259 research outputs found

    Collaborative Summarization of Topic-Related Videos

    Full text link
    Large collections of videos are grouped into clusters by a topic keyword, such as Eiffel Tower or Surfing, with many important visual concepts repeating across them. Such a topically close set of videos have mutual influence on each other, which could be used to summarize one of them by exploiting information from others in the set. We build on this intuition to develop a novel approach to extract a summary that simultaneously captures both important particularities arising in the given video, as well as, generalities identified from the set of videos. The topic-related videos provide visual context to identify the important parts of the video being summarized. We achieve this by developing a collaborative sparse optimization method which can be efficiently solved by a half-quadratic minimization algorithm. Our work builds upon the idea of collaborative techniques from information retrieval and natural language processing, which typically use the attributes of other similar objects to predict the attribute of a given object. Experiments on two challenging and diverse datasets well demonstrate the efficacy of our approach over state-of-the-art methods.Comment: CVPR 201

    Transforming spatio-temporal self-attention using action embedding for skeleton-based action recognition

    Get PDF
    Over the past few years, skeleton-based action recognition has attracted great success because the skeleton data is immune to illumination variation, view-point variation, background clutter, scaling, and camera motion. However, effective modeling of the latent information of skeleton data is still a challenging problem. Therefore, in this paper, we propose a novel idea of action embedding with a self-attention Transformer network for skeleton-based action recognition. Our proposed technology mainly comprises of two modules as, i) action embedding and ii) self-attention Transformer. The action embedding encodes the relationship between corresponding body joints (e.g., joints of both hands move together for performing clapping action) and thus captures the spatial features of joints. Meanwhile, temporal features and dependencies of body joints are modeled using Transformer architecture. Our method works in a single-stream (end-to-end) fashion, where MLP is used for classification. We carry out an ablation study and evaluate the performance of our model on a small-scale SYSU-3D dataset and large-scale NTU-RGB+D and NTU-RGB+D 120 datasets where the results establish that our method performs better than other state-of-the-art architectures.publishedVersio

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    On Ranked Approximate Matching Of Large Attributed Graphs

    Get PDF
    Many emerging database applications entail sophisticated graph based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact sub-graph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. Contemporary algorithms for approximate graph matching incur substantial cost to generate candidates, and then test and rank them for possible match. Leading algorithms balance processing time and overall resource consumption cost by leveraging sophisticated data structures and graph properties to improve overall performance. In this dissertation, we propose novel techniques for approximate graph matching based on two different techniques called TraM or Top-k Graph Matching and Approximate Network Matching or AtoM respectively. While TraM off-loads a significant amount of its processing on to the database making the approach viable for large graphs, AtoM provides improved turn around time by means of graph summarization prior to matching. The summarization process is aided by domain sensitive similarity matrices, which in turn helps improve the matching performance. The vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We combine domain similarity and topological similarity to obtain overall graph similarity and compare them with neighborhood biased segments of the data-graph for proper matches. We show that our approach can naturally support the emerging trend in graph pattern queries and discuss its suitability for large networks as it can be seamlessly transformed to adhere to map-reduce framework. We have conducted thorough experiments on several synthetic and real data sets, and have demonstrated the effectiveness and efficiency of the proposed method

    Contextual Understanding of Sequential Data Across Multiple Modalities

    Get PDF
    In recent years, progress in computing and networking has made it possible to collect large volumes of data for various different applications in data mining and data analytics using machine learning methods. Data may come from different sources and in different shapes and forms depending on their inherent nature and the acquisition process. In this dissertation, we focus specifically on sequential data, which have been exponentially growing in recent years on platforms such as YouTube, social media, news agency sites, and other platforms. An important characteristic of sequential data is the inherent causal structure with latent patterns that can be discovered and learned from samples of the dataset. With this in mind, we target problems in two different domains of Computer Vision and Natural Language Processing that deal with sequential data and share the common characteristics of such data. The first one is action recognition based on video data, which is a fundamental problem in computer vision. This problem aims to find generalized patterns from videos to recognize or predict human actions. A video contains two important sets of information, i.e. appearance and motion. These information are complementary, and therefore an accurate recognition or prediction of activities or actions in video data depend significantly on our ability to extract them both. However, effective extraction of these information is a non-trivial task due to several challenges, such as viewpoint changes, camera motions, and scale variations, to name a few. It is thus crucial to design effective and generalized representations of video data that learn these variations and/or are invariant to such variations. We propose different models that learn and extract spatio-temporal correlations from video frames by using deep networks that overcome these challenges. The second problem that we study in this dissertation in the context of sequential data analysis is text summarization in multi-document processing. Sentences consist of sequence of words that imply context. The summarization task requires learning and understanding the contextual information from each sentence in order to determine which subset of sentences forms the best representative of a given article. With the progress made by deep learning, better representations of words have been achieved, leading in turn to better contextual representations of sentences. We propose summarization methods that combine mathematical optimization, Determinantal Point Processes (DPPs), and deep learning models that outperform the state of the art in multi-document text summarization
    corecore