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In this thesis we present an algorithm for doing mixture modeling for heterogeneous data collec-

tions. Our model supports using both Gaussian- and Bernoulli distributions, creating possibilities

for analysis of many kinds of di�erent data. A major focus is spent to developing scalable inference

for the proposed model, so that the algorithm can be used to analyze even a large amount of data

relatively fast.

In the beginning of the thesis we review some required concepts from probability theory and then

proceed to present the basic theory of an approximate inference framework called variational

inference. We then move on to present the mixture modeling framework with examples of the

Gaussian- and Bernoulli mixture models. These models are then combined to a joint model which

we call GBMM for Gaussian and Bernoulli Mixture Model. We develop scalable and e�cient varia-

tional inference for the proposed model using state-of-the-art results in Bayesian inference. More

speci�cally, we use a novel data augmentation scheme for the Bernoulli part of the model coupled

with overall algorithmic improvements such as incremental variational inference and multicore

implementation. The e�ciency of the proposed algorithm over standard variational inference is

highlighted in a simple toy data experiment. Additionally, we demonstrate a scalable initialization

for the main inference algorithm using a state-of-the-art random projection algorithm coupled

with k-means++ clustering. The quality of the initialization is studied in an experiment with two

separate datasets. As an extension to the GBMM model, we also develop inference for categorical

features. This proves to be rather di�cult and our presentation covers only the derivation of the

required inference algorithm without a concrete implementation.

We apply the developed mixture model to analyze a dataset consisting of electronic patient records

collected in a major Finnish hospital. We cluster the patients based on their usage of the hospital's

services over 28-day time intervals over 7 years to �nd patterns that help in understanding the data

better. This is done by running the GBMM algorithm on a big feature matrix with 269 columns

and more than 1.7 million rows. We show that the proposed model is able to extract useful insights

from the complex data, and that the results can be used as a guideline and/or preprocessing step

for possible further, more detailed analysis that is left for future work.
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Chapter 1

Introduction

1.1 Background

Every day, an enormous amount of data is collected in the world by differ-
ent sensors, social media updates, online transactions etc. The related huge
datasets are often called examples of big data. Many companies and institu-
tions, as well as ordinary people, could benefit from analyzing this data, but
unfortunately the volume and complexity of the data often make the task
too hard for humans. Following the increase in computing power in the re-
cent years, machine learning has become the major tool for processing huge
volumes of this data automatically. In fact, we use these systems every day
for example to find movie recommendations, recognize faces, fraud detection
and bunch of other things. Recent news about a Go-playing AI1 beating
top human players, self driving cars making their way into public roads, and
others are making machine learning and ’data science’ known topics to the
ordinary people as well.

In this thesis we focus on a subfield of machine learning called unsuper-
vised machine learning, which is a general term for methods that try to find
some structure in unlabeled data. The idea for the subject of this thesis
came from a possibility to work with a digitalized healthcare application.
We were provided a data set consisting of electronic patient records collected
in a major Finnish hospital over a time period of 7 years. The goal of our

1Go is a traditional Chinese board game, often described as one of the most complex
games in the world. Creating an AI that can beat the top players in the world is thought
to be a major feat.
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research is to understand the complex data better by means of statistical
analysis and visualizations of the findings.

We approach the problem by creating a machine learning model that
can automatically find relevant patterns in the data. More specifically, we
specify a Bayesian mixture model that finds similar groups of examples within
heterogeneous data collections. Solving this type of a problem is generally
called clustering. The data was preprocessed so that our samples depict one
month-long time periods of the patients based on the treatment they received
during that month. We then cluster the (patient, time interval)- tuples and
use the results to create different visualizations that describe the data. We
also look for insights that would provide motivation for further analysis that
can be left for future work.

From a technical point of view, we pay special attention to the scalability
and efficiency of our solution. The approach we take on inference is based
on so called variational inference, which has lately gotten a lot of attention
due to its ability to scale up to big data.

1.2 Structure of the thesis

We begin by going through necessary background from probability theory and
Bayesian statistics in Chapter 2. Chapter 3 introduces the basic principles of
the standard variational inference and also discusses some of the more recent
developments that are used to make the inference faster and more scalable.
Together these two chapters review the core methodology that is used to
develop inference for the models presented in the later chapters.

Chapter 4 is used to specify two common mixture models, namely the
Gaussian- and Bernoulli mixture models. The notation established here will
be used later, most importantly in Chapter 5 that contains the main technical
contributions of the thesis. First, the mixture models for heterogeneous data
is specified by combining the Gaussian- and Bernoulli mixture models from
Chapter 4 to a joint mixture model. The rest of the chapter is used to explain
the inference related to the model.

In Chapter 6 we show a multinomial mixture model could be specified
using a probit data augmentation. We also briefly discuss recent results
which would offer a better, more practical way of implementing the model.

Chapter 7 is used to discuss the application to the public healthcare
dataset. We describe how the modeling was done and provide visualizations
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of the results.
Finally, the conclusions are presented in Chapter 8, while the technical

details concerning the inference algorithms in Chapters 5 and 6 are shown in
Appendices A and B.

1.3 Contributions of the thesis

The main contributions of the thesis are as follows:

1. We specify a hierarchical, fully Bayesian mixture model for clustering
heterogeneous data. A state-of-the-art data augmentation scheme is
employed to make efficient variational inference possible.

2. We present scalable inference for the model using some of the very
latest results in Bayesian inference and machine learning. The core
parts of the inference process are:

– Scalable initialization for the main inference algorithm using a ran-
dom projection k-means(++) algorithm. We empirically demon-
strate the performance of the algorithm in two separate experi-
ments.

– Scalable and fast incremental variational inference for the pre-
sented mixture model.

– A simple parallel implementation of the proposed incremental
variational inference algorithm that runs on multiple CPU cores
for faster computation speed with large datasets.

The proposed multicore implementation of the incremental variational
inference algorithm is shown to offer substantially faster computation
speeds over the default variational inference in a toy data experiment.

3. Application of our model to digitalized healthcare. We cluster a dataset
that contains over 1.7 million data points that are represented by 269-
dimensional feature vectors. We present visualizations that charac-
terize the found clusters and how they relate to for example to death
probabilities of the patients and the number of days they will be treated
in the hospital in the future.
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Chapter 2

Preliminaries

2.1 Review of probability

In this section we review probability theory in sufficient detail for the pur-
poses of this thesis. A more rigorous treatment of the presented results can
be found in textbooks such as [40] or [46].

2.1.1 Random variables and random vectors

A triplet (Ω,F , P ) is called a probability space if

(i) Ω is a nonempty set.

(ii) F ⊂ Ω is a σ-algebra.

(iii) P is a probability measure on (Ω,F), i.e. P is a measure on (Ω,F) and
P (Ω) = 1.

The set Ω is called sample space and the sets A ∈ F events.
A measurable function

X : Ω→ R
is called a (real) random variable. In a similar fashion, a measurable function

X : Ω→ Rn

is called a random vector. We consider the vectors be represented as column
vectors by default. A shorthand notation r.v. is used to denote both random
variables and random vectors.
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We define the indicator random variable of an event A ⊂ Rn by setting

1A(ω) =

{
1, if ω ∈ A,
0, otherwise.

We use the well established notation from probability theory and do not
explicitly write down the argument ω when operating with random variables.

2.1.2 Distributions

The distribution of a random vector X is a probability measure PX defined
by

PX(A) = P (X−1(A)) forA ∈ Rn.

If µ = PX we write X ∼ µ for X ’follows the distribution µ’.
The (cumulative) distribution function of a random vector X is defined

by
FX(x) = PX(X ≤ x), x ∈ Rn.

The distribution function completely determines the distribution of X.
If the sample space Ω is at most countably infinite, we say that the

distribution of a random vector X defined in the corresponding probability
space is discrete. We then define the probability mass function (called often
simply pmf) of X by

fX(x) = P (X1 = x1, ..., Xn = xn).

We note that from the properties of the probability measure P it follows that
0 ≤ fX ≤ 1 and

∑
x fX(x) = 1.

The distribution of a random vector X is called continuous if for any set
A ∈ Rn we have

P (X ∈ A) =

∫
A

fX(x) dx.

In such case we call fX the probability density function or simply the density
of X (abbreviated pdf). The probability density function is not unique as it
can be freely altered in a set that has measure zero. When calling two prob-
ability densities equal we thus understand them to be equal almost surely,
often abbreviated a.s. in the literature, meaning they differ only in a set that
has zero measure.
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For the rest of the chapter we will formulate the results for continuous
random variables. The same results apply also to the discrete case and they
are obtained by simply replacing the integrals with sums.

Let X = (X1, X2)
T be a random vector with a continuous distribution.

The distribution of Xi alone (i = 1, 2) is called a marginal distribution of
Xi. The marginal distributions can be found by integrating the joint density
over the remaining variable, e.g.

fX1(x1) =

∫
fX1,X2(x1, x2) dx2,

which is also called marginalization.
An important formula in Bayesian inference is the formula for conditional

density : given X2 = x2 the conditional density of X1 is given by

fX1|X2(x1|x2) =

{
fX1,X2

(x1,x2)

fX2
(x2)

, iffX2(x2) > 0,

0, otherwise.

Note that the denominator is found by marginalizing the joint density fX1,X2 .
From the above formula we also get the multiplication rule

fX1,X2(x1, x2) = fX1|X2(x1|x2)fX2(x2).

We note that the above formulas for marginal and conditional distributions
work similarly also in the multidimensional setting and for joint distributions
where some variables are discrete and some are continuous. In such cases we
simply integrate over the continuous variables and sum over the discrete
variables.

2.1.3 Independence and conditional independence

We say that random vectors X1, ..., Xn are independent if their joint distri-
bution function factorizes as

FX1,...,Xn(x1, ..., xn) =
n∏
i=1

FXi
(xi),

for all values of x1, ..., xn. If the random vectors in addition have the same
distribution µ, we often use a shorthand notation and say that the Xi are
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independent and identically distributed (i.i.d.) and follow the distribution µ.
If this is the case, then also the joint pdf and the joint pmf factorize similarly
the product of the marginal pdf’s and pmf’s. If for all values of x1, ..., xn and
y we have

fX1,...,Xn|Y (x1, ..., xn|y) =
n∏
i=1

fXi|Y (xi|y),

then X1, ..., Xn are called conditionally independent given Y .
One remark concerning the notation: For the most parts of the thesis

we will use a shorthand notation, usually p(·), to denote any probability
distribution without explicitly showing the relating r.v. in the subscript.
This notation is well established in statistics literature and helps to avoid
unnecessary cluttering of notation, especially when working with complex
statistical models with several variables.

2.1.4 Expectations

Let X be a continuous random variable or a random vector and g a measur-
able function. The expected value (also expectation or mean) of the transfor-
mation g(X) is given by

E[g(X)] =

∫
g(x)fX(x) dx,

whenever the result is finite. The expectation is either a scalar or a vector,
depending on g and the dimensionality of X. If X ∈ R and g(x) = xk, we call
the result the kth moment of X. Note that the expectations are by default
calculated with respect to the measure µ = PX . If we want to calculate the
expectation with respect to another distribution, say ν, we write Eν [·]. This
notation is used throughout the thesis, as we will be constantly calculating
expectations of the same distribution under different probability measures.

The variance of a random variable X is defined as

Var(X) = E[(X − E[X])2].

Using the definition of variance and the linearity of expectation it is easy to
check that the important formula

Var(X) = E[X2]− (E[X])2
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holds. If X ∈ Rn is a random vector it’s covariance is defined as the n × n
matrix

Cov(X) = E[(X − E[X])(X − E[X])T].

For the diagonal elements it is true that

[Cov(X)]ii = Var(Xi), i = 1, ..., n.

Finally, we define the conditional expectation of X given another random
variable Y . We begin by defining the conditional expectation of X given
Y = y by

E[X|Y = y] =

∫
xfX|Y (x|y) dx.

For a fixed y we thus have E[X|Y = y] = g(y) for some function g. We then
extend the formula by calling the conditional expectation of X given Y the
random variable E[X|Y ] for which

E[X|Y ] = g(Y ), where g(y) = E[X|Y = y].

A useful property of the conditional expectation is the tower property, which
tells us that we can calculate the expectation of X iteratively by first condi-
tioning on another r.v. Y as

E[X] = EY [EX|Y [X|Y ]].

2.1.5 Strong law of large numbers and Monte Carlo
integration

Let X and X1, X2, ..., Xn be i.i.d. random variables with finite expectations.
Additionally denote E[X] = µ and Sn =

∑n
i=1(Xi − µ). The strong law of

large numbers states that

P
[

lim
n→∞

∣∣∣Sn
n

∣∣∣ = 0
]

= 1,

which means that the sample average
∑n

i=1Xi/n converges to the mean µ
almost surely as n tends to infinity. This can be used to approximate certain
expectations by sampling.
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Let g be a function such that the expectation E[g(X)] is finite. If we
know how to sample from the distribution of X, the Monte Carlo integral of
g(X) can be computed as

E[g(X)] =

∫
g(x)fX(x) dx ≈ 1

n

n∑
i=1

g(xi),

where xi are independent samples drawn from the distribution of X. The
strong law of large numbers guarantees that the estimate on the right hand
side converges to the true value of the expectation.

2.2 About Bayesian inference

In this section we present some basic principles behind Bayesian inference.
More details about the topics touched here can be found for example in [26].

Suppose we have observed some data x and specified a model (probabil-
ity distribution) that we think is generating the data. Denoting the model
parameters by θ, the distribution of the observations, p(x|θ), is called a
sampling distribution.

In Bayesian inference we are often interested in predicting the value of
future data x̃ given the already observed data x. This is done by finding the
posterior predictive distribution p(x̃|x) of the new data by integrating θ out
in the joint distribution p(x̃,θ|x):

p(x̃|x) =

∫
p(x̃|θ)p(θ|x) dθ.

Here p(θ|x) is the posterior distribution of the parameters conditioned on
the data. Often times also the posterior distribution itself is of particular
interest. This is very much the case in this thesis, as we focus on creating a
model for the current data without the need to find the posterior predictive
distribution at all. Regardless of the end goal, posterior inference is essential
in the process.

The posterior distribution is calculated using Bayes’ theorem as the con-
ditional density

p(θ|x) =
p(x|θ)p(θ)

p(x)
. (2.1)

In this context we have already observed the data and the quantity p(x|θ)
is called the likelihood of the model. In order to use the formula we also
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have to specify a prior distribution p(θ) for the parameters. This is a part
of the model selection and is usually handled by choosing a standard prior
distribution whose parameters are then set to values that represent our prior
thoughts about the true parameter values. Another common option is to
assign an uninformative prior such as the uniform distribution for the pa-
rameters. In this case the interpretation is that we have no particular idea
of the true parameter values before we are acquire any data. Another ob-
servation we notice in formula (2.1) is that the normalizing constant p(x),
called marginal likelihood, is possibly a high dimensional integral and often
very difficult to evaluate analytically. Fortunately, the posterior can also be
calculated only up to a constant as

p(θ|x) ∝ p(x|θ)p(θ), (2.2)

after which it may be possible to normalize the expression by recognizing the
functional form of the distribution in question.

2.2.1 The exponential family and conjugate priors

The distributions belonging to the exponential family of distributions are of
the form

p(x|θ) = h(x)g(θ) exp{θT t(x)}, (2.3)

where h, g and t are some functions. This definition is also called the canoni-
cal form of exponential family distributions. The parameters θ are here called
the natural parameters of the distribution and t(x) is the sufficient statis-
tic. The word ’sufficient’ highlights the fact that the distribution depends on
the data x only through the function t (the term h(x) is just a normalizing
constant). From the definition we easily see that the sufficient statistics here
are additive: If x1, ...,xn are i.i.d. random variables from an exponential
family distribution, then the joint distribution p(x|θ) =

∏N
n=1 p(xn|θ) is also

in the exponential family and the corresponding sufficient statistic is given
by
∑N

n=1 t(xn).
A worthy note is that the exponential family is in the heart of an impor-

tant class of statistical models called generalized linear models (GLM) [53],
and various other models. Many commonly used distributions, for example
gamma, Gaussian and Dirichlet distributions belong to the exponential fam-
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ily1. This serves as a good motivation for its applications, as the generic
form in (2.3) can be used to derive many useful results for a wide range of
distributions at the same time.

A prior distribution p(θ) is called a conjugate prior of a sampling distri-
bution p(x|θ) if the posterior p(θ|x) is of the same functional form as the
prior. If the prior is chosen as conjugate, then recognizing the posterior by
looking at the unnormalized density (2.2) is straightforward. Although in
general the existence of a conjugate prior is not guaranteed, for exponential
family distributions it is always available [8].

