ranking of these three implementations is similar to the one obtained in the previous
323

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
section, for the windowQuery operation, but the differences between them are reduced due to the ability of the three imple-
mentations to filter out regions of the spatial window that do not match the expected range of values. Note also that our

basic proposal, T � k2raster, is very inefficient in the TMP and PEVAP datasets, where it is larger and slower than the NetCDF
baseline. Again, these results are consistent with those obtained in the previous section for the windowQuery operation, and

displayed in Fig. 12: the basic T � k2raster, taking snapshots at regular intervals, is not able to improve compression in all
cases when compared to the baselines, and the htkdosr can obtain a 3x–5x speedup thanks to its adaptive selection of snap-

shots combined with the use of the heuristic k2raster.
The overall results of our experimental evaluation show that htkdosr obtains the most consistent results and a reasonable

space–time trade-off in all the test datasets. NetCDF is 40–50% smaller in some datasets, but much slower on average. Alter-
natives like 4D3D also seem to slightly improve our compression in some datasets, but at the cost of higher query times.

Finally, our experiments show that htkdosr is able to reduce the space of the naive k2rasterh baseline by up to 60% depending
on the dataset. Moreover, the overhead in query times required by the additional data structure is small enough to be prac-
tical even in datasets with high change rate where our proposal is forced to use mostly snapshots.

8. Conclusions and Future Work

We have presented a new solution for the efficient representation of raster time series. Our solution extends existing
compact data structures for the representation of raster data, following a strategy of snapshots and logs to take advantage
of temporal regularities that arise in many real-world raster datasets. We presented two variants of our solution, a basic

implementation T � k2raster that uses regular-interval sampling, and an improved variant htkdosr that is built on an

improved heuristic k2raster and uses a heuristic to improve compression, by sampling at irregular intervals that are adap-
tively selected to improve compression.

We experimentally evaluate our proposal in multiple real raster time series, and compare it with state-of-the-art solu-
tions to show its performance. Our results show that htkdosr achieves very good compression, outperforming other tech-
niques based on compact data structures. Our tests include very selective cell-retrieval queries and different window
selection queries, and our results confirm that htkdosr is in all cases the fastest representation, or very close to it. The only
representation that improves our compression in general is NetCDF, but it is also much slower in all queries: up to 10,000
times slower in access queries, up to 30 times slower in rangeQuery queries and up to 10 times slower in windowQuery
queries, that are the most favorable for their compression scheme. Other solutions based on compact data structures are
not competitive with our proposal, which yields the best space–time trade-off across all datasets.

As future work, we plan to explore potential improvements of the heuristic used for the selection of snapshots, in order to
provide additional guarantees on compression without significantly affecting construction time. It may also be interesting to
study metrics of the regularities existing in raster time series that allow us to better understand the differences in compres-
sion ratio between datasets. The Max-Model for 2-dimensional images recently introduced by [1] may be useful for such pur-
pose, but it should be extended to also capture temporal locality, in addition to spatial locality.

CRediT authorship contribution statement

Fernando Silva-Coira: Conceptualization, Software, Resources, Investigation, Writing - original draft. José R. Paramá:
Conceptualization, Writing - original draft, Writing - review & editing. Guillermo Bernardo: Conceptualization, Software,
Writing - original draft, Writing - review & editing. Diego Seco: Conceptualization, Resources, Writing - original draft, Writ-
ing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

The data used in this study were acquired as part of the mission of NASA’s Earth Science Division and archived and dis-
tributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Funding: CITIC, as Research Cen-
ter accredited by Galician University System, is funded by ‘‘Consellería de Cultura, Educación e Universidade from Xunta de
Galicia”, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020, and the remaining 20%
by ‘‘Secretaría Xeral de Universidades” (Grant ED431G 2019/01). This work was also supported by Xunta de Galicia/FEDER-
UE under Grants [IG240.2020.1.185; IN852A 2018/14]; Ministerio de Ciencia, Innovación y Universidades under Grants
[TIN2016-78011-C4-1-R; RTC-2017-5908-7; PID2019- 105221RB-C41/AEI/10.13039/501100011033]; ANID - Millennium
Science Initiative Program - Code ICN17_002; Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED)
[Grant No. 519RT0579].
324

F. Silva-Coira, José R. Paramá, G. de Bernardo et al. Information Sciences 566 (2021) 300–325
References

[1] A. Abdollahi, N.D.B. Bruce, S. Kamali, R. Karim, Lossless image compression using list update algorithms, in: International Symposium on String
Processing and Information Retrieval (SPIRE), 2019, pp. 16–34.

[2] S. Araya, B. Ostendorf, G. Lyle, M. Lewis, Cropphenology: An r package for extracting crop phenology from time series remotely sensed vegetation index
imagery, Ecol. Inform. 46 (2018) 45–56.

[3] P. Baumann, P. Mazzetti, J. Ungar, R. Barbera, D. Barboni, A. Beccati, L. Bigagli, E. Boldrini, R. Bruno, A. Calanducci, et al, Big data analytics for earth
sciences: the earthserver approach, Int. J. Digital Earth 9 (2016) 3–29.

