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A B S T R A C T

Over the past few years, skeleton-based action recognition has attracted great success because the skeleton
data is immune to illumination variation, view-point variation, background clutter, scaling, and camera
motion. However, effective modeling of the latent information of skeleton data is still a challenging problem.
Therefore, in this paper, we propose a novel idea of action embedding with a self-attention Transformer
network for skeleton-based action recognition. Our proposed technology mainly comprises of two modules
as, (i) action embedding and (ii) self-attention Transformer. The action embedding encodes the relationship
between corresponding body joints (e.g., joints of both hands move together for performing clapping action)
and thus captures the spatial features of joints. Meanwhile, temporal features and dependencies of body joints
are modeled using Transformer architecture. Our method works in a single-stream (end-to-end) fashion, where
multiple-layer perceptron (MLP) is used for classification. We carry out an ablation study and evaluate the
performance of our model on a small-scale SYSU-3D dataset and large-scale NTU-RGB+D and NTU-RGB+D 120
datasets where the results establish that our method performs better than other state-of-the-art architectures.
1. Introduction

Human action recognition has received a lot of attention for re-
search now-a-days, thanks to the availability of publicly available
multi-modal action datasets [1–3]. Recognizing actions in videos has
numerous practical applications in surveillance, video content analysis,
sports [4], health care, and entertainment etc. Considering the multi-
modal data, convolutional neural network (CNN) [5,6] and graph con-
volutional network (GCN) [5,7] have shown remarkable performance
for skeleton-based action recognition. Depth-sensors-based skeleton
data is immune to illumination variation, background clutter, cloth-
ing, etc. [8]; therefore, contemporary methods extensively incorporate
skeleton modality for action recognition.

The task of skeleton-based action recognition is challenging due
to the scarcity of reliable spatially discriminative features and tem-
poral dynamic models. Recently, spatio-temporal graph convolutional
network (ST-GCN) has become a popular choice for skeleton-based
action recognition that can efficiently represent the non-Euclidean
data and effectively model the spatial and temporal dependencies
[9–12]. However, ST-GCN faces some structural limitations. (i) The
graphical representation of body skeleton is fixed for the input of a
GCN, while body joints change their relative position while performing
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some action. Thus, a single fixed skeleton graph structure is not a
suitable choice for all different action classes (e.g., wiping the face and
brushing actions demand a stronger hand-to-head relationship, as com-
pared to jumping and sitting down actions). (ii) The other drawback
is that spatio-temporal convolution implemented as 2D convolution
only utilizes limited local neighborhood information. To address such
problems, we propose a new architecture by devising action embedding
and a self-attention Transformer. The idea is based on graph embedding
where an input graph is converted into a low-dimensional vector such
that graph information is preserved [13], as shown in Fig. 1. Motivated
by graph embedding, action embedding is studied to represent different
human actions using low-dimensional feature vector. In this research,
action embedding serves the purpose of modeling spatial features of
body joints which could exploit the visual relationship between distant
joints.

In our proposed architecture, action embedding is responsible for
modeling spatial relationships, meanwhile, temporal features are mod-
eled using Transformer architectures. Recently, Transformers have been
shown to excellently model long-range temporal dependencies and
thus have achieved superior performance in common image recogni-
tion tasks [14–16]. These factors motivated to employ self-attention
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Fig. 1. Illustration of graph embedding. On the left, the nodes with short edges in the graph stay close to each other in the embedded subspace. In the right figure, the nodes
which are close to each other and moved in consecutive frames lie close to each other in embedded space.
Transformer to model the temporal relationship between body joints.
Considering an example of a human skeleton performing some actions
(e.g., clapping and running actions), distant body joints move concur-
rently to perform these actions. In the human body structure, the joints
of each hand are at a distance from each other, and there is no bone
connectivity between two hands. However, distant joints collaborate
with each other while performing different actions. Therefore, an action
relationship is established between such distant joints. This kind of
action relationship is determined by action embedding using link pre-
diction. In this work, we establish link prediction between distant joints
by forming new edges which collectively participate in performing
some action.

Our contribution for this work can be summarized as; 1. Action em-
bedding is investigated for exploiting the spatial relationship between
interacting joints 2. A self-attention Transformer network is proposed
for modeling temporal dependencies between joints 3. A detailed ab-
lation study is carried out for our proposed methodology for different
observations. 4. Finally, the performance of our proposed method is
compared for three skeleton-based action recognition datasets where
experimental results show that our method performs better than other
methods.

We organize the rest of our paper by discussing a comprehensive
literature survey on action-embedding, self-attention Transformer, and
action recognition in Section 2. Section 3 presents our proposed method-
ology. The dataset, experimental setup, and results are described in
Section 4. Section 5 visualizes results, and finally, we conclude our
work in Section 6.

2. Background

In the last decade, CNN and GCN architectures with different vari-
ants remained popular choices for action recognition [17,18]. In this
section, we survey the literature and organize it further as follows; (i)
Graph-Action Embedding (ii) Self-attention Transformer (iii) Skeleton-
based action recognition.

2.1. Action embedding

Our motivation for action embedding comes from graph embedding,
which can broadly be grouped into three main categories: factorization-
based, random walk-based, and deep learning (DL) based methods [18,
19]. Perozzi et al. [20] proposed a novel technique named DeepWalk
for learning a latent representation of vertices in a graph network.
DeepWalk included local information from random walks for learning
social representations of vertices, such as neighborhood similarity and
community membership as latent features. Borrowing the idea from
sociology and linguistics, second-order proximity can be interpreted as
nodes with shared neighbors, which are likely to be similar. Another
approach by [21], which could embed millions and billions of nodes,
is named LINE (Large-scale Information Network Embedding). This
2

approach was efficient for embedding first-order and second-order
proximity of graph. A graph embedding technique named node2vec,
using biased random walk, was proposed by Grover et al. [22]; it
explored the diverse neighboring nodes in a graph. This proposed
method was efficacious for link prediction and multi-label classifica-
tion on challenging datasets. In [22], authors applied node2vec for
link prediction in Facebook dataset (having 4039 nodes and 88,234
edges), Protein–Protein Interactions dataset (having 19,706 nodes and
390,633 edges) and arXiv ASTRO-PH dataset (18,722 nodes and 198,110
edges). Going deeper for modeling the structural similarity in the graph,
Ribeiro et al. [23] devised a struc2vec method for node similarity. The
struc2vec achieved excellent performance for node classification tasks
which are strongly dependent on structural identity.

A new concept of task-independent graph representation algorithm,
known as anonymous walk, is recently introduced by [24]. Adopting
the concept of isomorphic graphs, invariant graph embedding (IGE)
proposed by [25] relies on spectral graph theory. The authors claim
that their approach is a powerful feature representation technique for
a large family of graphs.

2.2. Transformers in action recognition

An abridged version of spatio-temporal Transformer network was
presented by [26] and later extended by [27]. This methodology works
by devising two-stream architecture as spatial self-attention and tempo-
ral self-attention stream. The spatial self-attention stream extracts intra-
frame interaction between body parts, whereas temporal self-attention
highlights the inter-frame correlation. This method is implemented
in a two-stream fashion, which adds complexities to its end-to-end
implementation pipeline. The work proposed by [26] includes action
embedding as input for a single-stream Transformer network. Action
Transformers proposed by [28] recognize and localize human actions
in videos using ConvNets as I3D. This algorithm is powerful in learning
the semantic context around performer.

Video Transformer Network (VTN) mitigates the computational
burden of 3D ConvNet by incorporating 2D ConvNet for spatial feature
extraction and a self-attention Transformer for temporal feature extrac-
tion [29]. However, video transformer network (VTN) puts a restriction
on using only raw positional encoding with vanilla-Transformer ar-
chitecture. In [30], Action-centric Transformer models action-based
encoding of frames, while Relation-Transformer establishes the tempo-
ral relationship between frames. Except [26], all methods cited above
are excited with RGB as input frames for the Transformer network.