2.2.2 Posterior inference

For almost all but the most simple models exact calculation of the posterior
is not possible. In this case finding the solution has to be approached by
other means. An important class of simulation methods called Markov chain
Monte Carlo (MCMC) algorithms can be used to draw correlated samples
from a Markov chain [58] that has the posterior distribution as its equilib-
rium distribution. Popular examples of such algorithms include the Gibbs
sampling- [27] and the Metropolis-Hastings algorithms [31, 54]. These meth-
ods are guaranteed to asymptotically sample from the true posterior, but
there are questions one has to address: How many samples are needed to
represent the posterior in sufficient accuracy? Has the algorithm converged
to the equilibrium distribution reasonably well? How to tune the parameters
so that the sampling is efficient and the parameter space is explored thor-
oughly? Also, in general the computational cost of the sampling algorithms
is often significant even after tuning the parameters for optimal performance.

The other alternative approach is to approximate the posterior by some
simpler distribution. A classical example of this is the Laplace approximation
[67], where the approximating distribution is Gaussian. The upside of the
approximations is the simple interpretation of the model parameters and
usually faster computation time compared to the simulation methods. The
downside is that the result is at best still an approximation to the true
posterior and the fit might not be appropriate for certain models or use cases.
This makes it important to understand the limitations of the approximations
when choosing which method to use for posterior inference.

1Most of the commonly used exponential family distributions are not traditionally
presented in the canonical form in (2.3).
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In this thesis we will focus on method called variational inference [6, 10],
which is an example of a rather general way to approximate the true posterior
by some simpler distribution. An introduction to the method is given in
Chapter 3, after which the derived theory will be used for inference in the
model proposed in Chapter 5.

2.2.3 Data augmentation

Sometimes, when it is hard to work with a complicated joint distribution
p(x,θ) = p(x|θ)p(θ), the problem may be simplified by augmenting the
model with so called latent variables or auxiliary variables z. If the marginal
joint density of the augmented model is the same as the joint density in the
original model, that is ∫

p(x, z,θ) dz = p(x,θ),

we can simply use the augmented joint density instead and forget about the
latent variables when interpreting the results. This is useful if the augmented
posterior p(z,θ|x) can be handled easier than the original posterior p(θ|x).
In this thesis we will use this kind of a construct to augment a mixture
of Bernoulli distributions with suitable latent variables, which makes the
otherwise complicated inference easier.

2.2.4 Plate diagram

Hierarchical Bayesian probability models are often visualized as directed
acyclic graphs (or DAGs) where the nodes depict the parameters and data,
and the edges point out the dependencies between the nodes [14]. A plate
diagram is a specific style of representing these graphs that we adopt in this
thesis.

An example plate diagram of a simple Bayesian model is shown in Fig-
ure 2.1. The model could be for example a generative model for N coin
tosses where θ denotes the probability of landing heads. The unobserved
variables (here the probability parameter θ) are depicted by white nodes and
the observed data (the outcomes of the coin tosses) by the shaded nodes.
The variables inside the plate are replicated as many times as indicated by
the symbol in the corner of the plate. In this thesis we leave the hyper-
parameters out of the plate diagram to make the figures clearer. Finally,
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θ

x

N

Figure 2.1: A plate diagram of a simple graphical model. White nodes
are used to denote the variables in the model while the colored nodes are
used for observed data. The variables inside the plate are replicated by
the number of times indicated here by the symbol N . The edge from θ to
x is used to specify the dependencies in the model. In the example the
joint distribution of the observed data and the model parameters is given by
p(x, θ) = p(θ)

∏N
n=1 p(xn|θ).

the edges between the nodes depict the dependency structure in the model.
For example, here the joint distribution that specifies the model would be
p(x, θ) = p(θ)

∏N
n=1 p(xn|θ). We emphasize the fact that the plate diagram is

mainly used for clarifying the model structure and one still needs to specify
the distributions of all the variables to have a valid statistical model.

2.3 Some probability distributions

This section is used for reviewing the probability distributions and some of
their key properties that will be used in the thesis. Along with the probability
density- and mass functions, we are also interested in certain expected values,
as they will be required when deriving variational inference for models that
use these distributions.

2.3.1 Common distributions

We begin by describing some well known distributions that are extensively
used in statistical modeling.

Normal distribution

A normal (or Gaussian) distribution is arguably the most important and
well studied distribution used in statistics, machine learning and various
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other fields. It arises in countless applications and many natural phenomena
which is one of the reasons of its popularity. It is also a fairly well behaving
from a computational point of view, which makes it even more appealing for
modeling tasks.

A random vector x : Ω → Rn is said to have a (multivariate) normal
distribution with mean vector µ ∈ Rn and positive definite covariance matrix
Σ ∈ Rn×n, denoted by x ∼ N(µ,Σ), if it has a probability density function

p(x) = (2π)−
n
2 |Σ|− 1

2 e−
1
2
(x−µ)TΣ−1(x−µ), x = (x1, ..., xn)T .

Often in Bayesian statistics, and also later in this thesis, the distribution
is parametrized instead by using a precision matrix Λ, which is the inverse
of the covariance matrix of x:

Λ = Σ−1.

Using this parametrization usually leads to slightly more compact notation
when doing standard Bayesian calculations.

The mean and the covariance matrix are conveniently given, as the nam-
ing proposes, as

E[x] = µ

and
Cov(x) = Σ = Λ−1.

The family of normal distributions is closed under affine transformations: If
x ∈ RD, x ∼ N(µ,Σ), b ∈ RD and A ∈ RN×D we have

b + Ax ∼ N(b + Ax,AΣAT ).

A special case of the multivariate normal distribution is acquired when
there is only one component. In this case we say that X has a (univariate)
normal distribution with mean µ and variance σ2, denoted by X ∼ N(µ, σ2).
Using the same alternative parametrization as in the multivariate case, we
denote σ2 = τ−1 and call τ the precision of the distribution. The variance of
a univariate Gaussian is simply the second parameter of the distribution:

Var(X) = σ2 = τ−1.

The density function of a univariate Gaussian is usually denoted by φ and
the corresponding distribution function is given by

Φ(a) =

∫ a

−∞
φ(x) dx,
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which cannot be expressed in terms of elementary functions. However, all
reasonable statistical software packages provide efficient implementations to
evaluate it.

It is a well known result that the marginal distributions of a multivariate
normal distribution are univariate normal distributions. In the special case
of a multivariate normal distribution with diagonal covariance, the density
function also factorizes to the product of the marginal distributions. From a
Bayesian point of view, the normal distribution is a conjugate prior for the
mean of another normal distribution.

Truncated normal distribution

A Gaussian random vector x ∼ N(µ,Σ) is truncated to set C ⊂ Rn if the
probability density function of x is given by

p(x) = P (C)−1N(µ,Σ)1{x∈C}.

The difference to the non-truncated distribution is that the truncated density
is normalized by multiplying with the constant P (C)−1 and its support is
restricted to the set C. We note that other distributions can be truncated in
a similar way.

Gamma distribution

A random variable X : Ω → (0,∞) is said to have a Gamma distribution
with shape a > 0 and rate b > 0, denoted by X ∼ Gamma(a, b), if it has a
probability density function

p(x) =
ba

Γ(a)
xa−1e−bx,

where Γ is the Euler gamma function defined by

Γ(t) =

∫ ∞
0

xt−1e−x dx, t > 0.

The expected value of a Gamma distributed random variable is given by

E[X] =
a

b
.

Gamma distribution is the conjugate prior for the precision of a univariate
normal distribution.
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Normal-Gamma distribution

The normal-gamma distribution is used as a prior for a univariate normal
distribution with unknown mean and precision. A random vector (µ, λ) has
a normal-gamma distribution if it has the joint density

p(µ, λ|µ0, β0, a0, b0) = N(µ|µ0, (β0λ)−1) Gamma(λ|a0, b0),

where N(·|·, ·) and Gamma(·|·, ·) denote the probability density functions of
univariate normal- and gamma distributions respectively. As seen from the
definition, the distribution of λ is a gamma distribution and its moments
are thus easy to calculate. As for µ, the mean is simply µ0 and the second
moment can be found out by applying the tower property of conditional
expectations to the mixed random variable µ|λ.

Bernoulli distribution

A Bernoulli random variable can be though of as the outcome of a single
experiment with two outcomes. Formally, a random variable X : Ω→ {0, 1}
follows a Bernoulli distribution with success probability p, denoted by X ∼
Bernoulli(p), if it has a probability mass function

p(x) = px(1− p)1−x.

The expected value ofX is simply p. The parameter p is often parametrized
by taking the logit-transform of p:

ψ = logit(p) = log
p

1− p.

The resulting parameter ψ is called log-odds. The logit transformation is also
the canonical link function for Bernoulli likelihood in the theory of generalized
linear models, which partly explains its popularity as the parametrization.
There the resulting model is called logistic regression [17, 69]. The inverse
logit-transformation that defines the model likelihood in ψ is given by the
logistic (also called sigmoid) function σ : R→ [0, 1]:

p = σ(ψ) = (1 + e−ψ)−1.

Unfortunately the likelihood p(ψ) is not of any form that could be easily
combined with a prior distribution to yield an analytically tractable posterior.
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In fact, also approximative Bayesian inference requires some effort. In section
2.3.2 we describe a recent data augmentation strategy that deals with this
problem.

It should also noted that the log-odds parametrization is not the only
one used: Another common parametrization arises from using a probit link,
specified by

ψ = Φ−1(p),

where Φ is the distribution function of a standard normal distribution. This
link function results in a generalized linear model known as probit regression
[12], where the idea itself dates back to the 1930’s.

The difference between the logit- and the probit link functions is that the
former has slightly flatter tails. Generally, the logit link might be preferred
because of the intuitive interpretation of modeling log-odds. In this thesis we
choose to use the log-odds parametrization also because of the new data aug-
mentation scheme that makes handling the model with logit parametrization
easier than it would be with the probit link.

Multinomial distribution

A random vector x : Ω → {(x1, ..., xK)T ∈ {0, ..., n}K :
∑K

k=1 xk = n} is
said to have multinomial distribution with a number of trials n > 0 and
event probabilities p1, ..., pK , where

∑K
k=1 pk = 1, if it has a probability mass

function

p(x) =
Γ(
∑K

k=1 xk + 1)∏K
k=1 Γ(xk + 1)

K∏
k=1

pxkk .

We denote this by x ∼ Mult(n,p). The expected value of each component
of a multinomial random vector is given as

E[xk] = npk.

A multinomial distribution is the distribution for the number of observations
in each of the K different categories after n independent trials where the kth
category is chosen with probability pk. A multinomial distribution with one
trial is often called a categorical distribution.

Dirichlet distribution

A random vector x : Ω → {(x1, ..., xK)T ∈ (0, 1)K :
∑K

k=1 xk = 1} has
a K-dimensional Dirichlet distribution with concentration parameter α =
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(α1, ..., αK), denoted by x ∼ Dir(α), if it has a probability density function

p(x) =
1

B(α)

K∏
k=1

xαk−1
k , x = (x1, ..., xn),

where the normalizing constant B(α) is given by

B(α) =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)
.

The expected value of each component xk of x is given by

E[Xk] =
αk∑
k αk

.

Additionally, the expected value of the logarithm of each xk is given by

E[lnxk] = ψ(αk)− ψ(
∑
k

αk),

where ψ is the digamma function defined by

ψ(x) =
d

dx
ln Γ(x).

Dirichlet distribution is the conjugate prior for a multinomial distribution.
We denote a K-dimensional Dirichlet(α,...,α) distribution with SymDir(K,α).

2.3.2 Pólya-Gamma distribution

The Pólya-Gamma distribution was recently introduced by Polson et al. [61]
to provide a new data augmentation strategy for Bayesian inference in mod-
els with binomial likelihoods. In this thesis we use the augmentation to make
variational inference in a Bernoulli mixture model analytically tractable. Be-
low we present the selected properties of the Pólya-Gamma distribution that
will be needed in this thesis.

Definition and properties

A random variable X : Ω → (0,∞) has a Pólya-Gamma distribution with
parameters b > 0 and c ∈ R if it has a density function

p(x) = coshb(c/2)
2b−1

Γ(b)

∞∑
n=0

(−1)n
Γ(n+ 2)

Γ(n+ 1)

(2n+ b)√
2πx3

e−
(2n+b)2

8x
− c2

2
x.
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Alternatively the distribution can be characterized by the relation

X
d
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

,

where gk are i.i.d. Gamma(b, 1)-distributed random variables and
d
= de-

notes equality in distribution. Despite the fact that the density function
looks rather intimidating, the Pólya-Gamma distribution has some attrac-
tive properties.

The general Pólya-Gamma distribution arises from exponential tilting of
a PG(b, 0)-density:

PG(ω|b, c) =
exp(− c2

2
ω)p(ω|b, 0)

Eω[exp(− c2

2
ω)]

, (2.4)

where the expectation in the denominator is taken with respect to a PG(1, 0)-
distribution and given as

Eω[exp(−c
2

2
ω)] = cosh−b(c/2).

This follows from the Laplace transform of a PG(1, 0) distributed random
variable (see Polson et al. for details).

Conveniently, the expectation of a general Pólya-Gamma distribution can
be computed analytically. Let ω ∼ PG(b, c), where c 6= 0. Then the expec-
tation of ω is given by

E[ω] =
b

2c
tanh(c/2).

The main result in Polson et al. states that binomial likelihoods parametrized
by log-odds can be written as a mixture of Gaussians with respect to a Pólya-
Gamma distribution:

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω) dω, (2.5)

where a ∈ R, κ = a − b/2 and ω ∼ PG(b, 0). The result can be applied
for example to the Bernoulli, binomial and negative binomial likelihoods. In
this thesis we will work with the Bernoulli likelihood parametrized with the
log-odds ψ, which can be written as

Bernoulli(x|ψ) =
(eψ)x

1 + eψ
.
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We see that this corresponds to the left hand side in (2.5) with a = x, b = 1
and κ = x− 1/2.

In practice the result is used as in 2.2.3 by explicitly introducing Pólya-
Gamma random variables ω into the model and noting that the unnormalized
likelihood with the augmented variables is given by

p(x, ω|ψ) = p(x|ω, ψ)p(ω) ∝ 2−beκψ−ωψ
2/2p(ω).

The likelihood is quadratic in ψ and thus placing a Gaussian prior on ψ
results in the conditional p(ψ|ω, x) being a Gaussian as well. On the other
hand, the conditional p(ω|ψ, x) is seen to be in the Pólya-Gamma family
since it is acquired by exponential tilting of the PG(b, 0) prior as in (2.4):

p(ω|ψ, x) =
exp(−ωψ2/2)p(ω|b, 0)

Eω[exp(−ωψ2/2)]
= PG(ω|b, ψ).

Knowing these conditional distributions is essential in developing many in-
ference algorithms such as Gibbs sampling and variational inference.

Related work

Since the original paper by Polson et al., the Pólya-Gamma augmentation
strategy has found its way into several applications. Zhou et al. [71] proposed
a state-of-the-art Bayesian univariate negative binomial regression model
with Gibbs sampling and variational inference. Building on top of this work,
Klami et al. [45] developed a novel multivariate regression model for count
valued data and used it to predict public transport passenger counts in a
smart cities application. In 2015, Linderman et al. [50] showed how to use
the augmentation with multinomial data and presented applications in cor-
related topic models and Gaussian processes with multinomial observations
among others. Gan et al. [25] augment deep sigmoid belief networks with
Pólya-Gamma latent variables to derive efficient inference, which is crucial
for deep, multi-layered graphical models. The augmentation has also been
used to improve the inference in logistic topic models [16, 72].
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Chapter 3

Variational Inference

Assume we have some independently observed data samples from our model,
denoted by x, and a set of model parameters and latent variables denoted by
θ. Variational inference (VI) [6, 10] tries to approximate the true posterior
p(θ|x) with some tractable distribution q(θ), called variational distribution,
so that the distributions would be as close to each other as possible. In
this chapter we present the basic theory of variational inference and also go
through the most widely used special case of it called mean-field approxima-
tion. We also discuss some recent developments which can be used to scale
the variational inference further to big data applications. The theory shown
here will be used to derive the inference algorithms for the models that are
presented in Chapters 4, 5 and 6.

3.1 General variational inference framework

In the following we use the integral symbol to denote either integration or
summation for the continuous and discrete parts of the integrand respectively.
One common way to find the approximating distribution is to minimize the
Kullback-Leibler (KL) divergence of the true posterior p from the variational
distribution q. The KL divergence in this case is given by

DKL(q||p) = −
∫
q(θ) ln

p(θ|x)

q(θ)
dθ. (3.1)

Without a proof we note that the KL divergence is not a metric since it is
not symmetric and does not satisfy the triangle inequality. Also it is always
nonnegative and zero only if p = q almost surely.
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Rewriting (3.1) and rearranging the terms gives

ln p(x) = L(q) +DKL(q||p), (3.2)

where the term

L(q) =

∫
q(θ) ln

p(x,θ)

q(θ)
dθ (3.3)

is called variational free energy or evidence lower bound (ELBO).
As the KL divergence is always nonnegative we see that L(q) gives a lower

bound on the log-evidence ln p(x). Because the log-evidence is a constant,
the KL divergence can be minimized by equivalently maximizing L(q), which
shows that this is essentially an optimization problem. As noted, it is trivial
that the KL divergence is minimized when p(θ|x) = q(θ). However, if the
true posterior is intractable, we have to put some constraints on q(·) so that
it becomes tractable and at the same provides a good approximation to the
true posterior.