[4] E.A. Becker, K.A. Forney, P.C. Fiedler, J. Barlow, S.J. Chivers, C.A. Edwards, A.M. Moore, J.V. Redfern, Moving towards dynamic ocean management: How
well do modeled ocean products predict species distributions?, Remote Sensing 8 (2016) 149

[5] J.A. Benediktsson, J. Chanussot, W.M. Moon, et al, Advances in very-high-resolution remote sensing, Proc. IEEE 101 (2013) 566–569.
[6] N.R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, G. Navarro, Óscar Pedreira, Extending general compact querieable representations to gis applications,

Inf. Sci. 506 (2020) 196–216.
[7] N.R. Brisaboa, A. Gomez Brandon, G. Navarro, J.R. Paramá, GraCT: A Grammar-based Compressed Index for Trajectory Data, Inf. Sci. 483 (2019) 106–

135.
[8] N.R. Brisaboa, S. Ladra, G. Navarro, Dacs: Bringing direct access to variable-length codes, Inf. Process. Manage. (2013) 392–404.
[9] N.R. Brisaboa, S. Ladra, G. Navarro, Compact representation of web graphs with extended functionality, Inform. Syst. (2014) 152–174.
[10] A. Cerdeira-Pena, G. de Bernardo, A. Fariña, J.R. Paramá, F. Silva-Coira, Towards a compact representation of temporal rasters, in: International

Symposium on String Processing and Information Retrieval (SPIRE), Springer, 2018, pp. 117–130.
[11] N. Cruces, D. Seco, G. Guitérrez, A compact representation of raster time series, in, in: Data Compression Conference (DCC), IEEE, 2019, pp. 103–111.
[12] L.P. Deutsch, RFC 1951: DEFLATE compressed data format specification version 1.3, 1996..
[13] P.N. Edwards, A vast machine: Computer models, climate data, and the politics of global warming, Mit Press, 2010.
[14] D.L. Gall, MPEG: A video compression standard for multimedia applications, Commun. ACM 34 (1991) 47–58.
[15] A. Gholizadeh, M. Saberioon, E. Ben-Dor, L. Boruvka, Monitoring of selected soil contaminants using proximal and remote sensing techniques:

Background, state-of-the-art and future perspectives, Critical Reviews Environ. Sci. Technol. 48 (2018) 243–278.
[16] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: Plug and play with succinct data structures, in: International Symposium on Experimental

Algorithms (SEA), 2014, pp. 326–337.
[17] R. González, S. Grabowski, V. Mäkinen, G. Navarro, Practical implementation of rank and select queries, in: Poster Proc. of 4th Workshop on Efficient

and Experimental Algorithms (WEA) Greece, 2005, pp. 27–38.
[18] M. Hirschmugl, M. Steinegger, H. Gallaun, M. Schardt, Mapping forest degradation due to selective logging by means of time series analysis: Case

studies in central africa, Remote Sensing 6 (2014) 756–775.
[19] G. Jacobson, Space-efficient static trees and graphs, in: 30th Annual Symposium on Foundations of Computer Science (FOCS), 1989, pp. 549–554.
[20] A. Klinger, Pattern and search statistics, Academic Press, 1971.
[21] A. Klinger, C.R. Dyer, Experiments on picture representation using regular decomposition, Comput. Graph. Image Process. 5 (1976) 68–105.
[22] W. Kou, Digital Image Compression: Algorithms and Standards, Kluwer Pub, 1995.
[23] S. Ladra, J.R. Paramá, F. Silva Coira, Compact and queryable representation of raster datasets, in: Proc. 28th SSDBM, 2016..
[24] S. Ladra, J.R. Paramá, F. Silva-Coira, Scalable and queryable compressed storage structure for raster data, Inform. Syst. 72 (2017) 179–204.
[25] C. Lee, M. Yang, R. Aydt, NetCDF-4 Performance Report Technical Report, HDF Group, 2008.
[26] Y. Li, T.R. Bretschneider, Semantic-Sensitive Satellite Image Retrieval, IEEE Trans. Geosci. Remote Sens. 45 (2007) 853–860.
[27] J. Mennis, R. Viger, C.D. Tomlin, Cubic map algebra functions for spatio-temporal analysis, Cartography Geographic Inform. Sci. 32 (2005) 17–32.
[28] J.L. Mennis, Multidimensional map algebra: Design and implementation of a spatio-temporal GIS processing language, Trans. GIS 14 (2010) 1–21.
[29] G.M. Morton, A Computer-oriented Geodetic Data Base and a New Technique in File Sequencing Technical Report, IBM Ltd., Ottawa, Canada, 1966.
[30] J.I. Munro, Tables, Proceedings of Foundations of Software Technology and Theoretical Computer, Science (1996) 37–42.
[31] G. Navarro, Compact Data Structures: A Practical Approach, Cambridge University Press, 2016.
[32] M.a. Oliver, Operations on Quadtree Encoded Images, Comput. J. 26 (1983) 83–91, https://doi.org/10.1093/comjnl/26.1.83.
[33] N.C. Operations, Real-time mesoscale analysis (RTMA) products, 2017..
[34] F. Petitjean, P. Gançarski, F. Masseglia, G. Forestier, Analysing Satellite Image Time Series by Means of Pattern Mining, Springer, Berlin Heidelberg,