2.3. Skeleton-based action recognition

For skeleton-based action recognition, the skeleton (body joints)
positions are used as the input features [17,31]. We broadly divide our
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literature on skeleton-based action recognition into the following two
categories.

CNN-RNN Techniques: The study accomplished by [31,32] inves-
igates the trust-gate long short-term memory networks (LSTM) for
odeling spatial and temporal features for skeleton-based action recog-
ition. However, they did not take into account the longer spatio-
emporal dependency. Later [33] proposed Skeleton-net, which extracts
eatures from the sequence of body-skeleton and transforms them into
mages that are fed to CNN for classifying actions. The idea of clip-
ing representation using the 3D coordinate sequence was proposed
n [34]. Their approach used multitask CNN for action classification.
nother research has incorporated multimodal data for pose estimation
35,36]. Hong et al. [36] developed a deep autoencoder-based method
or human pose recovery. Their technique employed a multimodal
eep autoencoder to learn a joint representation of the 2D image
nd 3D pose data, which can extract the 3D pose from a single 2D
mage. Later, in another work, the authors [35] proposed the multitask
anifold deep learning (𝑀2𝐷𝐿) framework to estimate facial posture.

Their technique enhanced the multimodal mapping relationship with
multitask learning that helps to estimate the gazing direction or head
postures with 2D images. For recognizing actions, Ou et al. [37] suggest
a 3D deformable convolution temporal reasoning (DCTR) network.
They employed Conv-LSTM to predict the long-term temporal dynamics
of activities and 3D deformable convolution to capture the spatio-
temporal information of the input RGB video. Yu et al. [38] presented
the hierarchical deep word embedding (HDWE) model to recognize
click features in RGB images. Their approach used a coarse-to-fine click
feature predictor that was trained using an additional picture dataset
containing click information.

Some of the human actions may involve multi-person interaction
(e.g., hugging, pointing fingers, etc.); therefore, Shu et al. [39] pro-
posed concurrent-LSTM for modeling such human actions and inter-
actions. The authors introduced a separate LSTM to encode the static
features of each person, which are fed to concurrent LSTM respon-
sible for integrating and storing inter-related motion information of
several interacting persons via the cell gate. Recent RNN techniques
for skeleton-based action recognition lack the spatial coherence be-
tween joints and temporal evolution of body-skeleton. In [40], authors
proposed skeleton-joint co-attention RNN for figuring out the spatial
coherence of joints and temporal evolution among skeletons. Our work
overcomes the challenges exhibited by CNN and RNN, by utilizing
longer spatio-temporal multi-head attention, which can be prolonged
to 300-frames.

GCN Techniques: Due to the close resemblance of body-skeleton to a
graph, a number of researchers are applying GCN for skeleton-based
action recognition [41–43]. The pioneering work for skeleton-based
spatial–temporal action recognition was carried out by [42]. In this
method, human body skeleton was represented as a spatial–temporal
graph which is then excited to a GCN. This method shows the best
performance for NTU-RGB+D and Kinetics-Skeleton datasets. However,
the major limitation of their work is the fixed skeleton-graph structure.
Shi et al. [9] addressed the problem of fixed skeleton-graph by devising
two-stream adaptive GCN where the adjacency matrix is constrained to
be learnable from the training data. The authors used bone-stream and
joints-stream as two streams of GCN network. This is also regarded as
pioneer work for skeleton-based action recognition using GCN. Zhao et
al. [43] devised a method using structure-aware feature representation
by incorporating LSTM. Their approach modeled spatial dependency
using Bayesian neural network and temporal dependency using LSTM.
Later, Shi et al. [10] proposed the idea of directed GCN (D-GCN) for
skeleton-based action recognition. In this method, human skeleton was
represented as a directed acyclic graph, where edges were directed from
the center of the body toward outside. D-GCN was trained as a separate
two-stream network and, therefore, undergoes the limitation of doing
3

end-to-end training. Ahmad et al. [44] proposed GCN-based action
recognition using graph sparsification by edge effective resistance.
This work mainly investigated attention joints for GCN-based action
recognition.

Peng et al. [45] introduced an idea of neural architecture search
(NAS) and presented the first automatically designed GCN for skeleton-
based action recognition. The authors evaluated their method on NTU-
RGB+D and Kinetics-skeleton dataset, where it showed improved per-
formance. In a different approach, Chen et al. [46] developed structure-
based graph pooling (SGP) with joint-wise channel attention (JCA) for
skeleton based GCN. SGP captures more global representation and mit-
igates the parameters for computation. However, SGP has a limitation
that it is computed using hand-crafted methods by dividing the original
graph into sub-graphs. Liu et al. [11] proposed a multi-scale aggrega-
tion scheme for disentangling important nodes in the neighborhood. In
their method, skip connections were introduced as dense cross-space–
time edges, and the method was evaluated on NTU RGB+D and Kinetics
Skeleton datasets. Recently, Liu et al. [47] combined GCN with the hid-
den conditional random field for retaining the structural information
of the human skeleton. Their proposed method was trained in an end-
to-end manner and then tested on NTU-RGB+D, N-UCLA, and SYSU
datasets. A combination of Hierarchical spatial reasoning (HSR) and
temporal stack learning network is introduced by [5]. HSR captures the
two levels of information (i) Intra-spatial information of each body part,
and (ii) Body-level information between parts. Temporal stack learning
is responsible for modeling temporal information. For capturing the
spatial and temporal dependencies in the skeleton sequences, [48]
integrated GCN and LSTM networks. This methodology introduced an
attention mechanism that focuses on discriminative joints and thus en-
hances the model’s ability to pay attention to the relevant information.
Cho et al. [49] proposed a DL model for recognizing human actions
from skeleton data using a self-attention mechanism. The authors em-
ployed self-attention to capture the most important joints and temporal
relations among them. Their newly proposed normalization technique,
referred to as ‘‘skeleton normalization’’, enhanced the robustness of the
model to variations in scale and rotation. Using skeleton data, [50]
presented a DL framework for identifying human actions. To account
for both spatial and temporal dependencies in the skeletal sequences,
the model used spatio-temporal attention mechanisms in such a manner
that it could efficiently focus on discriminative joints and their tem-
poral dynamics by including attention mechanisms at various levels.
Our proposed end-to-end architecture eliminates the requirement for
handcrafted feature engineering and delivers competitive performance
on benchmark datasets.

3. Methodology

In this section, we discuss our methodology by proposing a novel
idea of action embedding for recognizing different actions using self-
attention Transformer. Our proposed architecture consists of three main
parts;

(i) Spatial features are extracted by applying action embedding on
the input skeleton data.

(ii) Self-attention Transformer models the temporal features of the
input data.

(iii) Multiple-layer perceptron is excited with spatial and temporal
data for classification.

The pipeline of our proposed methodology is explained in Fig. 2, where
action embedding features are first extracted using graph embedding
techniques, such as DeepWalk or Graph Convolution, etc. Then on
top of action embedding, link prediction is carried out in order to
establish the relationship between distant joints. Action embedding
is signified by representing spatial features into lower-dimensional
flattened vector. In the next stage, a flattened feature vector is fed
to encoder–decoder self-attention Transformer which exploits the tem-
poral contextual information and thus models the inter-dependencies
between joints. Finally, the output of Transformer network is fed to
MLP for action classification.
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Fig. 2. Block diagram of our proposed method for recognizing actions using action embedding and Self-attention Transformer. Action embedding predicts the relationship between
distant body joints for performing some action. Self-attention Transformer extracts temporal inter-frame dependencies for joints. The output embeddings are fed to MLP for final
action classification.
3.1. Action embedding

We obtain the action representation using graph embedding, which
is used for representing graph nodes in a lower-dimensional space, such
that similarity or relationship between neighboring nodes is preserved.
Graph embedding is implemented by using,

(i) Random walks
(ii) Graph factorization

(iii) Node-proximity in the graph

Random walks can approximate a number of graph properties which
can be the node centrality [51] and node similarity [52]. Random
walks can be implemented by using node2vec [22], Deepwalk [20],
and struc2vec [23]. Since the random walk method can represent graph
information; therefore, if we can control the walks on a graph then we
can also manipulate the information that can be embedded in a given
graph.