On the direction of the KL divergence

Before we go on, it is worth noting that here the forward KL divergence
DKL(q||p) is used instead of the reversed one given by DKL(p||q). The reason
for this is that the former leads to integrating over q(·), which can be made
easy by choosing a simple enough variational approximation q(·), whereas
the latter would include the much harder task of integrating over p. The
difference between using the forward and the backward KL divergence lies
in the fact that they tend to under- and overestimate the posterior variance
respectively. Some analysis on why this is indeed the case is provided in
[8]. We stress the fact that the underestimation of the posterior variance
by the forward KL divergence DKL(q||p) is a drawback of the method, and
one should be aware of this theoretical property when using variational in-
ference. One algorithm acquired by using the reverse KL divergence is called
Expectation Propagation (EP) [55].
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3.2 Mean-field variational-Bayes

One way of restricting the form of q is to assume that the variational distri-
bution factors into I independent blocks, that is

q(θ) =
I∏
i=1

qi(θi). (3.4)

This is the mean-field assumption. It should be noted that the assumption
makes no claims about the functional form of the different qi(θi).

3.2.1 Gradient based optimization

Practically all machine learning problems are solved by optimizing some ob-
jective function to find the best parameter values with respect to the chosen
objective. Often the objective function is chosen so that it is convex (or con-
cave), which makes it possible to efficiently use gradient based optimization
algorithms to solve the problem. Even if this is not the case, by using gradi-
ent based methods one is often guaranteed to find at least a local optimum
of the objective. The field that studies this kind of optimization problems is
called convex optimization.

The convex optimization toolbox can also be employed to solving the
variational inference problem. The general idea is to use the ELBO in (3.3)
as the objective function that is to be maximized. This is actually not a
convex optimization problem but, as mentioned, gradient based methods are
still useful. Using the mean-field assumption (3.4) leads to computing the
gradient of the ELBO with respect to each of the variational parameters θi.
In practice one then ends up with a coordinate ascent algorithm for solving
the optimal parameters θi, which is also what we get in the next section with
another derivation. The gradient based approach is explained in more detail
for example in [6].

3.2.2 Derivation of the mean-field variational updates

The idea is still to maximize L(q) with respect to each of the qi in turn
but, by using a clever trick, we can actually avoid taking the gradient of the
ELBO altogether. The derivation presented here will follow closely to that
shown in [8]. To ease notation, let qi stand for qi(θi). Now substituting (3.4)
into (3.3) and separating the jth variational density qj gives
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L(q) =

∫ ∏
i

qi ln p(x,θ) dθ −
∫ [∏

i

qi

]∑
i

ln qi dθ

=

∫
qj

[ ∫ ∏
i 6=j

qi ln p(x,θ) dθi

]
dθj −

∑
i

∫ [∏
i

qi

]
ln qi dθ

=

∫
qj

[ ∫ ∏
i 6=j

qi ln p(x,θ) dθi

]
dθj −

∑
i

∫
qi ln qi dθi

=

∫
qj

[ ∫ ∏
i 6=j

qi ln p(x,θ) dθi

]
dθj −

∫
qj ln qj dθj + c−j, (3.5)

where c−j denotes a term that does not depend on qj. Now define a new
distribution p̃(x,θj) through

ln p̃(x,θj) = Ei 6=j[ln p(x,θ)] + const.

Here Ei 6=j[·] denotes an expectation with respect to all other variational dis-
tributions except qj, that is

Ei 6=j[ln p(x,θ)] =

∫
ln p(x,θ)

∏
i 6=j

qi dθi.

Thus we can write (3.5) as∫
qj ln p̃(x,θj) dθj −

∫
qj ln qj dθj + c−j. (3.6)

Now suppose the variables qi 6=j are fixed and (3.6) has to be maximized over
all possible forms of distributions qj. We recognize that (3.6) is the negative
KL divergence between qj and p̃(x,θj) plus the constant that does not depend
on qj. Thus to maximize (3.6) with respect to qj the KL divergence must
be minimized. The minimum is of course reached when qj = p̃(x,θj). This
means that the optimal solution for the jth variational distribution can be
found with

ln q∗j (θj|x) = Ei 6=j[ln p(x,θ)] + const. (3.7)

Exponentiating and taking the normalizing constant into account we see that
the optimal variational density of the jth parameter block is given by

q∗j (θj|x) =
exp(Ei 6=j[ln p(x,θ)])∫

exp(Ei 6=j[ln p(x,θ)]) dθj
.
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We note that in practice it is easier to work with the form in (3.7) as the
normalizing constant can often be worked out easily if the functional form of
the distribution is recognized.

The solution in (3.7) gives a set of coupled equations where the parameters
of each distribution qi depend on the parameters of the other variational dis-
tributions. This suggests an iterative algorithm where the parameters of each
qi are first initialized and then updated in turn according to the equations
until convergence. Fortunately, it has been proved that convergence here is
guaranteed, but only to a local optimum [43]. Moreover, the convergence is
also monotonic, which aids possible debugging in the implementation phase.
The lower bound can be conveniently calculated by rewriting the expression
in (3.3) as:

L(q) = Eq
[

ln
p(x,θ)

q(θ)

]
= Eq[ln p(x,θ)]−

∑
i

Eqi [ln qi(θi)].

3.3 Stochastic and incremental variational in-

ference

The standard variational inference procedure requires a full pass through all
available data before the updates to the parameters can be made. For small
datasets this is not a problem, but for larger datasets or cases where the infer-
ence has to be faster, a few modifications have been proposed. To understand
these, we distinguish the local- and global variational parameters of the vari-
ational approximation from each other. A local variational parameter φn is a
parameter that is directly associated with the corresponding data point xn.
In practice these are often unobserved latent variables. On the other hand,
the global variational parameters θ are parameters which are shared between
several data points. The ideas which the following algorithms are based on
were first presented in the case of the conceptually quite similar Expectation
Maximization (EM) algorithm [20] by Neal and Hinton in 1998 [57].

Stochastic variational inference (SVI) [32] works by considering only a
mini-batch, denoted by B, of uniformly sampled data points of the original
data during each iteration. The local variational parameters φ̂B that cor-
respond to the data points in the mini-batch are updated, after which an
intermediate estimate θ̂B of the global variational parameters based on B
is calculated. This intermediate estimate is then combined with the current
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Algorithm 1: Stochastic variational inference (SVI)

input : Data X, initial values for global variational parameters θ(0).
output: Variational parameters.

1 Choose a step size function µ.
2 while ELBO not converged do
3 Sample mini-batch B uniformly from X.

4 Compute local variational parameters φ̂B for data points in B.

5 Compute intermediate global variational parameters θ̂B based on

the mini-batch specific local variational parameters φ̂B.
6 Update the estimate for the global variational parameters by

setting θ(t) ← (1− µ(t))θ(t−1) + µ(t)θ̂B.

7 end

estimate of the global parameters θ(t−1) to yield an updated estimate θ(t) of
the global parameters by weighting each term accordingly with a step-size
µ(t) that depends on the iteration t:

θ(t) ← (1− µ(t))θ(t−1) + µ(t)θ̂B.

Pseudocode for this procedure is shown in Algorithm 1. Using SVI requires
the specification of the batch size and the step-size, which makes it imple-
mentation slightly more difficult compared to the default VI algorithm.

Incremental variational inference (IVI) has lately been used as another
way to scale up variational inference [3, 37]. It is based on exploiting the
additivity property of sufficient statistics in exponential family distributions.
The data is first divided into J batches {Bj}Jj=1 and each full iteration of
the algorithm consists of processing the batches in the following way. First
we subtract the batch specific sufficient statistics tj(X) from the full dataset
statistics:

t(X)← t(X)− tj(X).

We then update the batch specific local variational parameters φBj
, calculate

the new batch subset statistics tj(X) and add these back to the full dataset
statistics:

t(X)← t(X) + tj(X),

After this we update the global variational parameters θ based on the full
dataset statistics and move on to the next batch Bj+1, which is processed in
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Algorithm 2: Incremental variational inference (IVI)

input : Data X, initial values for local variational parameters φ.
output: Variational parameters.

1 Divide sample indices 1, ..., N into batches Bj, j = 1, ..., J .
2 Calculate initial expected batch specific sufficient statistics tj(X),

expected full dataset sufficient statistics t(X) and the global
variational parameters θ.

3 while ELBO not converged do
4 for j = 1 to J do
5 t(X)← t(X)− tj(X).
6 Compute local variational parameters φBj

corresponding to
data points in Bj and update the expected batch sufficient
statistics tj(X).

7 t(X)← t(X) + tj(X).
8 Update global variational parameters θ based on the full

dataset sufficient statistics t(X).

9 end

10 end

the same way. During each full sweep over the data the global parameters
are thus updated J times, once after processing each batch. Again, the vari-
ational parameters are updated until convergence of the ELBO. Pseudocode
for the algorithm is shown in Algorithm 2.

The upside of the IVI as compared to the SVI is that there is no need
to specify any additional parameters for the optimization. Also, the opti-
mization process is completely deterministic which makes the algorithm in
principle more stable and the lower bound is guaranteed to increase mono-
tonically unlike in SVI. Moreover, the implementation of the procedure is
very easy and only comes at the cost of slightly increased space complexity
of the algorithm as we need to store the subset statistics for each batch. For
these reasons, we adopt the IVI in our implementation for the model pro-
posed in Chapter 5. In the same chapter we will also empirically compare the
performance of IVI against the default VI in the case of a Gaussian mixture
model.
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Chapter 4

Gaussian and Bernoulli
Mixture Models

Mixture models refer to models that are of the form

p(x|θ) =
K∑
k=1

πkp(x|θk), (4.1)

where 0 ≤ πk ≤ 1 and
∑

k πk = 1. The observations are acquired by mixing
the base distributions p(x|θk) with the weights πk. This provides a natural
clustering framework: We think of the weight πk as probability of picking
a mixture component, here called cluster, indexed by k. The observation
is then generated from the base distribution p(x|θk) corresponding to the
chosen cluster. Our task is then, given the observations, to infer the cluster
probabilities πk and the parameters of the base distributions p(x|θk). The
most common way to infer the parameters of a general mixture model is the
EM-algorithm mentioned earlier. For practical reasons we write the gener-
ative model as an augmented model where the chosen cluster of each data
point x is represented by a corresponding K-dimensional latent vector z for
which the kth component is 1 if the chosen cluster was k and 0 otherwise.
Using this formulation we can equivalently write (4.1) as
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p(x|θ) =
∑

z

p(z)p(x|θ, z)

=
∑

z

p(z)
K∏
k=1

p(x|θk)zk . (4.2)

This corresponds to the data augmentation in (2.2.3), but here also the dis-
tribution of the latent variables is of interest; It will characterize the cluster
probabilities of the individual data points used for training the model.

Next we will present generative formulations for two common mixture
models: the Gaussian- and Bernoulli mixture models. This is aimed to be an
introductory chapter where the main purpose is to establish the notation, and
also to introduce the models individually. After this it is straightforward to
approach the main goal of the thesis: To merge the two models and develop
efficient variational inference for the joint mixture, which will be done in
Chapter 5.

4.1 Gaussian mixture model

A Gaussian mixture model (GMM) is acquired from (4.1) when the base
distributions are Gaussian. The GMM is the most common of all mixture
models used in various applications. It dates back a long time [19, 60] and has
been researched extensively. Newer applications include for example speech
recognition [62], image segmentation [29], anomaly detection [48] and deep
GMMs [59].

In this thesis we present a special case of the GMM where the covari-
ances of each of the mixture components are diagonal, thus assuming the
data dimensions to be independent. This is done for computational reasons:
Instead of the full covariance matrices we only need to estimate the diagonal
elements. This also simplifies the calculations that are required to derive the
inference algorithm.

4.1.1 The generative model

In addition to the base Gaussians, we also need to specify the priors for the
Gaussian parameters and the mixture weights. Below we use the superscript

29



(G) for the observations x(G) to highlight the fact that they are assumed to
be Gaussian. We will be using corresponding superscripts later in the thesis
for Bernoulli- and multinomial distributions as well.

We now specify a DG-dimensional Bayesian Gaussian mixture model with
diagonal covariances and K mixture components by setting

x(G)
n ∼ N(µzn ,Λ

−1
zn ),

µk ∼ N(µ0, (β0Λk)
−1),

λkd ∼ Gamma(a0, b0),

zn ∼ Mult(1,π),

π ∼ SymDir(K,α0), (4.3)

for n = 1, 2, ...., N , k = 1, 2, ..., K and d = 1, 2, ..., DG. Here we denoted Λk =
diag(λk1, ..., λkDG

). The scalars a0, b0, α0 and β0 are positive hyperparameters
and µ0 is a real vector used as the hyperparameter for the cluster means.

It should be noted that the distributions of both x
(G)
n and µk factorize into

a product of Gaussians, as the components are in both cases independent.
A Normal-Gamma prior is put on each (µkd, λkd) to exploit conjugacy. The
one-out-of-K coded unobserved latent vectors zn indicate which cluster the
nth data point belongs to. A conjugate Dirichlet prior is chosen for the
multinomial parameter π. The plate diagram illustrating the model is shown
in Figure 4.1.

Let us denote X(G) = ((x
(G)
1 )T , ..., (x

(G)
N )T )T and Z = (zT1 , ..., z

T
N)T for the

full data matrix and the matrix of the one-out-of-K coded latent variables
of cluster memberships respectively. We also let Λ and µ to stand for the
collection of the parameters Λk and µk (k = 1, 2, ..., K) respectively.

The joint distribution of the full model factorizes to the conditionals as

p(X(G),Z,π,µ,Λ) = p(X(G)|Z,µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ),
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Figure 4.1: The plate diagram for a Bayesian Gaussian mixture model with
diagonal covariance. For each of the K Gaussian clusters the means are
drawn from a multivariate Gaussian prior and the precisions for individual
components from a Gamma prior. A Dirichlet prior is put on the mixture
weights π. An observation is sampled by first drawing a cluster c from
the multinomial specified by π and finally sampling x(G) from the Gaussian
specified by c.

where the factors are given by

p(X(G)|Z,µ,Λ) =
N∏
n=1

K∏
k=1

DG∏
d=1

N(x
(G)
nd |µkd, λ−1kd )znk ,

p(Z|π) =
N∏
n=1

K∏
k=1

πznk
k ,

p(π) =
Γ(α0K)

Γ(α0)
K

K∏
k=1

πα0−1
k ,

p(µ|Λ) =
K∏
k=1

DG∏
d=1

N(µkd|µ0d, (β0λkd)
−1),

p(Λ) =
K∏
k=1

DG∏
d=1

Gamma(λkd|a0, b0).

The distributions in (4.3) specify the generative Gaussian mixture model.
Variational inference for this model will be a special case of the inference
algorithm we present in Section 5.2.

31



4.2 Bernoulli mixture model

Bernoulli mixture model (BMM) is another example of a specific mixture
model that has made its way into real world applications. It has been pro-
posed for example as model for clustering binary images [44] and various
other tasks in pattern recognition, such as feature selection, classification or
dimensionality reduction [64].

4.2.1 The generative model

In this thesis we consider a Bernoulli mixture model where the output dimen-
sions are assumed independent. The generative model for a DB-dimensional
Bernoulli mixture with K components is specified by

x
(B)
nd ∼ Bernoulli(pznd),

pkd = σ(ψnk) = (1 + e−ψnk)−1,

ψkd ∼ N(νkd, 1),

νkd ∼ N(ν0, γ
−1
0 ),

zn ∼ Mult(1,π),

π ∼ SymDir(K,α0), (4.4)

for n = 1, 2, ...., N , k = 1, 2, ..., K and d = 1, 2, ..., DB. The distributions
associated to the clusters, π and latent vectors zn are the same as in the
Gaussian mixture model. In fact this part could be the same for any mixture
model. The Bernoulli distributions are parametrized by log-odds, with a
Gaussian prior for the corresponding parameters ψ.

The formulas in (4.4) describe the generative process but, as mentioned
earlier in Chapter 2, posterior inference poses problems because of the Bernoulli
likelihood. To overcome this, we use the data augmentation described in
Section 2.3. More specifically, we introduce a set of Pólya-Gamma latent
variables

ωnd ∼ PG(1, 0)

to the model, which makes our variational approach to posterior inference
analytically tractable as the conditionals for ψ and ω will both be known.
The plate diagram corresponding to the augmented model is shown in Figure
4.2.
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Figure 4.2: The plate diagram of a Bernoulli mixture model augmented with
Pólya-Gamma latent variables. The cluster specific Bernoulli success proba-
bilities pkd depend on Gaussian variables ψkd through the logistic transforma-
tion pkd = σ(ψkd) = (1+e−ψnk)−1. The data augmentation scheme introduces
Pólya-Gamma random variables ω for each dimension of every data point to
enable analytically tractable variational inference.