2010, pp. 45–52.
[35] A. Pinto, D. Seco, G. Gutiérrez, Improved queryable representations of rasters, in: Data Compression Conference (DCC), 2017, pp. 320–329.
[36] G. Proietti, An optimal Algorithm for decomposing a window into maximal quadtree blocks, Acta Informatica 36 (1999) 257–266.
[37] M.G. Quartulli, I. Olaizola, A review of EO image information mining. ISPRS J. Photogramm. Remote Sens 75, 11–28, 2013..
[38] D. Salomon, Data Compression: The Complete Reference, Springer, 2006.
[39] H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Comput. Surv. 16 (1984) 187–260.
[40] H. Samet, Data structures for quadtree approximation and compression, Commun. ACM 28 (1985) 973–993.
[41] H. Samet, Foundations of multidimensional and metric data structures, Morgan Kaufmann, 2006.
[42] Y. Tao, D. Papadias, MV3R-tree: A spatio-temporal access method for timestamp and interval queries, in: Proc. 27th International Conference on Very

Large Data Bases (VLDB), 2001, pp. 431–440.
[43] C. Tomlin, J.K. Berry, Mathematical structure for cartographic modeling in environmental analysis, in, in: Proceedings of the American Congress on

Surveying and Mapping annual meeting, 1979.
[44] Y.H. Tsai, K.L. Chung, W.Y. Chen, A strip-splitting-based optimal Algorithm for decomposing a query window into maximal quadtree blocks, IEEE Trans.

Knowl. Data Eng. 16 (2004) 519–523.
[45] G.K. Wallace, The jpeg still picture compression standard, Commun. ACM 34 (1991) 30–44.
[46] Y. Xia, K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei, J. Meng, et al., (accessed June 17, 2020). Nldas primary fosrcing data

l4 hourly 0.125� 0.125 degree v002. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, Rep. NASA/GSFC/
HSL https://doi.org/10.1029/2011JD016048, 2009..

[47] C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M. Bambacus, D. Fay, Spatial cloud computing: how can the geospatial sciences use and
help shape cloud computing?, Int. J. Digital Earth 4 (2011) 305–329.

[48] C. Yang, Q. Huang, Z. Li, K. Liu, F. Hu, Big data and cloud computing: innovation opportunities and challenges, Int. J. Digital Earth 10 (2017) 13–53.
325

http://refhub.elsevier.com/S0020-0255(21)00278-4/h0005
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0005
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0005
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0010
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0010
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0015
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0015
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0020
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0020
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0025
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0030
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0030
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0035
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0035
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0040
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0045
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0050
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0050
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0050
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0055
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0055
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0065
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0065
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0070
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0075
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0075
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0080
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0080
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0080
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0085
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0085
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0085
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0090
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0090
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0095
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0095
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0100
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0100
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0105
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0110
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0110
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0120
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0125
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0125
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0130
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0135
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0140
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0145
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0145
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0150
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0155
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0155
https://doi.org/10.1093/comjnl/26.1.83
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0170
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0170
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0170
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0175
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0175
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0180
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0190
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0190
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0195
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0200
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0205
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0205
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0210
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0210
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0210
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0215
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0215
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0215
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0220
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0220
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0225
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0235
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0235
http://refhub.elsevier.com/S0020-0255(21)00278-4/h0240

	Space-efficient representations of raster time series
	1 Introduction
	2 Background
	2.1 Storage methods for raster time series
	2.1.1 NetCDF
	2.1.2 Video compression

	2.2 Compact data structures
	2.2.1 Rank and select on bitmaps

	3 Related work
	3.1 Quadtrees
	3.1.1 [$] {k}^{2}tree[$]
	3.1.2 [$] {k}^{3}tree[$]

	3.2 Compact representations of rasters
	3.2.1 [$] {k}^{2}raster[$]
	3.2.2 3D2D-mapping

	3.3 Compact representation of raster time series
	3.3.1 4D3D-mapping

	4 Basics
	4.1 Problem definition
	4.2 Query types
	4.3 Definitions: q-rows and q-cols
	4.4 Naive solution

	5 [$]T- {k}^{2}raster[$]
	5.1 Querying
	5.1.1 Obtaining a cell value in a time instant
	5.1.2 Obtaining a spatial range
	5.1.3 Obtaining cells with a range of values

	6 Heuristic [$]T- {k}^{2}raster[$]
	7 Experiments
	7.1 Experimental framework
	7.2 Datasets
	7.3 Space requirements
	7.4 Query times
	7.4.1 Times of [$]access[$]
	7.4.2 Times of [$]windowQuery[$]
	7.4.3 Times of [$]rangeQuery[$]

	8 Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References