Action embedding, 𝑧𝑣, for a node 𝑣 is defined in terms of map-
ping function, 𝑓𝑚𝑎𝑝, which maps the nodes of a graph into lower
𝑑-dimensional space, by following the relationship,

𝑧𝑣 = 𝑓𝑚𝑎𝑝(𝑣) ∈ [0, 1]𝑛×𝑛×𝐶 (1)

𝑓𝑚𝑎𝑝 is a matrix of size |𝑉 | × 𝑑 parameters; meanwhile, the notation 𝐶
corresponds to the different contexts in which links may be combined;
for example, joints-velocity and orientation, etc. It is formulated that
if distant joints are moving relatively at the same velocity and have
the same trajectories, then some sort of relationship can be established
between those distant joints. A similarity between distant nodes 𝑢 and
𝑣 is defined in terms of encoding function as,

similarity(𝑢, 𝑣) ≈ 𝑧𝑇𝑣 𝑧𝑢 (2)

This similarity function is based on Euclidean distance (dot-product)
between nodes of a graph in encoding space. The neighborhood feature
aggregation from level ‘𝑙’ to ‘𝑙 + 1’ is defined as,

h𝑙𝑣 = 𝜎(W𝑙
∑

𝑢∈𝑁(𝑣)

ℎ𝑙−1𝑢
|N(𝑣)|

+ 𝐵𝑙ℎ
𝑙−1
𝑣 ) ∀ 𝑙 ∈ 1,… , 𝐿 (3)

The symbol 𝜎 denotes the non-linearity, W𝑙, and 𝐵𝑙 are the learnable
weight and bias matrices. In order to compute the representation of a
4

node 𝑣 at level 𝑙, it is required to aggregate the neighbors of this node
in the previous level 𝑙 − 1. The factor ∑

𝑢∈𝑁(𝑣) h𝑙−1𝑢 ∕|N(𝑣)| corresponds
to aggregated response in the previous level.

Intuitively, we combine the information from neighbors of a node 𝑣
in the previous level, then the information of node 𝑣 itself is combined
for graph embedding. Elaborating the concept of graph embedding,
which works hierarchically, for node 𝑣, the information of its neighbors
is combined at level 𝑙, then the information of neighbors-of-neighbors
is combined at level 𝑙 + 1, and so on. In Eq. (3), if 𝑊𝑙 is set to zero,
then ℎ𝑙𝑣 is not learning from its neighbors and only incorporating the
information from itself. Contrary to it, if 𝑊𝑙 is set very high, then
features of node 𝑣 itself are substantially ignored, and information
is borrowed from neighbors. Therefore, it becomes an optimization
problem that the amount of information being accumulated from the
neighbors of node 𝑣 and the information from the node itself being
contributed for prediction.

We apply vector concatenation across different levels for action
embedding using vector representations of node 𝑣 as,

Z𝑣 = [ℎ1𝑣, ℎ
2
𝑣,… , ℎ𝑙𝑣], ∀ 𝑣 ∈ V (4)

where Z𝑣 is the final action embedding after 𝑘-levels of the neigh-
borhood aggregation, which is followed by a single fully-connected
softmax layer for link prediction between vertices as,

�̂� = sof tmax(𝐖 × Z𝑣 + 𝐁) (5)

where �̂� denotes the output probability, whether there exists a link
between nodes or not.

Using action embedding, the adjacency matrix learns new edges and
relationships between nodes of a skeleton graph. The adjacency matrix
gradually learns in a layer-wise fashion, while traversing different
layers, some new action edges are established between nodes, and
some existing action edges are strengthened. This concept is further
illustrated in Fig. 3.

3.1.1. Link prediction for action recognition
Graph embeddings are suitable to represent a graph with lower-

dimensional vectors and matrices. Link prediction is one of the major
applications of graph embedding for generating new edges between
structurally similar nodes. The link prediction approaches include
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Fig. 3. Adjacency matrix learns new action edges between joints using action embedding. By increasing the number of layers, new edges are learned as action links, and existing
links are also strengthened gradually.
similarity-based methods, maximum-likelihood models, and probabilis-
tic models [19]. Graph embedding implicitly captures the inherent
dynamics in a graph network and thus enables link prediction based
on this inherent relationship. Our motivation for using link prediction
comes from the concept that distant joints and limbs move concurrently
despite no physical connection between them. For example in running
action, two legs and their corresponding joints move together, there-
fore, a relationship (a possible edge) should be established between the
knees and ankles of the two legs. We understand this concept and try to
model such a relationship between distant joints using link prediction
5

by graph embedding. Feature learning for link prediction is made on
the following two assumptions:

Conditional Independence: Following the neighborhood sampling
strategy, NS(u) ⊂ 𝑉 is defined as the neighborhood of node 𝑢. The likeli-
hood of observing a neighborhood node is factorized by the assumption
that likelihood is independent of observing any other neighboring node:

Pr (NS(u)|fmap(u)) =
∏

Pr (ni|fmap(u)) (6)

𝑛𝑖∈𝑁𝑆 (𝑢)
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Feature Space Symmetry: It is built on the assumption that there exists
a strong symmetric effect over the source and neighboring nodes in the
feature space. This symmetry is modeled as the conditional likelihood
of every source-neighborhood node pair as a softmax function, defined
as a dot product of their features.

Pr (ni|fmap(u)) =
𝑒𝑥𝑝(𝑓𝑚𝑎𝑝(𝑛𝑖).𝑓𝑚𝑎𝑝(𝑢))

∑

𝑣∈𝑉 𝑒𝑥𝑝(𝑓𝑚𝑎𝑝(𝑣).𝑓𝑚𝑎𝑝(𝑢))
(7)

In link prediction, the neighborhoods of a node are examined and
sampled using local search methods. Borrowing the idea from sociol-
ogy, there exists two types of equivalences (i) Homophily equivalence
corresponds to the nodes which are of a similar type and close to
each other, and (ii) Structural equivalence where nodes may exist at
distance in a graph structure. BFS corresponds to homophilous nodes
and generates a microscopic view of the graph structure, whereas DFS
figures out macroscopic details in a graph, explained in Fig. 4. In
random walks for link prediction, node traversing is determined by
transition probability among the nodes. In this regard, weights of edges
play an important role in computing the transition probability [22].
Following the taxonomy of [19], Deepwalk and node2vec are two very
important random walk methods.