Denoting ψ, ν and ω for the collection of parameters ψkd, νkd and ωnd
respectively, the joint distribution of the parameters in the augmented model
factorizes as

p(X(B),Z,π,ψ,ν,ω) = p(X(B)|Z,ψ,ω)p(Z|π)p(π)p(ψ|ν)p(ν)p(ω).

The distributions p(Z|π) and p(π) are exactly the same as in the GMM case
in (4.3), and the other terms are given by

p(X(B)|Z,ψ,ω) =
N∏
n=1

K∏
k=1

DB∏
d=1

[
2−1eκndψkd−ωndψ

2
kd/2
]znk

,

p(ψ|ν) =
K∏
k=1

DB∏
d=1

N(ψkd|νkd, 1),

p(ν) =
K∏
k=1

DB∏
d=1

N(νkd|ν0, γ−10 )

p(ω) =
N∏
n=1

DB∏
d=1

PG(ωnd|1, 0).

Here we used the identity in (2.5) for writing the augmented Bernoulli
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likelihood p(X(B)|Z,ψ,ω) as

N∏
n=1

K∏
k=1

DB∏
d=1

[
Bernoulli(σ(ψkd))

]znk

=
N∏
n=1

K∏
k=1

DB∏
d=1

[(eψkd)x
(B)
nd

1 + eψkd

]znk

=
N∏
n=1

K∏
k=1

DB∏
d=1

[
2−1eκndψkd−ωndψ

2
kd/2
]znk

,

where κnd = x
(B)
nd − 1/2.

We have now specified a mixture model also for binary outputs. Now
that we have the basics down, it is time to proceed to combine the Gaussian-
and Bernoulli mixture models into a single mixture model.
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Chapter 5

Mixture Model for
Heterogeneous Data

A lot of work has been put into designing scalable clustering models. For
example, Hore et al. [33] proposed a clustering model that scales to massive
data by running k-means on disjoint subsets of the data, after which the
found cluster ensemble is combined to form a global set of centroids. While
easily scalable, this approach is clearly heuristic and does not offer the same
intuitive explanation of the data as a probabilistic model would. Feldman
et al. [24] propose scalable inference for Gaussian mixtures using coresets
(a small weighted subset of the data) [1], but they focus solely on maximum
likelihood estimation [15] and the EM-algorithm. Verbeek et al. [68] and
Thiesson [66] discuss fast, large scale mixture modeling, but again both use
variations of the EM-algorithm instead of fully Bayesian inference.

Variational Bayesian methods have been used for mixture models as well;
Subedi et al. [65], employ the standard VI framework to do a normal-inverse
Gaussian mixture model. Most of the scalable VI solutions seem to rely on
stochastic variational inference [38, 70] or sequential variational approxima-
tion [49]. Sudderth et al. [37] use incremental variational inference, but
without the faster parallel version we choose employ later in the chapter.
Archembeau et al. [3] propose a truly scalable, distributed version of IVI for
latent Dirichlet allocation [11], but implementing their algorithm requires
some extra work because of issues like synchronization etc. We will discuss
this approach briefly in Section 5.3.1.

In this chapter we present the main contribution of the thesis: A practical
and efficient fully Bayesian mixture model that fits modeling scenarios where
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the data is heterogeneous. Using recent advantages in machine learning and
Bayesian statistics, we provide a state-of-the-art inference algorithm for our
model that is both easy to implement and efficiently scales up to big data.

Consider a situation where we want to cluster data that has both numeric
and binary dimensions. A common way is to interpret the numeric dimen-
sions as Gaussian and the binary dimensions clearly correspond to Bernoulli
data. This kind of a data is represented in the form [X(G) X(B)], where [·, ·]
denotes row-wise concatenation of the Gaussian and Bernoulli data matrices.
The data is clearly heterogeneous and the theoretically correct solution for
modeling it is to specify a generative probabilistic model that takes into ac-
count the different likelihoods of the data dimensions. If we assume that all of
the output dimensions are independent, we achieve this simply by combining
the Gaussian- and Bernoulli mixture models already presented in Chapter 4
into one single joint mixture model.

5.1 Specifying the joint mixture

Tying two mixture models together through the shared latent variables z is
in principle easy. We use the notation established in Chapter 4 and simply
write the joint density that combines the Gaussian- and Bernoulli mixtures
as

p(X,Z,π,µ,Λ,ψ,ν,ω) = p(X(G)|Z,µ,Λ)p(X(B)|Z,ψ,ω)

× p(Z|π)p(π)p(µ|Λ)p(Λ)p(ψ|ν)p(ν)p(ω),

where the factors are given as in (4.3) and (4.4). The plate diagram cor-
responding to this joint density is shown in Figure 5.1. We call the joint
mixture model simply GBMM for Gaussian- and Bernoulli Mixture Model.

By looking at the plate diagram or the joint density we indeed see that the
outputs of the Gaussian and Bernoulli parts are conditionally independent
given the latent vectors z. This means that only in the inference of Z do
we have to think of the two mixtures explicitly. We also note that once the
inference has been derived for the GBMM model, it can just as easily be used
to fit mixtures that have only Gaussian or Bernoulli components.

36



x(G)

x

x(B)

z

µ

λ

π

α0

µ0

b0a0

β0

p

ων

ν0γ0

K ×DGK ×DB

DB

N

Figure 5.1: Plate diagram of the joint mixture model supporting both
Gaussian- and Bernoulli likelihoods. The models are tied together by the
latent variables z indicating the cluster memberships. The outputs from
each model are then concatenated to yield the final output x.

5.2 Variational inference for the GBMM model

We use mean-field variational inference to approximate the posterior with

p(Z,π,µ,Λ,ψ,ν,ω|X) ≈ q(Z)q(π)q(µ,Λ)q(ψ)q(ν)q(ω).

Because we have assumed the dimensions of the data independent in the
generative model, also the variational distributions for the Gaussian and
Bernoulli parameters will factorize similarly.

As described in Section 3, we want to find the variational distributions
qi(·) that minimize the KL divergence of the true posterior p from q(·) =∏

i qi(·). The calculations are done by applying the formula (3.7) that was
derived in Chapter 2 and are shown in detail in Appendix A. The optimal
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variational distributions under the mean-field assumption are found to be

q(Z) =
N∏
n=1

Mult(zn|1, r̂n),

q(π) = Dir(π|α̂),

q(µ,Λ) =
K∏
k=1

DG∏
d=1

N(µkd|m̂kd, (β̂kλkd)
−1) Gamma(λkd|âk, b̂kd),

q(ψ) =
K∏
k=1

DB∏
d=1

N(ψkd|ν̂kd, τ̂−1kd ),

q(ν) =
K∏
k=1

DB∏
d=1

N(νkd|n̂kd, γ̂−1),

q(ω) =
N∏
n=1

DB∏
d=1

PG(ωnd|1, ênd), (5.1)

The related local variational parameters are given by

r̂n = (r̂n1, ..., r̂nK)T , r̂nk =
snk∑K
i=1 sni

,

snk ∝ exp
{1

2

( DG∑
d=1

(ψ(âk)− ln b̂kd)−
DG∑
d=1

(
âk

b̂kd
(x

(G)
nd − m̂kd)

2 +
1

β̂k
)
)

+

DB∑
d=1

[
κndν̂kd −

1

4ênd
tanh(ênd/2)(τ̂−1kd + ν̂2kd)

]
+ ψ(α̂k)− ψ(

K∑
k=1

α̂k)
}
,

ênd =

√√√√ K∑
k=1

r̂nk(τ̂
−1
kd + ν̂2kd), (5.2)
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and the global variational parameters by

α̂ = (α̂1, ..., α̂K)T , α̂k = α0 + R̂k,

R̂k =
N∑
n=1

r̂nk,

m̂kd =
β0µ0d +

∑N
n=1 r̂nkx

(G)
nd

R̂k + β0
,

β̂k = R̂k + β0,

âk =
R̂k

2
+ a0,

b̂kd = b0 +
R̂kβ0

2(R̂k + β0)

(
µ0d −

∑N
n=1 r̂nkx

(G)
nd

R̂k

)2
+

1

2

N∑
n=1

r̂nk(x
(G)
nd )2

− (
∑N

n=1 r̂nkx
(G)
nd )2

2R̂k

,

ν̂kd =

∑N
n=1 r̂nkκnd + n̂kd∑N

n=1

[
r̂nk

1
2ênd

tanh(ênd/2)
]

+ 1
,

τ̂kd =
N∑
n=1

[
r̂nk

1

2ênd
tanh(ênd/2)

]
+ 1,

n̂kd =
ν̂kd + γ0ν0

1 + γ0
,

γ̂ = 1 + γ0, (5.3)

where κnd = x
(B)
nd −1/2. The local parameters r̂nk are usually called responsi-

bilities, that is, they express the probability for the nth data point to belong
to the kth cluster. The hyperbolic tangent functions, that are somewhat un-
typical in this kind of calculations, show up in the formulas as the expected
value of the Pólya-Gamma random variables with respect to the variational
distribution:

Eq[ωnd] =
1

2ênd
tanh(ênd/2).

By looking at the equations in (5.3), it is easy to see that the expected
full dataset sufficient statistics required for updating the global variational
parameters are given by

39



t̂1 ∈ RK×DG , [t̂1]kd =
∑
n

r̂nkx
(G)
nd ,

t̂2 ∈ RK×DG , [t̂2]kd =
∑
n

r̂nk(x
(G)
nd )2,

t̂3 ∈ RK×DB , [t̂3]kd =
∑
n

r̂nkκnd,

R̂ ∈ RK , R̂k =
∑
n

r̂nk,

Ê ∈ RK×DB , [Ê]kd =
∑
n

r̂nk
1

2ênd
tanh(ênd/2). (5.4)

We use the term ’expected sufficient statistics’ to refer to weighting the mix-
ture specific sufficient statistics by weights acquired by taking the expectation
of the unobserved latent vectors z.

For efficient computation of the lower bound we additionally compute the
entropy term ∑

n,k

r̂nk ln r̂nk,

and the bound for ω given by∑
n,d

− ln(cosh(ênd/2)) +
ênd
4

tanh(ênd/2)

while updating the responsibilities r̂.
The standard variational inference algorithm for the GBMM model is

illustrated in Algorithm 3. Convergence of the algorithm is assessed by mon-
itoring the change in the evidence lower bound given by

Eq[ln p(X,Z,π,µ,Λ,ψ,ν,ω)]− Eq[ln q(Z,π,µ,Λ,ψ,ν,ω)]

=Eq[ln p(Z|π)]− Eq[ln q(Z)] + Eq[ln p(π)]− Eq[ln q(π)]

+ Eq[ln p(µ,Λ)]− Eq[ln q(µ,Λ)] + Eq[ln p(ψ|ν)]− Eq[ln q(ψ)]

+ Eq[ln p(ν)]− Eq[ln q(ν)] + Eq[ln p(ω)]− Eq[ln q(ω)]

+ Eq[ln p(X(G)|Z,µ,Λ)] + Eq[ln p(X(B)|Z,ω,ψ)], (5.5)

where the expressions for the individual terms are given in Appendix A.
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Algorithm 3: Variational Inference for Gaussian- and Bernoulli Mix-
ture Model (VI-GBMM)

input : Data X, initial values for r̂, ν̂ and τ̂ .
output: Global variational parameters and responsibilities r̂.

1 Initialize expected sufficient statistics t̂1, t̂2, t̂3, R̂, Ê.
2 while ELBO not converged do
3 Update the global parameters using current expected sufficient

statistics.
4 Update the responsibilities r̂ using current estimates for the global

parameters and calculate new expected sufficient statistics
t̂1, t̂2, t̂3, R̂ and Ê.

5 end

On the number of mixture components

A common issue with optimizing using maximum likelihood based methods
and the EM-algorithm is that the clusters can shrink so that they contain only
one of the data points. In this case the variance inside the cluster becomes
zero and this usually causes numerical issues in the objective function to be
optimized. Also, increasing the number of mixture components always makes
the fit to the data better, but at the cost of making the model more complex
and prone to overfitting. This is why choosing the correct number of mixture
components is especially important for these methods.

Bayesian methods and variational inference on the other hand deal with
these problems to some extent. An empty cluster will just become equal to
the specified prior. The Bayesian treatment of a mixture model also comes
with an automatic method of balancing between the model complexity and
fitting the data, because the full distributions of the parameters are used.
More details on this can be found in the variational inference section in the
book by Bishop [8]. We also mention that the modeling can be done so that
the number of mixture components is automatically inferred from the data.
One example of a model that does this is called Dirichlet process mixture
model, for which variational methods can still be used for inference [9].
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5.3 Scaling up computation

We now show how to use the incremental variational inference that was
introduced in Chapter 3 in the case of the GBMM model. Additionally,
we parallelize the calculation of the local variational parameters and subset
statistics for faster computation speed for large datasets.

5.3.1 Parallel incremental variational inference

All of the expected sufficient statistics in (5.4) are clearly additive, which
makes incremental variational inference straightforward. We split the data
points into J batches B1, ..., BJ and use the notation in (5.4) with super-
script j to denote for the corresponding expected batch sufficient statistics.
Because of the additivity property of the sufficient statistics, it is also trivial
to implement the algorithm partly in parallel: For each batch Bj in turn, the
updates for the responsibilities r̂ and the computation of the batch sufficient
statistics are easily distributed over multiple processor cores on a modern
multicore CPU. This implementation of the IVI algorithm is depicted in
Algorithm 4.

General discussion

Our method cannot process the whole data in parallel, since the full dataset
sufficient statistics need to be updated after processing each batch. In the
case of really big data, machine learning algorithms are usually deployed on
a computing cluster consisting of several machines and in this case allowing
parallel processing of the whole data would be beneficial. One such approach
was introduced in recent work by Archembeau et al. [3], where they present
a framework for distributed asynchronous incremental variational inference.
The authors demonstrate the algorithm for latent Dirichlet allocation topic
model and report a significant boost in performance compared to the stan-
dard IVI. The idea behind the algorithm is roughly the following:

1. The J data batches are distributed to J different worker machines along
with the current estimates for the global variational parameters.

2. Each of the J workers compute the local variational parameters and
batch sufficient statistics for their respective batch using the local copy
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of the global variational parameters and, when ready, send the results
to a master computing node.

3. Once the master node receives a new set of sufficient statistics from
some worker, update the global variational parameters and send the
worker the updated global variational parameters.

As the authors point out, the algorithm design becomes more complicated
as the algorithm has to be robust to delays and inaccurate updates. Never-
theless, distributed algorithms like this are becoming increasingly important
and will only attract more attention in the future. Currently for example the
Apache Spark1 framework provides a good interface for deploying distributed,
large scale machine learning algorithms.

We would like to stress that our implementation of the GBMM algo-
rithm is not distributed, but merely uses multiple CPU cores on a single
machine. Our implementation can be thought to be somewhere in between
of the framework proposed by Archembeau et al. and the standard IVI. To
recap the upsides of our choice of implementation, our algorithm is:

1. Faster than the standard IVI algorithm since it computes the respon-
sibilities and sufficient statistics inside each batch in parallel.

2. Trivial to implement in a multicore, one machine setup.

5.3.2 Initializing the cluster assignments

A bad initialization of the model can easily lead to slow convergence or
reaching a (bad) local optima. Initializing the global variational parameters
is often done by subjective choice, for example with the aid of calculating
some simple initial statistics from the data. For initializing the hard cluster
assignments required by our implementation of the GBMM algorithm we
present the following alternatives based on the popular k-means clustering
algorithm [51]:

1. The basic version of k-means, which works by finding clusters that
minimize the squared distances of the data points to their chosen clus-
ter centers. The algorithm starts with random data points chosen as

1http://spark.apache.org/
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Algorithm 4: Parallel Incremental Variational Inference for Gaussian-
and Bernoulli Mixture Model (P-IVI-GBMM)

input : Data X, initial values for r̂, ν̂ and τ̂ , number of batches J ,
number of CPU’s C.

output: Global variational parameters and responsibilities r̂.
1 Divide sample indices 1, ..., N into batches Bj, j = 1, ..., J and further

into CPU specific batches Bj,c, c = 1, ..., C.
2 Calculate initial expected batch- and full dataset sufficient statistics.
3 while ELBO not converged do
4 for j = 1 to J do
5 Update global parameters using current full dataset expected

sufficient statistics.
6 Subtract current batch statistics from the full dataset

statistics: t̂1 ← t̂1 − t̂j1, t̂2 ← t̂2 − t̂j2, t̂3 ← t̂3 − t̂j3,
R̂← R̂− R̂j, Ê← Ê− Êj.

7 for c = 1 to C in parallel do
8 Update the responsibilities r̂n for n ∈ Bjc using current

estimates for the global parameters and calculate expected
sufficient statistics t̂jc1 , t̂

jc
2 , t̂

jc
3 , R̂

jc and Êjc for batch Bj,c.

