138 research outputs found

    Pembentukan Dataset Token Sentimen Berdasarkan Akun Instagram Brand Elektronik Menggunakan K-Nearest Neighbors

    Get PDF
    Abstract. Generating Sentiment Token Dataset Based on Electronics Brand Instagram Account using K-Nearest Neighbors. Instagram is currently one of the most popular social media platforms for businesses and brand owners to promote their products. Because Instagram is a two-way communication platform, people can respond to any promotional content posted on Instagram. People's reactions come in a variety of form, and frequently include both positive and negative sentiment. This study aims to identify the words used in one type of sentiment, then use the K-NN approach to construct a token dataset by summarizing the phrases in many labels according to the sentiment type. The total accuracy value of the dataset for K = 1 is 33.38% (positive), 59.96% (negative), and 56.60% (neutral) based on the results of the tests performed.Keywords: sentiment analysis, K-Nearest Neighbors, dataset, InstagramAbstrak. Instagram saat ini menjadi salah satu media sosial yang banyak digunakan oleh perusahaan atau pemilik brand untuk melakukan promosi terhadap produk-produk yang dimilikinya. Karena bersifat dua arah, masyarakat dapat memberikan respon terhadap aktivitas promosi yang dilakukan oleh sebuah perusahaan melalui Instagram. Respon dari masyarakat memiliki varian yang beragam dan seringkali mengandung unsur sentimen baik positif maupun negatif. Penelitian ini mencoba untuk mengidentifikasi kata-kata yang digunakan dalam satu jenis sentimen, kemudian membuat dataset token dengan cara merangkum kata-kata tersebut dalam beberapa label sesuai jenis sentimen masing-masing menggunakan metode K-NN. Berdasarkan hasil pengujian yang dilakukan, didapatkan nilai akurasi dari dataset sebesar 33.38% (positif), 59.96% (negatif), dan 56.60% (netral) untuk K = 1.Kata Kunci: analisis sentimen, K-Nearest Neighbors, dataset, Instagra

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach

    Full text link
    Distance-based outlier detection is widely adopted in many fields, e.g., data mining and machine learning, because it is unsupervised, can be employed in a generic metric space, and does not have any assumptions of data distributions. Data mining and machine learning applications face a challenge of dealing with large datasets, which requires efficient distance-based outlier detection algorithms. Due to the popularization of computational environments with large memory, it is possible to build a main-memory index and detect outliers based on it, which is a promising solution for fast distance-based outlier detection. Motivated by this observation, we propose a novel approach that exploits a proximity graph. Our approach can employ an arbitrary proximity graph and obtains a significant speed-up against state-of-the-art. However, designing an effective proximity graph raises a challenge, because existing proximity graphs do not consider efficient traversal for distance-based outlier detection. To overcome this challenge, we propose a novel proximity graph, MRPG. Our empirical study using real datasets demonstrates that MRPG detects outliers significantly faster than the state-of-the-art algorithms

    Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded Matrices for Parallel Computing

    Get PDF
    Sequential and parallel algorithms based on the LU factorization or the QR factorization have been intensely studied and widely used in the problems of computation with large-scale ill-conditioned banded matrices. Great concerns on existing methods include ill-conditioning, sparsity of factor matrices, computational complexity, and scalability. In this dissertation, we study a sparse orthogonal factorization of a banded matrix motivated by parallel computing. Specifically, we develop a process to factorize a banded matrix as a product of a sparse orthogonal matrix and a sparse matrix which can be transformed to an upper triangular matrix by column permutations. We prove that the proposed process requires low complexity, and it is numerically stable, maintaining similar stability results as the modified Gram-Schmidt process. On this basis, we develop a parallel algorithm for the factorization in a distributed computing environment. Through an analysis of its performance, we show that the communication costs reach the theoretical least upper bounds, while its parallel complexity or speedup approaches the optimal bound. For an ill-conditioned banded system, we construct a sequential solver that breaks it down into small-scale underdetermined systems, which are solved by the proposed factorization with high accuracy. We also implement a parallel solver with strategies to treat the memory issue appearing in extra large-scale linear systems of size over one billion. Numerical experiments confirm the theoretical results derived in this thesis, and demonstrate the superior accuracy and scalability of the proposed solvers for ill-conditioned linear systems, comparing to the most commonly used direct solvers

    Unsupervised learning on social data

    Get PDF

    A Mixture Model for Heterogeneous Data with Application to Public Healthcare Data Analysis

    Get PDF
    In this thesis we present an algorithm for doing mixture modeling for heterogeneous data collections. Our model supports using both Gaussian- and Bernoulli distributions, creating possibilities for analysis of many kinds of different data. A major focus is spent to developing scalable inference for the proposed model, so that the algorithm can be used to analyze even a large amount of data relatively fast. In the beginning of the thesis we review some required concepts from probability theory and then proceed to present the basic theory of an approximate inference framework called variational inference. We then move on to present the mixture modeling framework with examples of the Gaussian- and Bernoulli mixture models. These models are then combined to a joint model which we call GBMM for Gaussian and Bernoulli Mixture Model. We develop scalable and efficient variational inference for the proposed model using state-of-the-art results in Bayesian inference. More specifically, we use a novel data augmentation scheme for the Bernoulli part of the model coupled with overall algorithmic improvements such as incremental variational inference and multicore implementation. The efficiency of the proposed algorithm over standard variational inference is highlighted in a simple toy data experiment. Additionally, we demonstrate a scalable initialization for the main inference algorithm using a state-of-the-art random projection algorithm coupled with k-means++ clustering. The quality of the initialization is studied in an experiment with two separate datasets. As an extension to the GBMM model, we also develop inference for categorical features. This proves to be rather difficult and our presentation covers only the derivation of the required inference algorithm without a concrete implementation. We apply the developed mixture model to analyze a dataset consisting of electronic patient records collected in a major Finnish hospital. We cluster the patients based on their usage of the hospital's services over 28-day time intervals over 7 years to find patterns that help in understanding the data better. This is done by running the GBMM algorithm on a big feature matrix with 269 columns and more than 1.7 million rows. We show that the proposed model is able to extract useful insights from the complex data, and that the results can be used as a guideline and/or preprocessing step for possible further, more detailed analysis that is left for future work

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models
    • …
    corecore