DeepWalk Method: In literature, random walks have been used as a
similarity measure for numerous applications such as community detec-
tion [53], link prediction and content recommendation [52]. A random
walk rooted at vertex 𝑣𝑖 is denoted as 𝑣𝑖 , is modeled as a stochastic
process with random variables {1

𝑣𝑖
, 2

𝑣𝑖
, . . . , 𝐾

𝑣𝑖
}. Borrowing the

concept from language modeling [20] and representing body joints as
vertices, {𝑣1, 𝑣2, . . . , 𝑣𝑖−1}, the likelihood of estimating joint-occurrence
for a particular action is,

Pr (𝑣𝑖|(𝑣1, 𝑣2,… , 𝑣𝑖−1)) (8)

An intuitive understanding of this concept is built to estimate the
likelihood of co-movement for vertex 𝑣𝑖, given all the previous vertices
visited so far. This concept of co-movement is introduced as mapping
function 𝑓𝑚𝑎𝑝 ∶ 𝑣 ∈ 𝑉 → R|𝑉 |×𝑑 . Using the above expression, likelihood
estimation is re-written in the form of a latent representation,

Pr (𝑣𝑖|(𝑓𝑚𝑎𝑝(𝑣1), 𝑓𝑚𝑎𝑝(𝑣2),… , 𝑓𝑚𝑎𝑝(𝑣𝑖−1))) (9)

The corresponding objective function for the optimization is formulated
as,

𝑚𝑖𝑛𝑓𝑚𝑎𝑝 − 𝑙𝑜𝑔
{

P𝑟
(

𝑣𝑖−𝑤,… , 𝑣𝑖−1, 𝑣𝑖+1,… , 𝑣𝑖+𝑤|
(

𝑓𝑚𝑎𝑝
(

𝑣𝑖
)))}

(10)

for DeepWalk as action embedding, Eq. (10) is solved which models
the motion similarity between neighboring vertices of a graph.

Node2vec Method: For node2vec, we consider random walks along
edge 𝐸 originating from a random node 𝑣0 ∈ 𝑉 by repeatedly sampling
an edge to transition to the next node 𝑣𝑖+1 ∶= 𝑠𝑎𝑚𝑝𝑙𝑒(𝐸[𝑣𝑖]), where 𝐸[𝑣𝑖]
represents the outgoing edges from 𝑣𝑖. When a node2vec algorithm is
applied with transition sequences {𝑣0 → 𝑣1 → 𝑣2...}, it learns the em-
beddings by stochastically considering every node along the sequence,
𝑣𝑖. Thus for this anchor node, 𝑣𝑖, the embedding representation is
brought closer to the embedding of its neighbors {𝑣𝑖+1, 𝑣𝑖+2,… , 𝑣𝑖+𝑐},
the context nodes. Generally, the context window size is sampled from
the uniform distribution 𝑈{1, 𝐶}, as explained in [54]. Considering a
random walk having co-occurrence matrix 𝐷 ∈ R|𝑉 |×|𝑉 | where each
entry 𝐷𝑣𝑢 in the matrix corresponds to the number of times nodes 𝑣
and 𝑢 are moved together by some orientation within a context distance
𝑐 ∼ 𝑈{1, 𝐶} in all random walks. Using node-2-vec as the underlying
architecture for action embedding, the loss function can be optimized
using the negative log-likelihood of softmax,

min𝑦[𝑙𝑜𝑔𝑍 −
∑

𝐷𝑣,𝑢(𝑌 𝑇
𝑣 𝑌𝑢)] (11)
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𝑣,𝑢𝜖𝑉
Fig. 4. An example of difference between BFS and DFS.

The partition function is estimated by using negative sampling, 𝑍 =
∑

𝑣,𝑢 𝑒𝑥𝑝(𝑌 𝑇
𝑣 𝑌𝑢). Node2vec traversal procedure is based on two param-

eters as return parameter and in-out parameter [22].

Graph Convolution: Action embedding is also implemented using a
graph convolution architecture [55]. In this method, node features
denote spatial locations of body joints and the displacement of joints
in successive frames. The input feature map 𝐶 × 𝜏 × 𝑉 corresponds to
the number of channels 𝐶, frame-length 𝜏, and body-skeleton vertices
𝑉 . From hidden layer 𝐻 𝑙 to 𝐻 𝑙+1, convolution operation for a graph
𝐺 = (𝑉 ,𝐸) with vertices |𝑉 | and edges |𝐸| is defined as,

𝐻 𝑙+1 = �̃�−1∕2𝐴�̃�−1∕2𝐻 𝑙𝑊 𝑙 (12)

where 𝑊 𝑙 represents the corresponding layer-specific linear transfor-
mation’s weight matrix, 𝐻 𝑙 is the feature map activation in the 𝑙th
layer such that 𝐻0 = 𝑋, whilst 𝐻 𝑙+1 denotes the updated hidden layer
feature matrix. The adjacency matrix is defined as 𝐴 = 𝐴 + 𝐼𝑁 , while
degree matrix is represented as 𝐷𝑖𝑖 =

∑

𝑗 𝐴𝑖𝑗 . For GCN, the embedding
function is written as,

𝑍𝑎𝑐𝑡𝑖𝑜𝑛 = sof tmax(𝐴 ⋅ ReLU(𝐴𝑋𝑡𝐻 𝑡) ⋅𝐻 𝑡+1) (13)

The softmax function in the above expression is calculated as
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =

𝑒𝑥𝑝(𝑥𝑖)
∑

𝑗 𝑒𝑥𝑝(𝑥𝑗 )
in a row-wise fashion.

3.2. Self-attention transformer network

Self-attention Transformers are shown to be effective architectures
for modeling temporal sequences in various domains [26,56]. In a
broader context, self-attention Transformers comprise of encoding and
decoding blocks.

Encoder: Self-attention encoding block is built using multi-headed
self-attention (MSA) layer feed-forward network (FFN) with residual
skip-connections after every block, [57,58]. In MSA, the information
of different subspaces at various positions is concatenated. Compared
to LSTM and recurrent networks, self-attention networks are better at
learning long-range dependencies [14]. FFN is a two-layer network
with gaussian error linear unit (GELU) as non-linearity [59]. Since
Transformer architecture is permutation invariant, position encoding
[60,61] is also added as an input to each attention layer. The flattened
feature and positional encoding are aggregated to feed the Transformer
encoder for summarizing global information. We denote the output of
the encoding block as global memory, shown in Fig. 2. Our Transformer
network receives a 1-D sequence of action embedding as input. We
represent the input skeleton-graph as 𝑥 ∈ R𝑉 ×𝐸×𝐶 , where 𝑉 denotes
the number of vertices, 𝐸 represents the number of edges and 𝐶
corresponds to the number of channels. Through all layers, Transformer
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network uses a constant latent vector of size 𝐷 which maps the input
vector 𝑥 to 𝐷 dimensions using trainable linear projection, as referred
in Eq. (14). With the action embedded sequences (𝑧0 = 𝑥𝑐𝑙𝑎𝑠𝑠), we
append learnable positional embedding whose output at Transformer
encoder serves as image representation 𝑧𝑒𝑛𝑐 , as shown in Eq. (16). We
use one-dimensional positional embedding along with action embed-
ding which is fed to the encoder input. Referring to Eqs. (15) and (16),
layer normalization is applied before MSA and FFN blocks.

𝒛0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥1𝑬𝑎𝑒; 𝑥2𝑬𝑎𝑒;… ; 𝑥𝑁𝑬𝑎𝑒] + 𝑬𝑝𝑜𝑠,

𝑬𝑎𝑒 ∈ R𝑁×𝐷,𝑬𝑝𝑜𝑠 ∈ R𝑁×𝐷 (14)

𝒛′𝑙 = MSA(𝐿𝑁(𝒛𝑙−1)) + 𝒛𝑙−1, 𝑙 = 1,… , 𝐿 (15)

𝒛𝑒𝑛𝑐 = FFN(𝐿𝑁(𝒛′𝑙)) + 𝒛′𝑙 , 𝑙 = 1,… , 𝐿 (16)

In Eq. (14), we apply action embedding 𝐸𝑎𝑒 to the input skeleton graph,
which is then concatenated with positional embedding and excited to
MSA in Eq. (15). A FFN is excited with the output of MSA along with
residual connection in Eq. (16) for generating encoded output.