9 end
10 Sum up the calculated batch statistics from different CPU’s:

t̂j1 ←
∑

c t̂jc1 , t̂j2 ←
∑

c t̂jc2 , t̂j3 ←
∑

c t̂jc3 ,

R̂j ←∑
c t̂jc3 , Êj ←

∑
c Êjc.

11 Add the current batch statistics back to the full dataset

statistics: t̂1 ← t̂1 + t̂j1, t̂2 ← t̂1 + t̂j2, t̂3 ← t̂3 + t̂j3,
R̂← R̂ + R̂j, Ê← Ê + Êj.

12 end

13 end

the initial cluster centers and, if chosen badly, this can result in poor
clustering.

2. The k-means++ algorithm [4]. This is a more robust alternative to the
basic k-means. The only difference is that the initial cluster centers are
chosen so that centers far away from each other are preferred with high
probability.

44



3. The method by Boutsidis et al. [13]: The k-means or k-means++
algorithm, applied to a new dataset X′ acquired by reducing the di-
mensionality of the original dataset X by a suitable random projection.
We refer to this method as RP-k-means(++). While suboptimal, this
method is suitable also for larger data matrices, and thus suits our goal
of building a scalable clustering model. We will elaborate on the details
below.

Random projection based initialization with k-means(++)

The random projection-based dimensionality reduction aims to preserve the
Euclidean distances that the k-means uses for clustering. The dimensional-
ity reduction is done by creating a new, lower dimensional data matrix of
appropriately scaled values. In more detail, the k-means objective can be
written as

L(X,A) = ‖X−AATX‖2F , (5.6)

where X ∈ Rn×d is the data matrix, ‖·‖F denotes the Frobenius norm defined

by ‖X‖F =
√∑

ij x
2
ij and A ∈ Rn×k is a cluster indicator matrix with the

property Ank = 1/
√
sk if and only if xn belongs to cluster k. The number

of points that belong to cluster k is denoted by sk. The random projection
method works by forming a new data matrix X′ ∈ Rn×d′ by computing
X′ = XR, where R ∈ Rd×d′ is a random matrix computed by setting each
element to ±1/

√
d′ uniformly at random. After this we apply k-means or

k-means++ to the new matrix X′ and as a result get a cluster indicator
matrix A′, which is also a solution to the original clustering problem. The
random projection based clustering can be compared to k-means clustering
on the original data by evaluating the objective in (5.6) for both methods.

We conducted two simple experiments on separate datasets to empirically
validate that the RP-k-means++ clustering produces results comparable to
the baseline k-means++ algorithm. The datasets are described below:

1. The first data set is a synthetic one, where we generated data from 10
different 100-dimensional Gaussian clusters with spherical covariance
matrices. We set the standard deviations to 2, that is Σk =

√
2I for

all k. The mean vector of cluster k was chosen by uniform random
sampling with replacement from the set {1, ..., 100} for all k.
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2. The other dataset we used is the popular MNIST dataset of hand-
written digits2. It contains 60,000 examples, each given as a 784-
dimensional vector of grayscale pixel values corresponding to 28 × 28
pixel images of numerical digits 0-9. We used the first 5,000 examples
in the data and removed columns (pixels) that were identically zero,
which resulted in a 5,000×663 data matrix to be used for clustering.
The natural number of clusters here is 10, as there are 10 different
digits in the data.

For the experiments we used the more robust k-means++ version with
k = 10 clusters. We used 5 restarts for each of the k-means++ runs and
the solution corresponding to the best value of the objective function was
chosen as the representative result. The quality of the solutions was mea-
sured by the normalized objective function L(X,A)/‖X‖2F , which we plot
against the number of dimensions after the dimensionality reduction. We
also plot the baseline solution of k-means++ applied to the original data
as a constant horizontal line. For each number of dimensions kept, we ran
the RP-k-means++ clustering 10 times and recorded the average value of
the normalized objective function, along with the minimum and maximum
values for comparison.

The results are shown in Figures 5.2 and 5.3. We see that if the di-
mensionality of the random projection is at least a fourth of the original
data dimension, the found clusterings seem to be comparable to those by
the k-means++ algorithm on the original data. The advantage is that the
random projection allows the k-means algorithm to run with improved com-
putational and memory cost, which is beneficial if the dimensionality of the
original data matrix X is high. We note though, that the RP-k-means++
method is stochastic in nature and, as seen in the plot, the quality of the
solutions do vary from run to run.

5.3.3 Performance evaluation using toy data

The proposed GBMM algorithm was implemented using the R-programming
language3. Table 5.3.3 lists the packages, all of which are available from

2Dataset publicly available from http://yann.lecun.com/exdb/mnist/. Accessed on
03–08–2016.

3https://www.r-project.org/
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Figure 5.2: Benchmark on synthetic data. The plot shows the normalized
k-means objective function plotted against the data dimension after random
projection. The red line shows the average value of the normalized objective
across 10 RP-k-means++ runs while the shadowing illustrates the range on
the quality of the solution. The blue horizontal line shows the objective for
a baseline solution by a k-means++ run on the original full data. The RP-
k-means++ solution yields results comparable to the baseline k-means++
solution, and already using a fourth of the original dimensions seems to result
in good performance on average. There is some variation in the quality of
the solutions because of the stochastic nature of the algorithm.

CRAN4, that were used as a part of the implementation. All tests were run
on a Linux machine with 8 Intel Xeon E5649 processor cores and 16 gigabytes
of RAM.

Experiment setup and objectives

The aim here is to empirically show the advantages of incremental variational
inference over the standard variational inference. We created the data by
generating 20 million data points from a 2-dimensional Gaussian mixture
with 10 components all having diagonal covariance. The generated data thus

4https://cran.r-project.org/
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Figure 5.3: Benchmark on the MNIST-data. The visuals in the plot are
to be interpreted similarly as in Figure 5.2. Here the RP-k-means++ so-
lution clearly achieves performance comparable to the baseline k-means++
algorithm when around 300 dimensions are used in the random projection
matrix X′. A good solution is achieved already with a smaller number of
dimensions. Importantly, the quality of the RP-k-means++ solutions seems
to be rather stable across the different runs.

Package Description / Used for

Rcpp Interface for implementing the computationally heavy parts in
C++. These include updating the responsibilities and expected
sufficient statistics, calculating the lower bound, and initializa-
tion.

parallel Parallel computing.

Matrix Sparse matrix support.

Table 5.1: A list of R-packages that were used in implementing the GBMM-
algorithm.
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Figure 5.4: The first 2000 data points drawn from a 2-dimensional Gaus-
sian mixture with 10 components. The different mixture components are
highlighted by the colors, the contour lines and the point shapes.

matches our specification for the GMM in (4.3) and the inference task should
therefore be easy. The first 2000 data points are visualized in Figure 5.4.

The initialization for the responsibilities r̂ was done by hard cluster as-
signments using the k-means implementation in the default R package ’stats’.
The algorithm was considered converged if the change in the lower bound be-
tween two full iterations was less than ε = 1.

Comparing the batch sizes in IVI

We compare our incremental variational inference implementation of the
GMM with different number of batches J , run on all 8 CPU cores. This
experiment has two main purposes. Firstly, we want to know how much
using a larger number of batches improves the convergence speed of the algo-
rithm, as measured by the number of iterations required until convergence.
On the other hand we are interested in finding the number of batches for
which the computation time is the fastest. This is not clear a priori, as using
a lower number of batches results in faster parallel processing because the
communication overhead is smaller. Figure 5.5 shows the convergence of the
lower bound as function of iteration and Figure 5.6 the computation time for
different batch sizes. Note that batch size J = 1 corresponds to the standard
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Figure 5.5: Convergence of the evidence lower bound as a function of the
algorithm iteration for different number of batches used. Using more batches
result in faster convergence of the lower bound, but after J > 5 batches are
used, the total computation time starts to suffer because of the additional
communication overhead, as seen in Figure 5.6.

variational inference.
From the lower bound we clearly see that convergence is the faster the

more batches are used. However, after 20 batches the improvement after
adding more batches is negligible. Importantly, the incremental variant with
sufficiently many batches (J ≥ 5) seems to be able to exit a local optimum
faster, as seen in Figure 5.5 where the ELBO increases slowly for several
iterations in the middle of the optimization process. Increasing the batch
size too much increases the computation time as shown in Figure 5.6. This
happens because the different CPU’s are working with increasingly smaller
amounts of data, which produces communication overhead as the algorithm
ends up using too much time fetching the results as compared to the actual
computation time. Based on these observations we conclude that the best
batch size here is J = 5, which leads to the fastest overall computation time
and it also converges quickly in terms of the required iterations. Notably
the incremental algorithm proves to be superior to the standard variational
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Figure 5.6: Running time of the GMM algorithm for different number of
batches. The fastest solution is acquired with a batch size J = 5. When
too many batches are used, the communication overhead that comes from
handling the subsets is bigger than the convergence speedup acquired from
updating the global parameters more often.

inference corresponding to the case J = 1.
As for the actual quality of the clustering, the cluster allocations of the

different data points after the k-means initialization and the final iteration of
the incremental GMM with batch size of J = 5 are shown in Figure 5.7. We
see that while k-means produces a decent initialization, it is unable to find the
correct cluster structure present in the data. Our GMM implementation does
considerably better and finds the correct model parameters and maximum a
posteriori estimates for almost all of the data points.

Parallel computation vs. a single CPU core

We ran the same learning task with J = 1 and J = 5 batches using 1 and
8 CPU cores for both alternatives to measure the effect of using multiple
cores to the total computation time. The results are shown in Figure 5.8.
Using 5 batches is faster with both CPU settings due to the smaller number
of iterations required for convergence. As expected, parallel computation
provides a major speedup compared to the 1 CPU implementation. Parallel
computing with 5 batches is almost 7 times faster than the 1 core 1 batch
setup. The advantage of using incremental variational inference also shows
clearly: The 5 batch setup is 39 and 27 percent faster than when using the
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Figure 5.7: Left: Initialization of the cluster assignments by the k-means
algorithm. The black triangles depict the cluster centers and the coloring
and point labels the cluster memberships (note that the coloring is different
to that in Figure 5.4). K-means is not able to find the elongated data clouds
corresponding to the different mixture components correctly. Right: Max-
imum a posteriori estimates of cluster memberships after final iteration of
the incremental GMM algorithm with J = 5 batches. The GMM accurately
finds the correct cluster structure and Gaussian parameters as supposed to,
since the data generating process matches the model.
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Figure 5.8: Total computation times of the incremental GMM algorithm
using different number of batches and CPU cores. Using incremental varia-
tional inference speeds up computation with both CPU settings, but most of
the performance gain comes from the parallel implementation.

1 batch version with 1 and 8 CPU cores respectively.
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Conclusion

We observed that the incremental variational inference with a suitably chosen
batch size outperforms the baseline standard variational inference by a clear
margin independent of the CPU setup. This is because the convergence
of the lower bound is faster due to the more frequent updates of the global
parameters. We also find that our multicore implementation of the algorithm
provides a major performance boost, given that the data size is big enough so
that communication overhead does not dominate over the computation time.
As the implementation of the (multicore) incremental variational inference
in these kind of models is easy, we find no reason why it should not be the
default implementation.

5.4 Roundup of key methodology

We conclude the Chapter with a recap of the methods we used in the mod-
eling. Our main contribution is the development of an efficient and scalable
mixture model for heterogeneous data. The key properties of the model and
our inference algorithm are:

1. The model supports efficient inference for both Bernoulli and Gaussian
data.

2. Our initialization using random projection k-means++ works for arbi-
trary high dimensional data.

3. We provided derivations for a state-of-the-art incremental variational
inference algorithm.

4. Additionally, we showed how the algorithm can be easily implemented
on a modern multicore system for increased performance.

Together, these points make up for an algorithm that can be used in many
practical clustering applications. We emphasize the fact that the presented
inference represents state of the art in terms of efficiency. Also, we are not
aware of previous work that would use parallelized IVI in the way we do.
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Chapter 6

Extending to Multinomial Data

In this chapter we extend the GBMM model to support categorical data.
This means that instead of simple binary values the responses are chosen
from C categories, where C ≥ 2. The two most common models for this
task are the multinomial logit- [2] and probit [39, 41] models, which are
extensions of the respective models in the binary case. Both of the models
are used in various applications, especially in the fields of econometrics and
social sciences. Examples include modeling exchange rate policy classification
[22] and accident-injury severities [52], demand forecasting [18], analyzing
panel data [42] and voting research [21]. As most of the work with these
models is done in methodology-wise rather conservative domains, and also
simply because the models are hard, the practical use of the logit- and probit
models has so far been mostly concentrated on standard statistical analysis
instead big data- and machine learning applications. In the univariate case
the models generally seem to give similar results, but it has been argued that
in the multivariate setup this might depend on the data [30].

Recently, the Pólya-Gamma augmentation strategy was extended also to
the multinomial case [50], but we were not aware of this work by the time
we considered how to extend to the multinomial case. As a consequence, we
choose to use the multinomial probit model, which is more approachable than
the standard multinomial logit model due to the model specification through
normal distributions. At the end of the chapter we will present the basic
ideas of the Pólya-Gamma augmented strategy for the multinomial case, as
we currently see this as the best way to do the multinomial mixture model.
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Figure 6.1: Plate diagram of a probit multinomial mixture model. The probit
augmentation is done by introducing a Gaussian latent vectors w for each
data point and data dimension. The prior of each w depends on the chosen
cluster indicated by zn and hence the data is conditional on z only through w.
The class label chosen by each x

(M)
nd is given by arg maxc{wndc|c = 1, ..., Cd}.

6.1 Multinomial probit model

We consider again the general mixture model framework with the same no-
tation as in the previous chapters. Let the number of the dimensions be DM

and denote the value of the dth dimension and the nth sample by x
(M)
nd . We

augment the model with a set of Gaussian latent vectors

wnd ∼ N(ξznd, I).

As usual, we want conjugacy and specify a Gaussian prior on the mean
vectors ξ:

ξznd ∼ N(0, δ−1Cd
I).

Here δCd
is a precision hyperparameter that depends on the number of cat-

egories in the multinomial corresponding to the dth dimension, denoted by
Cd. We get the actual data by setting

x
(M)
nd = arg max

c
wndc.

In other words, we set x
(M)
nd to be the index for which the corresponding

dimension of the latent vector wnd is the largest. The plate diagram corre-
sponding to the probit multinomial mixture model is shown in Figure 6.1.

It should be noted that the model is not identifiable, as shifting the mean
of the latent Gaussians wnd does not change the likelihood. This would be
important if the latent vectors had some natural interpretation in a specific
application. Some ways to address this issue are described in [39]. In our
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mixture model we are mostly interested in good cluster allocations and as
such the meaning of the latent variables is not especially interesting, which
is why do not consider this to be a problem.

Let W and Ξ stand for the collection of parameter vectors wnd and ξnd
respectively. The full likelihood of the model can then be written as

p(X(M),W,Ξ,Z,π) = p(X(M)|W)p(W|Z,Ξ)p(Ξ)p(Z|π)p(π),

where the factors p(Z|π) and p(π) are again exactly the same as in the
previous chapters. Denote Cnd = {w ∈ RCd |wi < wc ∀i 6= c, xnd = c} for
the Cd-dimensional cone that defines the allowed values for wnd. We then
have the other factors as

p(X(M)|W) =
N∏
n=1

DM∏
d=1

1{wnd∈Cnd},

p(W|Z,Ξ) =
N∏
n=1

K∏
k=1

DM∏
d=1

N(wnd|ξkd, I)znk ,

p(Ξ) =
K∏
k=1

DM∏
d=1

N(ξkd|0, δ−1Cd
I).

The factor p(X(M)|W) merely ensures that the latent vectors w are con-
sistent with the observations.

6.2 Variational inference

Using the mean-field assumption, the posterior is approximated with

p(Z,π,W,Ξ|X(M)) ≈ q(Z)q(π)q(Ξ)q(W).

The variational distribution q(π) will be exactly as in (5.1). Also q(Z) has
the same form as in (5.1), but one additional term resulting from the multi-
nomial part must be added to the proportions snk in (5.2). Rather tedious
derivations, shown in detail in Appendix B, reveal that

snk ∝ exp
{

terms in (5.2)− 1

2

DM∑
d=1

[ Cd∑
c=1

(ŵ2
ndc − 2ŵndcôkdc + (ô2kdc + δ̂−1k ))

]}
.

(6.1)

56



and that the best variational distributions for the other terms are given by

q(Ξ) =
K∏
k=1

DM∏
d=1

N(ξ̂kd|ôkd, δ̂−1k I),

q(W) =
N∏
n=1

DM∏
d=1

N
x
(M)
nd

(wnd|ξ̂nd, I), (6.2)

where N
x
(M)
nd

(·|·, ·) denotes a truncated normal distribution such that the di-

mension c for which x
(M)
nd = c is the largest. The parameters of the distribu-

tions are given by

ôkd =

∑N
n=1 r̂nk〈wnd〉
R̂k + δCd

=

∑N
n=1 r̂nkŵnd

R̂k + δCd

,

δ̂k = R̂k + δCd
,

ξ̂nd =
K∑
k=1

r̂nkôkd, (6.3)

from which we see that the additional expected sufficient statistic required
for updating the global variational parameters is given by

∑N
n=1 r̂nkŵnd.

