2,740 research outputs found

    On the impact of the GOP size in a temporal H.264/AVC-to-SVC transcoder in baseline and main profile

    Get PDF
    Scalable video coding is a recent extension of the advanced video coding H.264/AVC standard developed jointly by ISO/IEC and ITU-T, which allows adapting the bitstream easily by dropping parts of it named layers. This adaptation makes it possible for a single bitstream to meet the requirements for reliable delivery of video to diverse clients over heterogeneous networks using temporal, spatial or quality scalability, combined or separately. Since the scalable video coding design requires scalability to be provided at the encoder side, existing content cannot benefit from it. Efficient techniques for converting contents without scalability to a scalable format are desirable. In this paper, an approach for temporal scalability transcoding from H.264/AVC to scalable video coding in baseline and main profile is presented and the impact of the GOP size is analyzed. Independently of the GOP size chosen, time savings of around 63 % for baseline profile and 60 % for main profile are achieved while maintaining the coding efficiency

    Scalable Video Coding

    Get PDF
    International audienceWith the evolution of Internet to heterogeneous networks both in terms of processing power and network bandwidth, different users demand the different versions of the same content. This has given birth to the scalable era of video content where a single bitstream contains multiple versions of the same video content which can be different in terms of resolutions, frame rates or quality. Several early standards, like MPEG2 video, H.263, and MPEG4 part II already include tools to provide different modalities of scalability. However, the scalable profiles of these standards are seldom used. This is because the scalability comes with significant loss in coding efficiency and the Internet was at its early stage. Scalable extension of H.264/AVC is named scalable video coding and is published in July 2007. It has several new coding techniques developed and it reduces the gap of coding efficiency with state-of-the-art non-scalable codec while keeping a reasonable complexity increase. After an introduction to scalable video coding, we present a proposition regarding the scalable functionality of H.264/AVC, which is the improvement of the compression ratio in enhancement layers (ELs) of subband/wavelet based scalable bitstream. A new adaptive scanning methodology for intra frame scalable coding framework based on subband/wavelet coding approach is presented for H.264/AVC scalable video coding. It takes advantage of the prior knowledge of the frequencies which are present in different higher frequency subbands. Thus, by just modification of the scan order of the intra frame scalable coding framework of H.264/AVC, we can get better compression, without any compromise on PSNR

    Method of Scalable Video Coding

    Get PDF
    A method of scalable video coding in which the video signal is processed and coded at various layers of spatial resolution where between each pair of spatial layers a prediction mechanism is enabled which allows a comparison at homologous layers of spatial resolution with the aim to obtain a good efficiency

    VECTORS: Video communication through opportunistic relays and scalable video coding

    Full text link
    Crowd-sourced video distribution is frequently of interest in the local vicinity. In this paper, we propose a novel design to transfer such content over opportunistic networks with adaptive quality encoding to achieve reasonable delay bounds. The video segments are transmitted between source and destination in a delay tolerant manner using the Nearby Connections Android library. This implementation can be applied to multiple domains, including farm monitoring, wildlife, and environmental tracking, disaster response scenarios, etc. In this work, we present the design of an opportunistic contact based system, and we discuss basic results for the trial runs within our institute.Comment: 13 pages, 6 figures, and under 3000 words for submission to the SoftwareX journa

    Fast mode decision algorithm

    Get PDF
    Fast mode decision is the developed algorithm intended for selectively choosing the mode decision used by the encoder. The default is the scalable video coding model \vhich is represented by Joint Scalable Video Model (JSVM). It has many mode decisions which are involved during the encoding process. The mode decisions are applied for motion prediction, either intra or inter prediction. Mode decisions in scalable video coding are the features which are available in previous video coding standard and some added features which are in line \vith scalabilit

    New rate adaptation method for JPEG2000-based SNR Scalable Video Coding with Integer Linear Programming models

    Get PDF
    Abstract—In the last few years scalable video coding emerged as a promising technology for efficient distribution of videos through heterogeneous networks. In a heterogeneous environment, the video content needs to be adapted in order to meet different end terminal capability requirements (user adaptation) or fluctuations of the available bandwidth (network adaptation). Consequently, the adaptation problem is a critical issue in scalable video coding design. In this paper we introduce a new adaptation method for a proposed JPEG2000-based SNR scalable codec, that formulates and solves the adaptation problem as an Integer Linear Programming problem

    Generic techniques to improve SVC enhancement layer encoding: digest of technical papers

    Get PDF
    Scalable video coding is an important mechanism to provide different types of end-user devices with different versions of the same encoded bitstream. However, scalable video encoding remains a computationally expensive operation. To decrease the complexity we propose generic techniques. These techniques can also be combined with existing fast mode decision modes. We show that extending these existing techniques yield an average complexity reduction of 87%

    An H.264/AVC to SVC TemporalTranscoder in baseline profile: digest of technical papers

    Get PDF
    Scalable Video Coding provides temporal, spatial and quality scalability using layers within the encoded bitstream. This feature allows the encoded bitstream to be adapted to different devices and heterogeneous networks. This paper proposes a technique to convert an H.264/AVC bitstream in Baseline profile to a scalable stream which provides temporal scalability. Applying the presented approach, a reduction of 65% of coding complexity is achieved while maintaining the coding efficiency
    corecore