Decoder: We implemented a decoding block using a stack of 𝑁 identi-
cal layers of MSA and FFN. The decoder network includes an additional
block of multi-head attention as a cross-attention layer from the output
of the encoder. The decoder transforms 𝑁 learned positional embed-
dings (see action queries in Fig. 2) into 𝑁 output embeddings. Similar
to the encoder, each sub-layer of the decoder is employed with layer
normalization and has three inputs as (i) Global memory from the en-
coder, (ii) Action-queries, and (iii) Positional encodings. For decoding
multi-head cross-attention, the values are directly provided from global
memory. Global memory and positional encoding are summed as key
vectors; whilst query vector is the summation of input positional encod-
ing and input action queries. The self-attention layer is implemented
by providing query, key, and value from action queries or the output
of the decoder layer. We denote the output of the decoder as output
embedding. Our encoder–decoder transformer layer implementation is
similar to work [62].

𝒛′′𝑙 = MSA(LN(𝒛𝑒𝑛𝑐 )) + 𝒛𝑒𝑛𝑐 , 𝑙 = 1,… , 𝐿 (17)

𝒛𝑑𝑒𝑐 = FFN(LN(𝒛′′𝑙 )) + 𝒛′′𝑙 , 𝑙 = 1,… , 𝐿 (18)

3.3. Action recognition

The output embeddings from the Transformer network are then fed
to the MLP layer for final classification. The classifier provides the state
of action, as shown in Eq. (19).

𝒚 = MLP(𝒛0𝑑𝑒𝑐 ) (19)

4. Experiment setup and results

In this section, we provide an overview of the dataset, experimental
details, and results.

4.1. Datasets

SYSU-3D: Hu et al. [1] prepared a human activity SYSU-3D dataset,
having 480 videos of 40 different subjects engaging in 12 different
activities. The dataset contains 30 coordinates from 20 different joints
associated with each frame of the sequence. There are two settings
available for this dataset; For both settings, half of the video samples
are used for training while the remaining half is used for testing
purposes. NTU-RGB+D: NTU-RGB+D dataset [2] contains 60 differ-

ent action classes and 56,578 skeleton sequences that are collected
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Fig. 5. Different experimental settings used for ablation study.

from 40 different subjects and 3 different camera viewpoints. For the
dataset, each body skeleton is represented by 25 distinct joints. The
classification accuracy on this dataset is reported for two settings as
(i) cross-subject (X-Sub), and (ii) cross-view (X-View). This dataset
has been extensively used for evaluating the models for large-scale
skeleton-based action recognition.

NTU-RGB+D-120: NTU-RGB+D-120 dataset [3] is an extension of
NTU-RGB+D, which contains 120 different action classes. There are
113,945 skeleton sequences in this dataset, which have been collected
from 106 different subjects. Similar to the previous dataset, we have
tested two evaluation settings for this dataset (i) cross-subject (X-Sub)
(ii) cross-setting (X-Set).

4.2. Implementation

Our experimental setup was based on Pytorch [63] deep learning
framework. We train our models for 200-epochs using a batch size of
32. An initial learning rate was set to 0.1, with learning rate decay.
We used ADAM as the training optimizer, and each experiment was
carried out three times for cross-validation. During experimentation,
we used 8-heads for multi-head attention. All models were trained on
Tesla T4 16 GB GPU with compute unified device architecture (CUDA)
version 11.0. It took roughly 8-hours to train the models under our
experimental setup.

4.3. Ablation study

We carried out an ablation study by investigating the efficacy of our
proposed model, action embedding techniques, and Transformer depth.
Our ablation study used a five-layer GCN as the backbone architecture
for extracting features from skeleton data. We trained our model for 200
epoch with one-time learning rate decay at epoch 150. For the proposed
study, Transformer architecture employed four encoding and decoding
layers with a batch size of 32.

4.3.1. Efficacy of action-embedding transformer
We deployed three different settings as shown in Fig. 5, then in-

vestigated the effect of action embedding and self-attention network in
each setting. For setting-1, all three blocks were included, which marks
the highest accuracy by endorsing the complementarity of these blocks.
Meanwhile, setting-2 included action-embedding and MLP, which es-
tablished the significance of spatial attention. The classes that benefited
most from action-embedding are ‘‘clapping hands’’ and ‘‘running’’,
where distant joints contribute to some actions. Setting-3 incorporated
Transformer and MLP blocks, highlighting the importance of tempo-
ral attention. ‘‘Hugging’’, ‘‘handshaking’’, and ‘‘pushing other people’’
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Table 1
Performance comparison for different settings. Best accuracy results are marked in bold

Setting-1 Setting-2 Setting-3

NTU-RGB+D 84.4 82.6 82.0

Table 2
Performance comparison for varying the depth of Transformer. Best accuracy results
are marked in bold.

Number of layers NTU NTU-120

1 86.5 84.1
2 87.0 84.6
4 87.6 85.0
8 88.3 85.7

Table 3
Performance comparison for different link prediction methods. Best accuracy results are
marked in bold.

Dataset Complexity SYSU-3D NTU NTU-120

DeepWalk O(|𝑉 |𝑑) 78.9 75.6 73.3
Node2vec O(|𝑉 |𝑑) 83.5 80.4 77.8
GCN O(|𝑉 |𝑑2) 88.4 85.8 84.2

Table 4
Performance comparison with the state-of-the-art architectures for SYSU-3D dataset.
Best accuracy results are marked in bold.

Method SYSU-3D Year

ST-LSTM (Tree) [31] 73.4 2017
ST-LSTM(Tree)+Trust Gate [31] 76.5 2017
VA-LSTM [64] 77.5 2017
DPRL [65] 76.9 2018
Bayesian GC-LSTM [43] 82.0 2019
SGP (4L) [46] 78.3 2020
SGP+JCA (4L) [46] 79.2 2020
SR-TSL [5] 80.7 2020
Part-level GCN [66] 83.7 2020
SMAM-Net [17] 75.7 2022

Action-Embed-TR (Ours) 86.4 2023

are the classes that benefit most from temporal attention. Table 1
shows a comparison for these three settings, where setting-1 largely
outperformed others.

4.3.2. Transformer depth
We assessed the depth of Transformers and explained the impact of

varying attention layers on network performance. Each attention layer
included eight attention heads. Table 2 presents the validation accuracy
of the proposed model by using different attention layers 1, 2, 4, and 8.
From the comparison, it is observed that the difference in performance
is not as significant since NTU-RGB+D videos are relatively short in
duration, i.e., around 10 s. From this experiment, we can infer that
arger receptive fields of Transformers can benefit in processing longer
ideos.

.3.3. Link prediction using different methods
We investigated different link prediction methods for skeleton-based

ction recognition. First, DeepWalk is selected as the link prediction
ethod for skeleton-based action recognition. DeepWalk predicted new

elationships and edges in intra-frame and inter-frames. The links pre-
icted using action embedding correspond to the nodes, which have
ome action relationships and temporal relationships. Action relation-
hips figured out the interaction between nodes which significantly col-
aborate for performing some action. In a similar fashion, we evaluated
ode2vec and GCN techniques for skeleton-based action recognition.
able 3 reports the mean accuracy and computational complexity for
hese three methods. It demonstrates that the GCN method performs
etter than others due to its better graph representation capability for
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keleton data.
Table 5
Performance Comparison with the state-of-the-art architectures for the NTU-RGB+D
dataset.