In equations (6.1) and (6.3) we now have a set of expectations given by

ŵnd = (ŵnd1, ..., ŵndCd
)T = (Eq[wnd1], ...,Eq[wndCd

])T ,

ŵ2
ndc = Eq[w2

ndc]. (6.4)

These are the first and second moments of the different components of the
latent vectors wnd. As it turns out, these unfortunately do not have closed
form expressions, which means numerical approximations are needed. The
required formulas along with the computational challenges associated with
the model poses will be discussed in the next section.

6.2.1 Computational challenges

The challenge in evaluating the expectations in (6.4) arises from the fact
that this requires evaluation of Cd-dimensional integrals, which are not trivial
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because the variational distribution of each wnd is truncated. Assume now
that the observation x

(M)
nd is equal to c, that is the cth dimension of q(wnd) is

the largest. After some manipulation it can be shown that the expectations
can be computed with the formulas

ŵndi = ξ̂ndi −Z−1nd Eu[φ(u+ ξ̂ndc − ξ̂ndi)
∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)], for i 6= c,

ŵndc = ξ̂ndc +
∑
l 6=c

(ξ̂ndl − ŵndl),

ŵ2
ndi = ξ̂2ndi + 1− (ξ̂ndc + ξ̂ndi)(ξ̂ndi − ŵndi)

−Z−1nd Eu[uφ(u+ ξ̂ndc − ξ̂ndi)
∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)], for i 6= c,

ŵ2
ndc = ξ̂2ndc + Z−1nd Eu[u2

∏
j 6=c

Φ(u+ ξ̂ndc − ξ̂ndj)] + 2ξ̂ndc
∑
l 6=c

(ξ̂ndl − ŵndl),

Znd = Eu[
∏
i 6=c

Φ(u+ ξ̂ndc − ξ̂ndi)], (6.5)

where u denotes a standard normal distributed random variable. These for-
mulas look somewhat daunting, but all of them can be calculated approxi-
mately using fairly simple Monte-Carlo integrals.

Even though approximating a single expectation above is in principle
easy, we face a much bigger problem in the fact that we would need to evalu-
ate the above expectations at every iteration of the algorithm for all N data
samples and DM dimensions, both of which could be large depending on the
application. In principle we could only draw one sufficiently big set of values
from the standard normal distribution and use the same values for all com-
putations in (6.5). This would reduce the number of required simulations
tremendously. We also note that parallelizing the computations correspond-
ing to different data samples is easy. Still, a good amount of computation
would be needed just for this step. Unless we have enough memory available
on our machine, we would also want to calculate the expectations only when
required, that is when we are updating the responsibilities r̂ and calculating
the sufficient statistics.

Our conclusion is that as such the presented way to incorporate the multi-
nomial extension to the GBMM model would be inefficient in practice. We
thus decided not to implement support to categorical data into our model.
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6.2.2 Multinomial logit via Pólya-Gamma augmenta-
tion

As mentioned earlier, recent work by Linderman et al. [50] show how to ex-
tend the Pólya-Gamma augmentation to multinomial likelihood. We learned
about this work only after working through our multinomial probit solu-
tion. We think that the Pólya-Gamma method represents the current state
of the art way to handle also the multinomial logit. This is why we briefly
go through with the main ideas to show how one should proceed with the
modeling when a more efficient algorithm than our multinomial probit is
required.

The problem with multinomial likelihood is that it is not immediately
clear how the probability mass function

p(x) =
Γ(
∑K

k=1 xk + 1)∏K
k=1 Γ(xk + 1)

K∏
k=1

pxkk

could be written in the form required by the Pólya-Gamma identity (2.5).
Linderman et al. use a ’stick-breaking’ representation of the multinomial
likelihood, writing it recursively in terms of binomial distributions as

Mult(x|n,p) =
K−1∏
k=1

Bin(xk|nk, p̃k), (6.6)

where
nk = n−

∑
j<k

xj, p̃k =
pk

1−∑j<k pj
, k = 2, ..., K, (6.7)

n1 = n =
∑

k xk and p̃1 = p1. Here the binomial pmf is given by

Bin(x|n, p) =

(
n

x

)
px(1− p)1−x

and each p̃k represents the fraction of the remaining probability mass corre-
sponding to the kth category. The next step is to set p̃k = σ(ψk), after which
the likelihood can be written in terms of the vector ψ as

Mult(x|n,ψ) =
K−1∏
k=1

(
nk
xk

)
(eψk)xk

(1 + eψ)nk
. (6.8)
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We note that in our mixture model the multinomial is in fact be categorical
distribution, in which case the binomial coefficients

(
nk

xk

)
in the above identity

would simply cancel out. From equation (6.8) we immediately recognize that
when choosing ak = xk and bk = nk for each k = 1, ..., K − 1, we can use the
identity (2.5) to write the Pólya-Gamma augmented likelihood as

p(x,ω|ψ) = p(x|ω,ψ)p(ω) =
K−1∏
k=1

(
nk
xk

)
2−bkeκkψk−ωkψ

2
k/2p(ωk), (6.9)

where κk = xk−nk/2 and p(ωk) is the density of a PG(nk, 0) random variable.
From this factorized form we see that specifying a Gaussian prior on each
of the ψk results in the conditional p(ψ|ω,x) being a diagonal Gaussian.
Moreover, the conditional for ω is given as the product of Pólya-Gamma
distributions: p(ω|ψ,x) =

∏K−1
k=1 PG(ωk|nk, ψk).

It should be noted that the stick-breaking formulation of the multinomial
likelihood is asymmetric, which is not the case with the standard multinomial
logit- and probit models. In their paper Linderman et al. discuss this, and
show that this does not hurt the representational capacity of the model.

The formulation of the augmented multinomial likelihood in (6.9) should
result in a straightforward derivation of variational inference for a multino-
mial mixture model. This could then be combined with a Gaussian mixture
model to yield a Gaussian- and multinomial mixture model with the Bernoulli
mixture model as its special case. We emphasize again that to our knowl-
edge this is currently the best way to specify a multinomial mixture model
for which efficient inference can be developed.
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Chapter 7

Application to Public
Healthcare Dataset

Some of the most hyped big data applications can be brought under the term
digitalized healthcare. This means applying data science and machine learning
methods for example to help offering patients better treatment, make more
accurate diagnoses and to optimize the use of expensive healthcare resources.
The socio-economic importance of the possible applications is undoubtedly
huge.

In this chapter we use our developed GBMM clustering model to an elec-
tronic patient record dataset. We aim to describe the timeline of each patient
as a series of clusters found by our algorithm, based on various types of medi-
cal data collected from the patients. The found clusters and cluster sequences
are analyzed in an exploratory data analysis fashion. Our goal was simply
to get a better understanding of the data, and see what kind of patterns
we are able to uncover. The motivation for this kind of research is clear,
as understanding the treatment periods of the patients better would help
in optimizing the resource allocation of the hospital and thus boosting cost
efficiency. In this work the focus was explicitly on developing the analysis
tools, and as such the results are not analyzed from a medical perspective.
The main contribution of our work is that we provide the first tool for un-
derstanding the data better. We also demonstrate how this kind of analysis
can be used to summarize and draw insights from the data, which we hope
will spark interest for further research.
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Related work

Some work on analyzing electronic patient record datasets has been presented
before. Najjar et al. [56] use a novel variation of the k-prototypes algorithm
[36] to cluster medical records of elderly patients that have been diagnosed
with heart failure diseases. Their approach is scalable to big data, but not
probabilistic. Later, the same authors proposed a joint mixture of Gaussians
and multinomials coupled with a mixture of hidden Markov models (HMM)
[5] to model the same data. The clustering part using a joint mixture of
Gaussians and multinomials corresponds to our ideas, but their inference is
done using the EM-algorithm instead of fully Bayesian inference. They also
do not discuss anything related to the scalability of their solution. Other
examples of related work include text data mining of hospital patient records
[7, 47] and pattern analysis in clinical processes [23, 34, 35].

7.1 The dataset

We were provided access to an electronic patient record dataset from a major
Finnish hospital. The data consists of time-stamped patient records includ-
ing diagnoses, results of laboratory experiments and basic information such
as age and gender, collected over approximately ten years of time. The infor-
mation in the dataset is diverse, ranging from simple numeric values to text
fields explaining the diagnoses. The dataset provides a good overall snapshot
of patients who use hospital services in Finland, as we have data correspond-
ing to all age groups, diseases etc. without any filtering. We would like to
point out that detailed data of this nature, collected over such a long period
of time and composed to one source is likely to be quite unique, even world-
wide. In this study, we restricted our analysis to the approximately 110,000
patients who had been recorded to visit a hospital ward at least twice in the
data.

7.1.1 Feature extraction

We chose to model a 7 year period of time for each patient, starting from the
moment they first visit any of the hospital wards. We split the 7 year time
period in 92 time intervals, each consisting of 28 consecutive days. Our idea
is to extract a set of features from the data that would somehow characterize
the kind of treatment that the patient received in the hospital during the
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corresponding 28 day time interval. A feature here is simply another name
for each dimension in the data and the resulting data matrix that is fed to the
machine learning algorithm is called a feature matrix. After extracting the
features we cluster the (time interval, patient)-tuples with the idea that the
prototype clusters would represent typical one month periods in the hospital.

As we know, our GBMM model supports Gaussian and Bernoulli features.
Keeping this in mind, we created a feature matrix for the (patient, time
window) tuples that had the following features:

• Features 1-12 are continuous variables thresholded to range [0, 1] that
describe the number of days a patient spent at 12 different hospital
wards during the 28 day period in question. The transformation is
illustrated in Figure 7.1. We use this kind of transformation because
we want to clearly separate the endpoints 0 and 28 from the other
values, and also more or less equate the values in between.

• Feature 13 is a binary feature for gender.

• Features 14-149 are binary features that indicate whether a certain
diagnosis was made during the time interval. We chose to include the
most common diagnoses as such, while the rarer ones were labeled as
the corresponding root in the diagnosis tree specified by the ICD-101

diagnostic tool.

• Features 150-269 are binary features that indicate whether a certain set
of laboratory experiments (consisting of many individual experiments)
was done during the time interval.

As we have 92 time intervals and around 110,000 patients, the feature
matrix is now approximately of size 10,120,000 × 269, but very sparse since
majority of the patients are healthy most of the time. This motivates us
to remove all rows that correspond to having no record of activity in the
hospital during the time window, essentially meaning the patient was either
healthy and at home, or dead during the corresponding time window. This
procedure reduces the size of the feature matrix, which will still be sparse, to
approximately 1,700,000 × 269, while giving practically the same results as

1The abbreviation ICD stands for ’International Statistical Classification of Diseases
and Related Health Problems’ and it is used as the standard tool to classify diseases and
other health conditions worldwide.
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Figure 7.1: An illustration of the mapping used to transform the number of
days spent at each hospital ward to the interval [0, 1].

in the case with the zero rows included. Importantly, this step also reduces
the computation time significantly.

7.2 Running the algorithm

For initialization we used the random projections k-means algorithm with
d′ = 80 dimensions and 3 random restarts for the ordinary k-means2. We
then ran the GBMM model for our specified maximum number of 400 iter-
ations. The lower bound continued to increase until the end, as shown in
Figure 7.2. This is largely because of the size of the dataset: The effect
that the change in individual cluster probabilities have on the ELBO add
up. This makes choosing a good convergence threshold harder, as we want
to have reasonable computation time while ensuring sufficient convergence.
As most of the increase happened during the first 200 iterations and the
cluster allocations remained relatively stable after this, we conclude that the
algorithm converged well enough for our purposes.
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Figure 7.2: The convergence of the lower bound during iterations 50-400
while running the GBMM algorithm for the patient data. The steep increase
in ELBO that corresponds to the first 50 iterations is not included in the
plot so that the later changes are more visible.

7.3 Results

7.3.1 Visualizing the clusters

After performing maximum a posteriori cluster assignments on the results
we have 42 clusters containing more than 50 samples. A sample cluster
discovered by the algorithm is shown in Figures 7.3 (features corresponding
to the wards) and 7.4 (binary features). The example cluster represents
patients who spent most of their time in the neurology ward, but could also
visit the internal medicine, skin diseases, or surgery wards. We also get
information about the most common diagnoses and laboratory experiments
done for patients in the cluster. In Figure 7.4 we have included the reference
probability of a laboratory experiment being made when a patient enters the
hospital along with the probabilities corresponding to the found cluster. We
see that there are some experiments that are clearly more common in the
cluster than in the data in general.

2Our data matrix is stored as a sparse matrix in R and the k-means++ implementation
we used ran very slowly while using this data format. Consequently, we chose to use the
ordinary k-means algorithm for the initialization.
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Figure 7.3: An example cluster found by the GBMM algorithm. The plot
shows the hospital ward profile in the cluster, characterized by the mean
vector of the estimated Gaussian distribution. For example, on average ap-
proximately 3 days are spent in the neurology ward, and 1 day at the internal
medicine ward. The other means correspond to less than 1 day spent in the
ward in question.

7.3.2 Analyzing the cluster sequences

We created a sequence of 92 clusters for each patient, representing the 7 year
observation period in terms of the clusters. The removed rows were treated
as either healthy- or dead cluster, depending on the status of each patient
on the corresponding time window, and we thus have 52 clusters in total.

Some statistics based on the cluster allocations

We calculated how many days on average will the patients in each cluster
spend in the hospital during the next 12 months, given the current cluster
allocation. This is illustrated in Figure 7.5 along with 25% and 75% quantiles.
Based on this, it seems that the psychiatric ward tends to be the clearest
indicator of high usage of hospital services. Other significant wards include
internal medicine, surgery and cancer. The quantiles show that the variances
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Figure 7.4: An example cluster found by the GBMM algorithm. The plot
shows the most common diagnoses and laboratory experiments in the clus-
ter. The probabilities of laboratory experiments in the example cluster are
compared to the corresponding probabilities calculated for all hospital visits
in the data. Note that the abbreviations of the laboratory experiments are
taken from the data directly, and are thus in Finnish.

of the predicted days are rather high and the bottom quantile is 0 in most
clusters.

Another point of interest is how the clusters relate to the death probability
of the patients. This is an interesting metric since treatment of dying patients
can be extremely expensive, and in some cases it might not even prolong the
patients’ life. We approach this question with a simple visualization: For each
cluster we can calculate the portion of the patients who have died in the next
m months (m = 1, ..., 24) following the time step when the cluster observation
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Figure 7.5: Illustration of the number of days a patient will spend in the
hospital during the next 12 months given the current cluster. The coloring
of the bars shows the relative time spent at the corresponding hospital de-
partment during a 28 day time window. The error bars represent 25% and
75% quantiles.

was made. In Figure 7.6 we have plotted the cumulative probability of death
for the 5 clusters that have the highest death probability 12 months after
observing the corresponding cluster allocation. For reference, also the average
death probability across all clusters was plotted (except the ’dead’ cluster of
course). Out of the 5 clusters visualized, as many as 4 correspond to clusters
that clearly describe the cancer ward (combined with other wards). This is
intuitive, since cancer is probably one of the most common diagnosis that
can lead to death rather quickly.

Finding interesting cluster transitions

We also looked if knowing more than one past cluster states will help in
predicting the cluster the patient will be in the next time window. This was
done by comparing conditional distributions of the type

p(Ct+1|Ct,s),
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Figure 7.6: Cumulative death probability as a function of time when a patient
is allocated to a given cluster at time step t = 0. The plot shows the top 5
clusters with the highest death probability 12 months after the observed clus-
ter allocation. The bottom line shows the average death probability across
all clusters (excluding the dead cluster). The 4 clusters corresponding to the
highest death probability are all clearly identified as clusters describing the
cancer ward. The cluster corresponding to the 5th highest death probability
describes the best the type of patients who spend on average 10 days in the
internal medicine ward. The cancer ward is present in this cluster as well, al-
though not as clearly as in the top 4 clusters that indicate a high probability
of death.

where Ct+1 is the target cluster we want to predict and Ct,s corresponds to
a cluster history of length s that was observed right before time step t + 1.
These distributions were estimated by considering a data generating model
with SymDir(52,1) prior for the observed transition counts (corresponding
to pseudo-counts of 1) and a multinomial likelihood. We note that this
corresponds to Bayesian modeling of the transitions as an order s Markov
chain. This choice of prior and likelihood results in a Dirichlet posterior for
the transition probabilities.

Using this approach, we compare the 1st order conditional distributions
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against the corresponding 2nd order transition distributions by calculating
the Bhattacharyya distance between these. The Bhattacharyya distance is a
way to measure the distance between two probability distributions p and q,
and it is defined by

DB(p, q) = − ln

∫ √
p(x)q(x) dx.