Method GFLOPs Time (ms) X-Sub X-View

ST-GCN [42] 8.37 3.426 81.5 88.3
Deep progressive [65] – – 82.3 87.7
Actional-GCN [67] – – 86.8 94.2
2s Adapt-GCN [9] 35.8 8.862 88.5 95.1
MV-IGNet [68] – 1.630 89.2 96.3
Shift-GCN [12] 10.0 89.7 96.0
Graph De-Conv [69] – – 89.7 95.9
Directed GNN [10] 126.8 89.9 96.1
Decoupling-GCN [70] 16.2 12 90.8 96.6
Info-GCN, [71] – – 93.0 97.1

ST-Transformer [26] – – 89.9 96.1
ST-Transformer [27] – – 90.3 96.3

Action-Embed-TR (Ours) 18.3 7.634 91.5 96.8

Table 6
Performance comparison with the state-of-the-art architectures for the NTU-RGB+D-120
ataset. Best accuracy results are marked in bold.
Method X-Sub X-Set

ST-GCN [42] 72.4 71.3
2s AS-GCN [67] 77.7 78.9
MV-IGNet [68] 83.9 85.6
2s Shift-GCN [12] 85.3 86.6
Graph De-Conv [69] 80.8 82.3
Decoupling-GCN [70] 86.5 88.1
Info-GCN, [71] 89.8 91.2

ST-Transformer [26] 81.9 84.1
ST-Transformer [27] 85.1 87.1

Action-Embed-TR (Ours) 87.7 88.5

4.4. Comparison against the state-of-the-art

We made a performance comparison for currently-available small
and large-scale datasets. During our analysis, we found that our method
achieves state-of-the-art results.

Comparison over small datasets: For small-scale dataset comparison,
we evaluated our method on the SYSU-3D dataset. We used a cross-
subject evaluation setting, in which training and testing sets contained
random and even distribution of all subjects. SYSU-3D is considered
to be a challenging dataset with a large number of subjects, and
each action is performed by a single subject for one-time only, thus
resulting in large variations. Table 4 shows a comparison and improved
performance of our method over other approaches in the literature. This
increase in performance demonstrates that the action-embedded self-
attention Transformer is effective for skeleton-based action recognition,
where action embedding emphasizes spatial features while Transformer
architecture preserves temporal features.

Comparison over large datasets: To further assess the generalization
of our proposed method, we compare the performance of our proposed
method with other state-of-the-art methods for NTU-RGB+D and NTU-
RGB+D-120, as shown in Tables 5 and 6, respectively. For a fair
comparison, we report the results from original papers in Tables above.
Comparing with [26,27], our method is primarily a GCN-based single-
stream approach that involves a Transformer network for modeling
temporal features. Meanwhile, [26,27] implemented spatial and tem-
poral clues as two separate stream convolution networks using Trans-
former, enhancing the complexity of their models. We also compare our
work with [71] in which information bottleneck learning is investigated
for spatial modeling of skeleton using self-attention. We argue that
our method is better in comparison with [71], which predominately
requires a multi-modal representation of body skeleton. Overall, our
proposed model outperforms others for the above-mentioned datasets,
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Fig. 6. Visualization of action embedding features for different actions. In clap action, (a) the movement of hands shows the relation of action between two distant joints. Salute
and take-off hat actions are similar as the right hand of the skeleton moves close to the head at different speeds.
and thus it establishes the superiority of our model. In Table 5, we also
list the computational resources in terms of GFLOPs and inference Time
and claim that our method entails reasonable complexity and faster
inference time compared to other methods.

5. Visualization

Fig. 6 visualizes the feature maps for different actions in order to
validate the effect of these feature maps. The dashed lines demonstrate
that the action relationship exists between unconnected joints; there-
fore, this relationship can be emphasized. For clap-action in Fig. 6(a)
from the starting frame, two hands come close and move away, where
this articulation is modeled by action embedding and visualized as
dotted lines. Likewise, for the salute action in Fig. 6(b), the right hand
of the subject move close to the head, encoded as action-relationship
by action embedding. The same justification works for the take-off hat
action in Fig. 6(c), where the subject’s right hand moves closer to the
head but relatively at a slower temporal speed.

6. Conclusion

The use of skeleton data for action recognition offers significant
potential for developing deep learning-based computer applications.
In this work, we propose a novel methodology for skeleton-based
action recognition using action-embedding and self-attention Trans-
former. Action embedding builds the spatial relationship between body
joints using link prediction. After that Transformer network models the
temporal relationship between joints. The self-attention Transformer
receives the input from action embedding block, and the output of
Transformer network is fed to MLP for final action classification. The
proposed method is evaluated on SYSU-3D, NTU RGB+D and NTU
RGB+D120 benchmark datasets, where it outperforms state-of-the-art
methods.

Our proposed method only applies to skeleton data, and we utilized
the vanilla Transformer architecture in our methodology. In the future,
more advanced Transformer architectures with combination of differ-
ent positional encodings, such as Laplacian positional encoding, will be
explored.
9

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

All datasets are publically available.

References

[1] J.-F. Hu, W.-S. Zheng, J. Lai, J. Zhang, Jointly learning heterogeneous features
for RGB-D activity recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 5344–5352.

[2] A. Shahroudy, J. Liu, T.-T. Ng, G. Wang, Ntu rgb+ d: A large scale dataset for
3d human activity analysis, in: CVPR, 2016, pp. 1010–1019.

[3] J. Liu, A. Shahroudy, M.L. Perez, G. Wang, L.-Y. Duan, A.K. Chichung, Ntu rgb+
d 120: A large-scale benchmark for 3d human activity understanding, IEEE Trans.
Pattern Anal. Mach. Intell. (2019).

[4] J. Chen, R.D.J. Samuel, P. Poovendran, LSTM with bio inspired algorithm for
action recognition in sports videos, Image Vis. Comput. 112 (2021) 104214.

[5] C. Si, Y. Jing, W. Wang, L. Wang, T. Tan, Skeleton-based action recognition
with hierarchical spatial reasoning and temporal stack learning network, Pattern
Recognit. 107 (2020) 107511.

[6] W. Yang, T. Lyons, H. Ni, C. Schmid, L. Jin, J. Chang, Leveraging the path
signature for skeleton-based human action recognition, 2017, arXiv preprint
arXiv:1707.03993.

[7] Y. Li, Z. He, X. Ye, Z. He, K. Han, Spatial temporal graph convolutional networks
for skeleton-based dynamic hand gesture recognition, EURASIP J. Image Video
Process. 2019 (1) (2019) 78.

[8] A. Barkoky, N.M. Charkari, Complex network-based features extraction in RGB-D
human action recognition, J. Vis. Commun. Image Represent. 82 (2022) 103371.

[9] L. Shi, Y. Zhang, J. Cheng, H. Lu, Two-stream adaptive graph convolu-
tional networks for skeleton-based action recognition, in: CVPR, 2019, pp.
12026–12035.

[10] L. Shi, Y. Zhang, J. Cheng, H. Lu, Skeleton-based action recognition with directed
graph neural networks, in: CVPR, 2019, pp. 7912–7921.

[11] Z. Liu, H. Zhang, Z. Chen, Z. Wang, W. Ouyang, Disentangling and unifying
graph convolutions for skeleton-based action recognition, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.
143–152.

[12] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, H. Lu, Skeleton-based action
recognition with shift graph convolutional network, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.
183–192.

http://refhub.elsevier.com/S1047-3203(23)00142-6/sb1
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb1
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb1
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb1
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb1
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb2
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb2
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb2
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb3
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb3
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb3
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb3
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb3
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb4
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb4
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb4
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb5
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb5
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb5
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb5
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb5
http://arxiv.org/abs/1707.03993
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb7
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb7
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb7
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb7
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb7
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb8
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb8
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb8
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb9
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb9
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb9
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb9
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb9
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb10
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb10
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb10
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb11
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb12


Journal of Visual Communication and Image Representation 95 (2023) 103892T. Ahmad et al.
[13] H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding:
Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (9)
(2018) 1616–1637.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, in: Advances in Neural Information
Processing Systems, 2017, pp. 5998–6008.

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth
16x16 words: Transformers for image recognition at scale, 2020, arXiv preprint
arXiv:2010.11929.

[16] N. Kanwal, T. Eftestøl, F. Khoraminia, T.C.M. Zuiverloon, K. Engan, Vision trans-
formers for small histological datasets learned through knowledge distillation, in:
Advances in Knowledge Discovery and Data Mining, Springer Nature Switzerland,
2023, pp. 167–179.

[17] Z. Li, X. Gong, R. Song, P. Duan, J. Liu, W. Zhang, SMAM: Self and mutual
adaptive matching for skeleton-based few-shot action recognition, IEEE Trans.
Image Process. 32 (2022) 392–402.

[18] U. Asif, D. Mehta, S. Von Cavallar, J. Tang, S. Harrer, DeepActsNet: A deep
ensemble framework combining features from face, hands, and body for action
recognition, Pattern Recognit. 139 (2023) 109484.

[19] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and
performance: A survey, Knowl.-Based Syst. 151 (2018) 78–94.

[20] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social represen-
tations, in: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[21] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information
network embedding, in: Proceedings of the 24th International Conference on
World Wide Web, 2015, pp. 1067–1077.

[22] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 855–864.

[23] L.F. Ribeiro, P.H. Saverese, D.R. Figueiredo, Struc2vec: Learning node repre-
sentations from structural identity, in: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017, pp.
385–394.

[24] S. Ivanov, E. Burnaev, Anonymous walk embeddings, 2018, arXiv preprint arXiv:
1805.11921.

[25] A. Galland, M. Lelarge, Invariant embedding for graph classification, in:
ICML 2019 Workshop on Learning and Reasoning with Graph-Structured
Representations, 2019.

[26] C. Plizzari, M. Cannici, M. Matteucci, Spatial temporal transformer network for
skeleton-based action recognition, in: Pattern Recognition. ICPR International
Workshops and Challenges: Virtual Event, January 10–15, 2021, Proceedings,
Part III, Springer, 2021, pp. 694–701.

[27] C. Plizzari, M. Cannici, M. Matteucci, Skeleton-based action recognition via
spatial and temporal transformer networks, Comput. Vis. Image Underst. 208
(2021) 103219.

[28] R. Girdhar, J. Carreira, C. Doersch, A. Zisserman, Video action transformer
network, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 244–253.

[29] D. Neimark, O. Bar, M. Zohar, D. Asselmann, Video transformer network, 2021,
arXiv preprint arXiv:2102.00719.

[30] J. Zhang, J. Shao, R. Cao, L. Gao, X. Xu, H.T. Shen, Action-centric relation
transformer network for video question answering, IEEE Trans. Circuits Syst.
Video Technol. (2020).

[31] J. Liu, G. Wang, L.-Y. Duan, K. Abdiyeva, A.C. Kot, Skeleton-based human action
recognition with global context-aware attention LSTM networks, IEEE Trans.
Image Process. 27 (4) (2017) 1586–1599.

[32] J. Liu, A. Shahroudy, D. Xu, G. Wang, Spatio-temporal lstm with trust gates
for 3d human action recognition, in: European Conference on Computer Vision,
Springer, 2016, pp. 816–833.

[33] Q. Ke, S. An, M. Bennamoun, F. Sohel, F. Boussaid, Skeletonnet: Mining deep
part features for 3-d action recognition, IEEE Signal Process. Lett. 24 (6) (2017)
731–735.

[34] Q. Ke, M. Bennamoun, S. An, F. Sohel, F. Boussaid, Learning clip representations
for skeleton-based 3d action recognition, IEEE Trans. Image Process. 27 (6)
(2018) 2842–2855.

[35] C. Hong, J. Yu, J. Zhang, X. Jin, K.-H. Lee, Multimodal face-pose estimation
with multitask manifold deep learning, IEEE Trans. Ind. Inform. 15 (7) (2018)
3952–3961.

[36] C. Hong, J. Yu, J. Wan, D. Tao, M. Wang, Multimodal deep autoencoder for
human pose recovery, IEEE Trans. Image Process. 24 (12) (2015) 5659–5670.

[37] Y. Ou, Z. Chen, 3D deformable convolution temporal reasoning network for
action recognition, J. Vis. Commun. Image Represent. 93 (2023) 103804.

[38] J. Yu, M. Tan, H. Zhang, Y. Rui, D. Tao, Hierarchical deep click feature prediction
for fine-grained image recognition, IEEE Trans. Pattern Anal. Mach. Intell. 44 (2)
(2019) 563–578.

[39] X. Shu, J. Tang, G. Qi, W. Liu, J. Yang, Hierarchical long short-term concurrent
memory for human interaction recognition, IEEE Trans. Pattern Anal. Mach.
Intell. (2019).
10
[40] X. Shu, L. Zhang, G.-J. Qi, W. Liu, J. Tang, Spatiotemporal co-attention recurrent
neural networks for human-skeleton motion prediction, IEEE Trans. Pattern Anal.
Mach. Intell. (2021).

[41] Y. Chen, B. Guo, Y. Shen, W. Wang, W. Lu, X. Suo, Boundary graph convolutional
network for temporal action detection, Image Vis. Comput. 109 (2021) 104144.

[42] S. Yan, Y. Xiong, D. Lin, Spatial temporal graph convolutional networks for
skeleton-based action recognition, in: AAAI, 2018.

[43] R. Zhao, K. Wang, H. Su, Q. Ji, Bayesian graph convolution lstm for skele-
ton based action recognition, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 6882–6892.

[44] T. Ahmad, L. Jin, L. Lin, G. Tang, Skeleton-based action recognition using sparse
spatio-temporal GCN with edge effective resistance, Neurocomputing 423 (2021)
389–398.

[45] W. Peng, X. Hong, H. Chen, G. Zhao, Learning graph convolutional network for
skeleton-based human action recognition by neural searching, in: AAAI, 2020,
pp. 2669–2676.

[46] Y. Chen, G. Ma, C. Yuan, B. Li, H. Zhang, F. Wang, W. Hu, Graph convolutional
network with structure pooling and joint-wise channel attention for action
recognition, Pattern Recognit. (2020) 107321.

[47] K. Liu, L. Gao, N.M. Khan, L. Qi, L. Guan, A multi-stream graph convolu-
tional networks-hidden conditional random field model for skeleton-based action
recognition, IEEE Trans. Multimed. (2020).

[48] C. Si, W. Chen, W. Wang, L. Wang, T. Tan, An attention enhanced graph
convolutional lstm network for skeleton-based action recognition, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 1227–1236.

[49] S. Cho, M. Maqbool, F. Liu, H. Foroosh, Self-attention network for skeleton-based
human action recognition, in: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2020, pp. 635–644.

[50] S. Song, C. Lan, J. Xing, W. Zeng, J. Liu, An end-to-end spatio-temporal attention
model for human action recognition from skeleton data, in: Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 31, 2017.

[51] M.E. Newman, A measure of betweenness centrality based on random walks,
Social Networks 27 (1) (2005) 39–54.

[52] F. Fouss, A. Pirotte, J.-M. Renders, M. Saerens, Random-walk computation
of similarities between nodes of a graph with application to collaborative
recommendation, IEEE Trans. Knowl. Data Eng. 19 (3) (2007) 355–369.

[53] R. Andersen, F. Chung, K. Lang, Local graph partitioning using pagerank vectors,
in: 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), IEEE, 2006, pp. 475–486.

[54] O. Levy, Y. Goldberg, I. Dagan, Improving distributional similarity with lessons
learned from word embeddings, Trans. Assoc. Comput. Linguist. 3 (2015)
211–225.