It is easy to see that 0 ≤ DB ≤ ∞ and that DB(p, q) = 0 if p = q a.s. Calcu-
lating the Bhattacharyya distance for two Dirichlet distributions Dir(α) and
Dir(β) is easy [63], and the result is given by

DB(Dir(α),Dir(β)) = ln Γ(
∑
k

αk + βk
2

) +
1

2

∑
k

[
ln Γ(αk) + ln Γ(βk)

]
−
∑
k

ln Γ(
αk + βk

2
)− 1

2

[
ln Γ(

∑
k

αk) + ln Γ(
∑
k

βk)
]
.

We note that using Dirichlet distributions for the transition probabilities
also take into account the observed counts in the likelihood, which the naive
method of simply normalizing the observed counts does not do.

Using the Bhattacharyya distance, we can identify the conditional distri-
butions that seem to differ the most from each other. The purpose of this
analysis is to aid, and somewhat automate, the process of finding interesting
cluster transitions which could then be analyzed more carefully.

Going back to the example cluster, we can for instance calculate the
Bhattacharyya distance between the first- and second order transition distri-
butions that have the example cluster (labeled by 6) as the last known state:
DB(p(Ct+1|Ct = 6), p(Ct+1|Ct = 6, Ct−1 = ct−1)). Table 7.3.2 shows the 5
largest distances corresponding to different second order transition distribu-
tions which we could estimate from at least N = 30 observations. Essen-
tially this tells us that knowing the second order history (Ct = 6, Ct−1 = 15)
changes the first order transition distribution p(Ct+1|Ct = 6) the most. We
can use this for example to prioritize our analysis to the cluster histories that
drastically seem to change the expected next cluster. In Figure 7.7 we have
visualized the differences between the above first- and second order transition
distributions. To make the plot cleaner, we have grouped the clusters that
have low transition probability to one single cluster labeled ’other’. We see
that there are some significant differences between the two transition distri-
butions. For example the probability of the next state being 15 is about 15%
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ct−1 Distance

15 82.42
23 80.52
35 75.74
10 73.01
2 72.56

Table 7.1: Bhattacharyya distance between the first- and second order transi-
tion distributions p(Ct+1|Ct = 6) and p(Ct+1|Ct = 6, Ct−1 = ct−1) for clusters
ct−1 that correspond to the 5 largest distances. The distances were only cal-
culated for histories for which more than N = 30 second order transitions
were observed.

higher if we know the patient was in cluster 15 also at time step t− 1 before
observing cluster 6. We also note that the probability of getting healthy
drops over 20% if we know the second order history as compared to the first
oder history. This is a common and intuitive observation across the calcu-
lations we made; The second order histories usually describe a longer sick
period than the first order history, in which case also the next cluster tends
to be a sick cluster with higher probability.

7.3.3 Discussion

We presented a few ways to visualize the found clusters, and also did some
simple analysis on how the clusters can be used to predict future behavior
of the patients. Additionally, we presented an automated way of filtering
interesting cluster transitions for further analysis based on the Bhattacharyya
distance. Overall, the clustering reveals the hospital wards that usually are
associated with long stay in the hospital along with the related diagnoses
and laboratory experiments. We are also able to calculate simple statistics
such as the death probability of the patients in the next 24 months based
on the current cluster allocations. As of now, our model yields results that
allows us to summarize the original data in various ways and draw ideas for
further, more detailed analysis. To effectively interpret the results from a
medical point of view, a medical professional would be needed to check the
findings.

As one future idea we mention straight regression from the covariates to
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Figure 7.7: Comparison between the 1st and 2nd order transition distribu-
tions p(Ct+1|Ct = 6) and p(Ct+1|Ct = 6, Ct−1 = 15). All target clusters with
probability more than 0.02 are visualized as their own clusters, and other
targets are merged to the cluster ’other’.

the upcoming hospital days, which might provide more detailed information
about the features of interest. Also different classification algorithms could
be used to predict what type of a patient the data represents, given past
measurements and other information. Regarding these possibilities, we note
that it would also be possible to use the found cluster allocations for the
different time windows as features in further analysis.
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Chapter 8

Conclusion

In this thesis we presented a Bayesian mixture model for analyzing hetero-
geneous data. We specified the model so that it can model both Gaussian-
and Bernoulli data, which should suit modeling a lot of different datasets.
A multinomial probit data augmentation was proposed as an extension that
allows modeling also multinomial data, but was found to be inefficient for
practical use on large data. We also briefly discussed a recent result [50]
that provides a better alternative to extend our model to multinomial data,
but that we were not aware of by the time when we derived the multinomial
probit mixture model.

The main contribution of the thesis is the detailed coverage on the spec-
ification of the proposed mixture model as well as the full derivations for
efficient and scalable incremental variational inference for parameter estima-
tion. The incremental algorithm was found to be superior to the standard
variational inference procedure in a toy data experiment. We showed that
the convergence to the optimum is usually notably faster in case of the in-
cremental algorithm, while the only downside is the requirement to store the
subset sufficient statistics, which is not a problem in practice. Based on these
results we conclude that, while being so easy to implement, the incremental
algorithm should be used whenever possible. Additionally, we showed how to
easily parallelize parts of the algorithm on multicore setups to boost the per-
formance even further. Moreover, we also presented a scalable initialization
to our mixture model using a random projections k-means(++) clustering
algorithm. Even though the models in this thesis are not the easiest ones,
we think this thesis should act as a good reference point for anyone wanting
to learn about variational inference through examples. At the same time
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we also presented some state-of-the-art practical ways to enhance the stan-
dard variational inference, such as the incremental variational inference and
parallel computing.

As a practical application, we used the proposed model for exploratory
data analysis of real electronic patient record data. The model found clusters
that correspond to typical one month usage profiles of hospital services among
the patients in the data. On top of the clustering results we calculated
simple statistics to be used for further analysis, such as predicting the need
of treatment in the future. Our findings mostly resemble the intuition; For
example the patients having psychiatric issues tend to require treatment
for extended periods of time. As of now, the main advantage from using
the model is that the complex data can be compressed to a set of cluster
allocations and known probability distributions. These in turn can be used
to extract insights, such as interesting cluster transitions, that could lead to
discovering ideas for further and more detailed analysis of the data.
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ence for Logistic Models Using Pólya–Gamma Latent Variables. Journal
of the American Statistical Association, 108(504):1339–1349, 2013.

[62] D. Povey, L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal,
O. Glembek, N. K. Goel, M. Karafiát, A. Rastrow, R. C. Rose,
P. Schwarz, and S. Thomas. Subspace gaussian mixture models for
speech recognition. In 2010 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 4330–4333, March 2010.

[63] T. W. Rauber, A. Conci, T. Braun, and K. Berns. Bhattacharyya prob-
abilistic distance of the Dirichlet density and its application to Split-
and-Merge image segmentation. In 2008 15th International Conference
on Systems, Signals and Image Processing, pages 145–148, June 2008.

[64] Mehreen Saeed, Kashif Javed, and Haroon Atique Babri. Machine learn-
ing using bernoulli mixture models: Clustering, rule extraction and di-
mensionality reduction. Neurocomput., 119:366–374, November 2013.

[65] Sanjeena Subedi and Paul D. McNicholas. Variational bayes approxima-
tions for clustering via mixtures of normal inverse gaussian distributions.
Advances in Data Analysis and Classification, 8(2):167–193, 2014.

[66] Bo Thiesson. Fast large-scale mixture modeling with component-specific
data partitions. In NIPS-2010: Advances in Neural Information Pro-
cessing Systems 23. MIT Press, December 2010.

81



[67] Luke Tierney and Joseph B. Kadane. Accurate Approximations for
Posterior Moments and Marginal Densities. Journal of the American
Statistical Association, 81(393):82–86, 1986.

[68] Jakob Verbeek, Nikos Vlassis, and Jan Nunnink. A variational EM
algorithm for large-scale mixture modeling. In S. Vassiliades, L.M.J.
Florack, J.W.J. Heijnsdijk, and A. van der Steen, editors, 9th Annual
Conference of the Advanced School for Computing and Imaging (ASCI
’03), pages 136–143, Heijen, Netherlands, June 2003.

[69] Strother H. Walker and David B. Duncan. Estimation of the probability
of an event as a function of several independent variables. Biometrika,
54(1-2):167–179, 1967.

[70] Chong Wang, John William Paisley, and David M. Blei. Online varia-
tional inference for the hierarchical dirichlet process. In Proceedings of
the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
pages 752–760, 2011.

[71] Mingyuan Zhou, Lingbo Li, Lawrence Carin, and David B. Dunson.
Lognormal and gamma mixed negative binomial regression. In John
Langford and Joelle Pineau, editors, Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12), pages 1343–1350,
New York, NY, USA, 2012. ACM.

[72] Jun Zhu, Xun Zheng, and Bo Zhang. Improved bayesian logistic su-
pervised topic models with data augmentation. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics,
(ACL) 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers,
pages 187–195, 2013.

82



Appendix A

Variational Updates for the
GBMM-model

Variational distributions

We denote 〈 · 〉 for expectation taken w.r.t. all variational distributions except
the one we are calculating, and C for a generic constant. The variational
distributions for the Gaussian and Bernoulli mixture model introduced in
Chapter 5 are found by applying the formula (3.7) presented in Chapter 3.

Calculation of q(Z)

ln q(Z) = 〈ln p(X(G)|Z,µ,Λ)〉+ 〈ln p(X(B)|Z,ω,ψ)〉+ 〈ln p(Z|π)〉+ C.

For the Gaussian part we have

〈ln p(X(G)|Z,µ,Λ)〉 =
N∑
n=1

K∑
k=1

znk

[
− 1

2
(DG ln(2π)− 〈ln |Λk|〉

+ 〈(x(G)
n − µk)TΛk(x

(G)
n − µk)〉)

]
. (A.1)
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Now for the Bernoulli part (κnd = x
(B)
nd − 1/2 and b = 1 in PG-identity):

〈ln p(X(B)|Z,ω,ψ)〉 = 〈
N∑
n=1

K∑
k=1

DB∑
d=1

znk ln 2−1eκndψkd−ωndψ
2
kd/2〉

=
N∑
n=1

K∑
k=1

[
znk

DB∑
d=1

[
− ln 2 + κnd〈ψkd〉 −

1

2
〈ωnd〉〈ψ2

kd〉
]]
.

(A.2)

For the cluster assignment part we have

〈ln p(Z|π)〉 =
N∑
n=1

K∑
k=1

znk〈lnπk〉. (A.3)

Now (A.1) - (A.3) put together gives

ln q(Z) =
N∑
n=1

K∑
k=1

znk

[
− 1

2
(DG ln(2π)− 〈ln |Λk|〉+ 〈(x(G)

n − µk)TΛk(x
(G)
n − µk)〉)

+

DB∑
d=1

[
− ln 2 + κnd〈ψkd〉 −

1

2
〈ωnd〉〈ψ2

kd〉
]

+ 〈ln πk〉
]
.

We now define

ln snk := −1

2
(DG ln(2π)− 〈ln |Λk|〉+ 〈(x(G)

n − µk)TΛk(x
(G)
n − µk)〉)

+

DB∑
d=1

[
− ln 2 + κnd〈ψkd〉 −

1

2
〈ωnd〉〈ψ2

kd〉
]

+ 〈lnπk〉.

When all of the variational distributions are known, the required expectations
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can be calculated as

〈ln |Λk|〉 =

DG∑
d=1

〈lnλkd〉 =

DG∑
d=1

(ψ(âk)− ln b̂kd),

〈ln πk〉 = ψ(α̂k)− ψ(
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2ênd
tanh(ênd/2).

Thus
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+
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}
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(A.4)

After exponentiating and normalizing we see that the variational distribution
is a product of multinomials

q(Z) =
∏
n

Mult(1, r̂n)

where
r̂nk =

snk∑
i sni

.
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Calculation of q(π)

ln q(π) = 〈ln p(Z|π)〉+ ln p(π) + C

=
N∑
n=1

K∑
k=1

〈znk〉 lnπk +
N∑
n=1

(α0 − 1) lnπk + C

=
K∑
k=1

(R̂k + α0 − 1) lnπk + C,

where R̂k =
∑N

n=1 r̂nk. Exponentiating this gives

q(π) ∝
∏
k

πα0+R̂k−1
k ,

which corresponds to a Dir(α̂)-distribution, where α̂k = α0 + R̂k.

Calculation of q(µ,Λ)

First we note that by the independence assumptions made in the model
specification in (4.3) the variational distribution clearly factorizes across the
clusters and data dimensions as

q(µ,Λ) =
K∏
k=1

DG∏
d=1

q(µkd, λkd).

We thus continue by calculating the variational distribution for each of these
factors.

ln q(µkd, λkd) = 〈ln p(X(G)|Z,µ,Λ)〉+ ln p(µ,Λ) + C

=
N∑
n=1

〈znk〉
(1

2
lnλkd −

λkd
2

(x
(G)
nd − µkd)2

)
+

1

2
lnλkd −

β0λkd
2

(µkd − µ0d)
2 + (a0 − 1) lnλkd − b0λkd + C

= (
R̂k

2
+ a0 − 1) lnλkd − b0λkd +

1

2
lnλkd

− λkd
2

[ N∑
n=1

r̂nk(x
(G)
nd − µkd)2 + β0(µkd − µ0d)

2
]

+ C
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After completing the square for µkd, rearranging the terms and exponen-
tiating we have

q(µkd, λkd|X) ∝ λ
1/2
kd exp

{
− λkd(R̂k + β0)

2

(
µkd −

β0µ0d +
∑N

n=1 r̂nkx
(G)
nd

R̂k + β0

)2}
× λR̂k/2+a0−1

kd exp
{
−
[
b0 +

R̂kβ0

2(R̂k + β0)

(
µ0d −

∑N
n=1 r̂nkx

(G)
nd

R̂k

)2
+

1

2

N∑
n=1

r̂nk(x
(G)
nd )2 − (

∑N
n=1 r̂nkx

(G)
nd )2

2R̂k

]
λkd

}
.

From this we recognize the kernel of a Normal-Gamma

N(µkd|m̂kd, (β̂kλkd)
−1) Gamma(λkd|âk, b̂kd),

where

m̂kd =
β0µ0d +

∑N
n=1 r̂nkx

(G)
nd

R̂k + β0
,

β̂k = R̂k + β0,

âk =
R̂k

2
+ a0,

b̂kd = b0 +
R̂kβ0

2(R̂k + β0)

(
µ0d −

∑N
n=1 r̂nkx

(G)
nd

R̂k

)2
+

1

2

N∑
n=1

r̂nk(x
(G)
nd )2 − (

∑N
n=1 r̂nkx

(G)
nd )2

2R̂k

.

Calculation of q(ψ)

Also here the variational distribution clearly factorizes as

q(ψ) =
K∏
k=1

DB∏
d=1

q(ψkd).

The factors are calculated by the standard procedure:
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ln q(ψkd) = 〈ln p(X(B)|Z,ω,ψ)〉+ 〈ln p(ψ|ν, τ )〉+ C

= 〈
N∑
n=1

znk ln(2−1eκndψkd−ωndψ
2
kd/2)〉+ 〈−1

2
(ψkd − νkd)2〉+ C

= ψkd

N∑
n=1

r̂nkκnd −
ψ2
kd

2

N∑
n=1

r̂nk〈ωnd〉 −
ψ2
kd

2
+ ψkd〈νkd〉+ C

= −
∑N

n=1 r̂nk〈ωnd〉+ 1

2

(
ψkd −

∑N
n=1 r̂nkκnd + 〈νkd〉∑N
n=1 r̂nk〈ωnd〉+ 1

)2
+ C.

This is a logarithm of a Gaussian kernel. Thus the variational distribution
is N(ν̂kd, τ̂

−1
kd ) where

ν̂kd =

∑N
n=1 r̂nkκnd + 〈νkd〉∑N
n=1 r̂nk〈ωnd〉+ 1

=

∑N
n=1 r̂nkκnd + n̂kd∑N

n=1

[
r̂nk

1
2ênd

tanh(ênd/2)
]

+ 1
,

τ̂kd =
N∑
n=1

r̂nk〈ωnd〉+ 1 =
N∑
n=1

[
r̂nk

1

2ênd
tanh(ênd/2)

]
+ 1.

Calculation of q(ω)

This variational distribution factorizes as

q(ω) =
N∏
n=1

DB∏
d=1

q(ωnd).

Again, we calculate the factors separately.

ln q(ωnd) = 〈ln p(X(B)|Z,ω,ψ)〉+ 〈ln p(ω)〉+ C

= 〈
∑
k

znk ln(2−1eκndψkd−ωndψ
2
kd/2)〉+ ln p(ωnd) + C

= −
∑

k r̂nk〈ψ2
kd〉

2
ωnd + ln p(ωnd) + C.
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This is recognized as exponential tilting of a PG(1, 0) density, yielding

q(ωnd) = PG(1, ênd),

where

ênd =

√∑
k

r̂nk〈ψ2
kd〉 =

√∑
k

r̂nk(τ̂
−1
kd + ν̂2kd).