[55] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, arXiv preprint arXiv:1609.02907.

[56] N. Kanwal, G. Rizzo, Attention-based clinical note summarization, in: Proceedings
of the 37th ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 813–820.

[57] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D.F. Wong, L.S. Chao, Learning deep
transformer models for machine translation, 2019, arXiv preprint arXiv:1906.
01787.

[58] A. Baevski, M. Auli, Adaptive input representations for neural language modeling,
2018, arXiv preprint arXiv:1809.10853.

[59] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), 2016, arXiv preprint
arXiv:1606.08415.

[60] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, D. Tran, Image
transformer, in: International Conference on Machine Learning, PMLR, 2018, pp.
4055–4064.

[61] I. Bello, B. Zoph, A. Vaswani, J. Shlens, Q.V. Le, Attention augmented convo-
lutional networks, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 3286–3295.

[62] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-
end object detection with transformers, in: European Conference on Computer
Vision, Springer, 2020, pp. 213–229.

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019) 8026–8037.

[64] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, N. Zheng, View adaptive recurrent
neural networks for high performance human action recognition from skeleton
data, in: CVPR, 2017, pp. 2117–2126.

[65] Y. Tang, Y. Tian, J. Lu, P. Li, J. Zhou, Deep progressive reinforcement learning
for skeleton-based action recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 5323–5332.

[66] L. Huang, Y. Huang, W. Ouyang, L. Wang, Part-level graph convolutional network
for skeleton-based action recognition, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34, 2020, pp. 11045–11052.

[67] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, Q. Tian, Actional-structural graph
convolutional networks for skeleton-based action recognition, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
3595–3603.

[68] M. Wang, B. Ni, X. Yang, Learning multi-view interactional skeleton graph for
action recognition, IEEE Trans. Pattern Anal. Mach. Intell. (2020).

http://refhub.elsevier.com/S1047-3203(23)00142-6/sb13
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb13
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb13
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb13
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb13
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb14
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb14
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb14
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb14
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb14
http://arxiv.org/abs/2010.11929
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb16
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb17
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb17
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb17
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb17
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb17
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb18
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb18
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb18
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb18
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb18
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb19
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb19
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb19
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb20
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb20
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb20
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb20
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb20
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb21
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb21
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb21
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb21
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb21
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb22
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb22
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb22
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb22
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb22
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb23
http://arxiv.org/abs/1805.11921
http://arxiv.org/abs/1805.11921
http://arxiv.org/abs/1805.11921
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb25
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb25
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb25
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb25
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb25
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb26
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb27
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb27
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb27
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb27
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb27
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb28
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb28
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb28
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb28
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb28
http://arxiv.org/abs/2102.00719
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb30
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb30
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb30
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb30
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb30
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb31
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb31
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb31
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb31
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb31
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb32
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb32
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb32
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb32
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb32
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb33
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb33
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb33
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb33
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb33
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb34
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb34
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb34
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb34
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb34
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb35
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb35
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb35
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb35
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb35
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb36
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb36
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb36
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb37
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb37
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb37
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb38
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb38
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb38
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb38
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb38
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb39
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb39
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb39
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb39
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb39
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb40
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb40
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb40
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb40
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb40
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb41
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb41
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb41
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb42
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb42
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb42
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb43
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb43
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb43
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb43
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb43
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb44
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb44
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb44
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb44
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb44
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb45
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb45
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb45
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb45
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb45
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb46
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb46
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb46
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb46
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb46
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb47
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb47
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb47
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb47
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb47
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb48
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb49
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb49
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb49
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb49
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb49
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb50
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb50
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb50
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb50
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb50
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb51
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb51
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb51
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb52
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb52
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb52
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb52
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb52
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb53
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb53
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb53
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb53
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb53
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb54
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb54
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb54
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb54
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb54
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb56
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb56
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb56
http://arxiv.org/abs/1906.01787
http://arxiv.org/abs/1906.01787
http://arxiv.org/abs/1906.01787
http://arxiv.org/abs/1809.10853
http://arxiv.org/abs/1606.08415
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb60
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb60
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb60
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb60
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb60
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb61
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb61
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb61
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb61
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb61
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb62
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb62
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb62
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb62
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb62
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb63
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb63
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb63
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb63
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb63
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb64
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb64
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb64
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb64
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb64
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb65
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb65
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb65
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb65
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb65
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb66
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb66
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb66
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb66
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb66
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb67
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb68
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb68
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb68


Journal of Visual Communication and Image Representation 95 (2023) 103892T. Ahmad et al.
[69] W. Peng, J. Shi, G. Zhao, Spatial temporal graph deconvolutional network for
skeleton-based human action recognition, IEEE Signal Process. Lett. 28 (2021)
244–248.

[70] K. Cheng, Y. Zhang, C. Cao, L. Shi, J. Cheng, H. Lu, Decoupling gcn with
dropgraph module for skeleton-based action recognition, in: Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXIV 16, Springer, 2020, pp. 536–553.

[71] H.-g. Chi, M.H. Ha, S. Chi, S.W. Lee, Q. Huang, K. Ramani, Infogcn: Represen-
tation learning for human skeleton-based action recognition, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 20186–20196.

Tasweer Ahmad received the bachelor’s degree in electrical
engineering from the University of Engineering and Tech-
nology, Taxila, Pakistan, in 2007, and the master’s degree
from the University of Engineering and Technology, Lahore,
Pakistan, in 2009. He studied for the Ph.D. degree at South
China University of Technology, China. He has been an
Instructor at the Government College University, Lahore,
from 2010 to 2015, and with the COMSATS University
Islamabad, Sahiwal Campus, Pakistan, from 2015 to 2016.
His current research interests include image processing,
computer vision, and machine learning.
11
Syed Tahir Hussain Rizvi received the Ph.D. degree
in computer and control engineering from Politecnico di
Torino, Italy, in 2018. He is an experienced researcher and
instructor with a demonstrated history of working in the
academia and industry. From 2021 to 2023, he worked
as a Post-Doctoral Researcher in Department of Electronics
and Telecommunications of Politecnico di Torino, Italy on
a funded industrial project by Telecom Italia. He recently
joined the University of Stavanger as Researcher in Image
Processing and Machine Learning. His research interests
include the efficient realization of algorithms on embed-
ded systems and applying machine learning to real world
problems.

Neel Kanwal received bachelor’s degree in electronics en-
gineering from the National University of Computer and
Emerging Sciences Pakistan in 2015 and M.Sc. degree in
communication and computer networks engineering from
the Politecnico di Torino, Italy, in 2020. He is currently
pursuing a Ph.D. degree at the University of Stavanger
(UiS), Norway. He worked as a Laboratory Engineer at FAST
University, Karachi. He is also a Biomedical Data Analysis
Laboratory member at the Department of Electrical Engi-
neering and Computer Science, UiS. His research interests
include preprocessing, segmentation, and anonymization of
histological whole slide images.

http://refhub.elsevier.com/S1047-3203(23)00142-6/sb69
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb69
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb69
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb69
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb69
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb70
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71
http://refhub.elsevier.com/S1047-3203(23)00142-6/sb71

	Transforming spatio-temporal self-attention using action embedding for skeleton-based action recognition
	Introduction
	Background
	Action Embedding
	Transformers in Action Recognition
	Skeleton-based Action Recognition

	Methodology
	Action Embedding
	Link Prediction for Action Recognition

	Self-Attention Transformer Network
	Action Recognition

	Experiment Setup and Results
	Datasets
	Implementation
	Ablation Study
	Efficacy of Action-Embedding Transformer
	Transformer Depth
	Link Prediction using Different Methods

	Comparison against the State-of-the-art

	Visualization
	Conclusion
	Declaration of competing interest
	Data availability
	References