The expected value is given as

Eq[ωkd] =
1

2êkd
tanh(êkd/2).

Calculation of q(ν)

This variational distribution factorizes as

K∏
k=1

DB∏
d=1

q(νkd)

and the factors are acquired by calculating

ln q(νkd) = 〈ln p(ψkd|νkd)〉+ ln p(νkd) + C

= −1

2

(
〈(ψkd − νkd)2〉+ γ0(νkd − ν0)2

)
+ C

= −1 + γ0
2

(νkd −
〈ψkd〉+ γ0ν0

1 + γ0
)2 + C.

From this we recognize the log kernel of a normal N(νkd|n̂kd, γ̂−1) - distribu-
tion, where

n̂kd =
〈ψkd〉+ γ0ν0

1 + γ0
=
ν̂kd + γ0ν0

1 + γ0
,

γ̂ = 1 + γ0.

A7



Lower bound

The individual terms in the evidence lower bound are given by

Eq[ln p(Z|π)]− Eq[ln q(Z)] =
K∑
k=1

[R̂k(ψ(α̂k)− ψ(
K∑
k=1

α̂k))−
N∑
n=1

r̂nk ln r̂nk],

Eq[ln p(π)]− Eq[ln q(π)] = ln Γ(α0K)−K ln Γ(α0)− ln Γ(
K∑
k=1

α̂k)

+
K∑
k=1

ln Γ(α̂k) +
K∑
k=1

(α0 − α̂k)(ψ(α̂k)− ψ(
K∑
k=1

α̂k)),

Eq[ln p(µ,Λ)]− Eq[ln q(µ,Λ)] =
K∑
k=1

DG∑
d=1

[1

2
ln
β0

β̂k
− β0

2

[ 1

β̂k
+
âk

b̂kd
(m̂kd − µ0d)

2
]

+
1

2
+ a0 ln b0 − âk ln b̂kd + ln

Γ(âk)

Γ(a0)

+ (a0 − âk)(ψ(âk)− ln b̂kd)− âk(
b0

b̂kd
− 1)

]
,

Eq[ln p(ψ|ν)]− Eq[ln q(ψ)] = −1

2

K∑
k=1

DB∑
d=1

(ν̂kd − n̂kd)2 +
1

γ̂
+ ln τ̂kd,

and

Eq[ln p(ν)]− Eq[ln q(ν)] =
1

2

K∑
k=1

DB∑
d=1

[
ln
γ0
γ̂
− γ0(n̂kd − v0)2 −

γ0
γ̂

+ 1
]
.

The Pólya-Gamma-part requires a little bit of manipulation. Let Eω
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denote expectation with respect to a PG(1,0)-distribution. Then

Eq[ln p(ω)]− Eq[ln q(ω)]

= Eq
[ D∑
n=1

DB∑
d=1

ln
PG(ωnd|1, 0)

PG(ωnd|1, ênd)
]

= Eq
[ N∑
n=1

DB∑
d=1

ln
[
PG(ωnd|1, 0)× Eω[exp(− ê2nd

2
ωnd)]

exp(− ê2nd

2
ωnd)PG(ωnd|1, 0)

]]
= Eq

[ N∑
n=1

DB∑
d=1

ln
cosh−1(ênd/2)

exp(− ê2nd

2
ωnd)

]
=

N∑
n=1

DB∑
d=1

[
− ln(cosh(ênd/2)) +

ênd
4

tanh(ênd/2)
]
.

Finally, the parts involving the data likelihoods are given by

Eq[ln p(X(G)|Z,µ,Λ)] =
1

2

K∑
k=1

DG∑
d=1

[
R̂k(− ln(2π) + ψ(âk)− ln b̂kd −

1

β̂k
)

− âk

b̂kd
(
N∑
n=1

r̂nk(x
(G)
nd )2 − 2m̂kd

N∑
n=1

r̂nkx
(G)
nd + R̂km̂

2
kd)
]
,

and

Eq[ln p(X(B)|Z,ω,ψ)]

=
K∑
k=1

DM∑
d=1

[
− R̂k ln 2 + ν̂kd

N∑
n=1

r̂nkκnd −
1

2
(ν̂2kd + τ̂−1kd )

N∑
n=1

r̂nk
1

2ênd
tanh(ênd/2)

]
.
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Appendix B

Variational Updates for
Multinomial Extension of the
GBMM-model

Calculation of q(Z)

The calculation is otherwise similar to what is presented in the GBMM-
model, but the extra term 〈ln p(W|Z,Ξ)〉 is needed when calculating the
variational distribution q(Z):

ln q(Z) = 〈ln p(X(G)|Z,µ,Λ)〉+ 〈ln p(X(B)|Z,ω,ψ)〉
+ 〈ln p(W|Z,Ξ)〉+ 〈ln p(Z|π)〉+ C.

After simplifying we have

〈ln p(W|Z,Ξ)〉 =
N∑
n=1

K∑
k=1

[
− znk

2

DM∑
d=1

[
Cd ln(2π) + 〈(wnd − ξkd)T (wnd − ξkd)〉

]]
,

where the expectation is given as

〈(wnd − ξkd)T (wnd − ξkd)〉 =

Cd∑
c=1

(ŵ2
ndc − 2ŵndcôkdc + (ô2kdc + δ̂−1k )).
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Adding this new term to equation (A.4) in Appendix A gives the unnormal-
ized responsibilities as

snk ∝ exp
{1

2

( DG∑
d=1

(ψ(âk)− ln b̂kd)−
DG∑
d=1

(
âk

b̂kd
(x

(G)
nd − m̂kd)

2 +
1

β̂k
)
)

+

DB∑
d=1

[
κndν̂kd −

1

4ênd
tanh(ênd/2)(τ̂−1kd + ν̂2kd)

]
− 1

2

DM∑
d=1

[ Cd∑
c=1

(ŵ2
ndc − 2ŵndcôkdc + (ô2kdc + δ̂−1k ))

]
+ ψ(α̂k)− ψ(

K∑
k=1

α̂k)
}
.

After this, the calculations for q(Z) are exactly the same as in Appendix A.

Calculation of q(Ξ)

Again we see that the variational distribution factorizes over the clusters and
data dimensions as

q(Ξ) =
K∏
k=1

DB∏
d=1

q(ξkd).

We have

ln q(ξkd) = 〈ln p(W|Z,Ξ)〉+ ln p(Ξ) + C

=
N∑
n=1

r̂nk

[
− 1

2
〈(wnd − ξkd)T (wnd − ξkd)〉

]
− δCd

2
ξTkdξkd + C

= −1

2

[
ξTkdξkd(R̂k + δCd

)− 2ξTkd

N∑
n=1

r̂nk〈wnd〉
]

+ C

= −R̂k + δCd

2

[
ξTkdξkd − 2

ξTkd
∑N

n=1 r̂nk〈wnd〉
R̂k + δCd

]
+ C.

From this we recognize the functional form of a multivariate Gaussian

N(ξkd|ôkd, δ̂−1k I),
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with parameters given by

ôkd =

∑N
n=1 r̂nk〈wnd〉
R̂k + δCd

=

∑N
n=1 r̂nkŵnd

R̂k + δCd

,

δ̂k = R̂k + δCd
.

Calculation of q(W)

The variational distribution factorizes as

q(W) =
N∏
n=1

DB∏
d=1

q(wnd).

The derivations presented here follow the ideas and derivations given in [28].

Without loss of generality assume x
(M)
nd = c. We begin by calculating the

variational distributions q(wnd).

ln q(wnd) = ln p(X(M)|W) + 〈ln p(W|ξ,Z)〉+ C

= ln p(x
(M)
nd |wnd)−

1

2

K∑
k=1

r̂nk〈(wnd − ξkd)T (wnd − ξkd)〉+ C

= ln p(x
(M)
nd |wnd)−

1

2
(wT

ndwnd

K∑
k=1

r̂nk︸ ︷︷ ︸
=1

−2wT
nd

K∑
k=1

r̂nk〈ξkd〉) + C

= ln p(x
(M)
nd |wnd)−

1

2
(wT

ndwnd − 2wT
nd

K∑
k=1

r̂nk〈ξkd〉) + C.

Thus

q(wnd) ∝ 1{wnd∈Cnd}exp
{
− 1

2
(wT

ndwnd − 2wT
nd

K∑
k=1

r̂nk〈ξkd〉)
}
,

where Cnd = {w ∈ RCd |wi < wc ∀i 6= c, xnd = c}. This is recognized as
the kernel of a truncated Cd-dimensional multivariate normal distribution

N
x
(M)
nd

(wnd|ξ̂nd, I),
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where ξ̂nd =
∑K

k=1 r̂nk〈ξkd〉 =
∑K

k=1 r̂nkôkd and the truncation is such that

for a data point for which x
(M)
nd = c the cth dimension is the largest. We

use N
x
(M)
nd

(·|·, ·) to denote a truncated normal distribution where the largest

dimension is specified by x
(M)
nd .

We proceed to calculate the expectations that are required for the varia-
tional updates. We denote ŵnd := Eq[wnd] = (ŵnd1, ..., ŵndCd

)T for the first

moments and ŵ2
nd := Eq[w2

nd] = (ŵ2
nd1, ..., ŵ2

ndCd
)T for the second moments

of the truncated distribution.
The variational distribution q(wnd) can be written as

q(wnd) = 1{wnd∈Cnd}Z−1nd
Cd∏
i=1

N(wndi|ξ̂ndi, 1), (B.1)

where Znd = P (wnd ∈ Cnd) and the normal distributions for each wndi are
untruncated. Let u and ui be generic standard normal distributed random
variables. Using the affine transformation property of normal distribution
and the equation (B.1) we have

Znd = P (wnd ∈ Cnd)
= Ewndc

[
∏
i 6=c

P (wndi < wndc|wndc)]

= Eu[
∏
i 6=c

P (ui < u+ ξ̂ndc − ξ̂ndi|u)]

= Eu[
∏
i 6=c

Φ(u+ ξ̂ndc − ξ̂ndi)]. (B.2)

Now we calculate the expectations for components i 6= c as
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ŵndi = Z−1nd
∫ ∞
−∞

N(wndc|ξ̂ndc, 1)

∫ wndc

−∞
wndiN(wndi|ξ̂ndi, 1)

×
∏
j 6=i,k

∫ wndc

−∞
N(wndj|ξ̂ndj, 1) dwndj dwndi dwndc

= Z−1nd Eu
[ ∫ u+ξ̂ndc−ξ̂ndi

−∞
(ui + ξ̂ndi)φ(ui) dui

∏
j 6=i,c

∫ u+ξ̂ndc−ξ̂ndj

−∞
φ(uj) duj

]
(?)
= ξ̂ndi + Z−1nd Eu

[
−
∫ u+ξ̂ndc−ξ̂ndi

−∞
φ′(ui) dui

∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)
]

= ξ̂ndi −Z−1nd Eu[φ(u+ ξ̂ndc − ξ̂ndi)
∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)]. (B.3)

In (?) we used the result in (B.2) and the easily verifiable identity−xφ(x) =
φ′(x), where φ is the probability density function of a N(0, 1) distribution.

Then we calculate the expectation for the component c as

ŵndc = Z−1nd
∫ ∞
−∞

wndcN(wndc|ξ̂ndc, 1)
∏
j 6=c

∫ wndc

−∞
N(wndc|ξ̂ndj, 1) dwndj dwndc

= Z−1nd Eu[(u+ ξ̂ndc)
∏
j 6=c

Φ(u+ ξ̂ndc − ξ̂ndj)]

= ξ̂ndc + Z−1nd Eu[u
∏
j 6=c

Φ(u+ ξ̂ndc − ξ̂ndj)]

(?)
= ξ̂ndc + Z−1nd

∑
l 6=c

Eu[φ(u+ ξ̂ndc − ξ̂ndl)
∏
j 6=l,c

Φ(u+ ξ̂ndc − ξ̂ndj)]

(??)
= ξ̂ndc +

∑
l 6=c

(ξ̂ndl − ŵndl),

where we used:

(?) The fact that for any differentiable function g and random variable u ∼
N(0, 1) it holds that E[ug(u)] = E[g′(u)], assuming that limu→±∞ φ(u)g(u) =
0. This is easily proven by the identity −xφ(x) = φ′(x) and integration
by parts.

(??) The result that was calculated in (B.3).
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We still need the second moments for each of the components of wnd as
they appear in the variational distribution q(Z). The principle for calculating
them is the same as above, but some additional intermediate steps are needed.

First for i 6= c we have

ŵ2
ndi = Z−1nd

∫ ∞
−∞

N(wndc|ξ̂ndc, 1)

∫ wndc

−∞
w2
ndiN(wndi|ξ̂ndi, 1)

×
∏
j 6=i,c

∫ wndc

−∞
N(wndj|ξ̂ndj, 1) dwndj dwndi dwndc

= Z−1nd Eu
[ ∫ u+ξ̂ndc−ξ̂ndi

−∞
(ui + ξ̂ndi)

2φ(ui) dui
∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)
]

= ξ̂2ndi + Z−1nd Eu
[ ∫ u+ξ̂ndc−ξ̂ndi

−∞
(u2i + 2ξ̂ndiui)φ(ui) dui

∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)
]

(?)
= ξ̂2ndi + Z−1nd Eu

[[
−
∫ u+ξ̂ndc−ξ̂ndi

−∞
uiφ

′(ui) dui − 2ξ̂ndiφ(u+ ξ̂ndc − ξ̂ndi)
]

×
∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)
]

(??)
= ξ̂2ndi + 1 + Z−1nd Eu

[
− (u+ ξ̂ndc + ξ̂ndi)φ(u+ ξ̂ndc − ξ̂ndi)

∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)
]

(???)
= ξ̂2ndi + 1− (ξ̂ndc + ξ̂ndi)(ξ̂ndi − ŵndi)
−Z−1nd Eu[uφ(u+ ξ̂ndc − ξ̂ndi)

∏
j 6=i,c

Φ(u+ ξ̂ndc − ξ̂ndj)],

where we used:

(?) Identity −xφ(x) = φ′(x) for u2i and ui.

(??) Integration by parts and rearranging terms.

(? ? ?) Result in (B.3).
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The second moment for wndc is then calculated as

ŵ2
ndc = Z−1nd

∫ ∞
−∞

w2
ndcN(wndc|ξ̂ndc, 1)

∏
j 6=c

∫ wndc

−∞
N(wndj|ξ̂ndj, 1) dwndjdwndc

= Z−1nd Eu
[
(u+ ξ̂ndc)

2
∏
j 6=c

Φ(u+ ξ̂ndc − ξ̂ndj)
]

(?)
= ξ̂2ndc + Z−1nd Eu[u2

∏
j 6=c

Φ(u+ ξ̂ndc − ξ̂ndj)] + 2ξ̂ndc
∑
l 6=c

(ξ̂ndl − ŵndl),

where in (?) we used results in (B.2) and (B.3) to simplify the expression.

Lower bound terms

The bound for W is

Eq[ln p(W|Z,Ξ)]− Eq[ln q(W)]

=
N∑
n=1

K∑
k=1

DM∑
d=1

Eq[znk]
[
− Cd

2
ln(2π)− 1

2
Eq[(wnd − ξkd)T (wnd − ξkd)]

]
−

N∑
n=1

DM∑
d=1

[
Eq[ln1{wnd∈Cnd}]− lnZnd −

Cd
2

ln(2π)− 1

2
Eq[(wnd − ξ̂nd)T (wnd − ξ̂nd)]

]
.

The expectations are easy to calculate as the required moments with respect
to the variational distribution are known. Especially

Eq[ln1{wnd∈Cnd}] = −∞ ·Q(wnd 6∈ Cnd) + 0 ·Q(wnd ∈ Cnd) = 0, (B.4)

where Q is the variational measure. Since the variational distribution for wnd

is truncated so that wnd ∈ Cnd almost surely (that is Q(wnd ∈ Cnd) = 1), the
above expectation simplifies to zero1. After further simplifications we have
the bound as∑
n,d

lnZnd +
∑
n,d,c,k

r̂nkŵndcôkdc −
∑
n,d,c

ŵndcξ̂ndc −
1

2

∑
d,c,k

R̂k(ô
2
kdc + δ̂−1k ) +

1

2

∑
n,d,c

ξ̂2ndc.

1We define 0 · ±∞ to be 0, as is usually done in probability theory.
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For Ξ the bound is given by

Eq[ln p(Ξ)]− Eq[ln q(Ξ)] =
1

2

K∑
k=1

DM∑
d=1

[
Cd(1 + ln

δCd

δ̂k
)− δCd

Cd∑
c=1

(ô2kdc + δ̂−1k )
]
,

and finally the bound for X(M) is

Eq[ln p(X(M)|W)] =
N∑
n=1

DM∑
d=1

Eq[ln1{wnd∈Cnd}] = 0,

by the same argument as in (B.4).
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