1,803 research outputs found

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Software Architecture of Sensor Data Distribution In Planetary Exploration

    Get PDF
    Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed

    Providing security and fault tolerance in P2P connections between clouds for mHealth services

    Full text link
    [EN] The mobile health (mHealth) and electronic health (eHealth) systems are useful to maintain a correct administration of health information and services. However, it is mandatory to ensure a secure data transmission and in case of a node failure, the system should not fall down. This fact is important because several vital systems could depend on this infrastructure. On the other hand, a cloud does not have infinite computational and storage resources in its infrastructure or would not provide all type of services. For this reason, it is important to establish an interrelation between clouds using communication protocols in order to provide scalability, efficiency, higher service availability and flexibility which allow the use of services, computing and storage resources of other clouds. In this paper, we propose the architecture and its secure protocol that allows exchanging information, data, services, computing and storage resources between all interconnected mHealth clouds. The system is based on a hierarchic architecture of two layers composed by nodes with different roles. The routing algorithm used to establish the connectivity between the nodes is the shortest path first (SPF), but it can be easily changed by any other one. Our architecture is highly scalable and allows adding new nodes and mHealth clouds easily, while it tries to maintain the load of the cloud balanced. Our protocol design includes node discovery, authentication and fault tolerance. We show the protocol operation and the secure system design. Finally we provide the performance results in a controlled test bench.Lloret, J.; Sendra, S.; Jimenez, JM.; Parra-Boronat, L. (2016). Providing security and fault tolerance in P2P connections between clouds for mHealth services. Peer-to-Peer Networking and Applications. 9(5):876-893. doi:10.1007/s12083-015-0378-3S87689395The Fifty-eighth World Health Assembly, Resolutions and Decisions. Document: A58/21. Available at: http://www.who.int/healthacademy/media/WHA58-28-en.pdf . [Last access: Dec. 30, 2014]World Health organization. Topics of eHealth. In WHO website. Available at: http://www.who.int/topics/eHealth/en/ . [Last access: Dec. 30, 2014]Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805Promotional Material Digital health: working in partnership. Department of Health. UK. (2014) Available at: https://www.gov.uk/government/publications/digital-health-working-in-partnership/digital-health-working-in-partnerships#digital-health---harnessing-technology-for-patient-benefit . [Last access: Dec. 30, 2014]eHealth for a Healthier Europe!– opportunities for a better use of healthcare resources. Available at: https://joinup.ec.europa.eu/sites/default/files/files_epractice/sites/eHealth%20for%20a%20Healthier%20Europe %20-%20Opportunities%20for%20a%20better%20use%20of%20healthcare%20resources.pdf. [Last access: Dec. 30, 2014]Adibi S (2012) Link technologies and BlackBerry mobile health (mHealth) solutions: a review. IEEE Trans Inf Technol Biomed 16(4):586–597Chiarini G, Ray P, Akter S, Masella C, Ganz A (2013) mHealth technologies for chronic diseases and elders: a systematic review. IEEE J Sel Areas Commun 31(9):6–18Lopes IM, Silva BM, Rodrigues JJ, Lloret J, Proenca ML (2011) A mobile health monitoring solution for weight control. In proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP 2011), Nanjing, pp 1–5Lopes IM, Silva BM, Rodrigues JJPC, Lloret J (2012) Performance evaluation of cooperation mechanisms for m-health applications. In proceedings of the 2012 I.E. Global Communications Conference (GLOBECOM 2012), AnaheimKyriacou EC, Pattichis CS, Pattichis MS (2009) An overview of recent health care support systems for eEmergency and mHealth applications. In proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Hilton Minneapolis, pp 1246–1249Nkosi MT, Mekuria F (2010) Cloud computing for enhanced mobile health applications. In proceedings of the 2010 I.E. Second International Conference on Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, pp 629–633Sultan N (2014) Making use of cloud computing for healthcare provision: opportunities and challenges. Int J Inf Manag 34(2):177–184Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R (2012) An autonomic cloud environment for hosting ECG data analysis services. Futur Gener Comput Syst 28(1):147–154Xia H, Asif I, Zhao X (2013) Cloud-ECG for real time ECG monitoring and analysis. Comput Methods Prog Biomed 110(3):253–259Bourouis A, Feham M, Bouchachia A (2012) A new architecture of a ubiquitous health monitoring system: a prototype of cloud mobile health monitoring system. arXiv preprint. Reference: arXiv:1205.6910Chen KR, Lin YL, Huang MS (2011) A mobile biomedical device by novel antenna technology for cloud computing resource toward pervasive healthcare. In proceedings of the 11th International Conference on Bioinformatics and Bioengineering (BIBE 2011), Taichung, pp 133–136Lacuesta R, Lloret J, Sendra S, Peñalver L (2014), Spontaneous ad hoc mobile cloud computing network. Sci World J (Article ID 232419): 1–19Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges (Chapter 14). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 262–274. DOI: 10.4018/978-1-4666-4781-7.ch014Wan J, Zhang D, Zhao S, Yang LT, Lloret J (2014) Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges and solutions. IEEE Commun Mag 52(8):106–113. doi: 10.1109/MCOM.2014.6871677Rodrigues JJPC, Zhou L, Mendes LDP, Lin K, Lloret J (2012) Distributed media-aware flow scheduling in cloud computing environment. Comput Commun 35(15):1819–1827Dutta R, Annappa B (2014) Protection of data in unsecured public cloud environment with open, vulnerable networks using threshold-based secret sharing. Netw Protoc Algoritm 6(1):58–75Modares H, Lloret J, Moravejosharieh A, Salleh R (2013) Security in mobile cloud computing (Chapter 5). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 79–91Mehmood A, Song H, Lloret J (2014) Multi-agent based framework for secure and reliable communication among open clouds. Netw Protoc Algoritm 6(4):60–76Mendes LDP, Rodrigues JJPC, Lloret J, Sendra S (2014) Cross-layer dynamic admission control for cloud-based multimedia sensor networks. IEEE Syst J 8(1):235–246Xiong J, Li F, Ma J, Liu X, Yao Z, Chen PS (2014) A full lifecycle privacy protection scheme for sensitive data in cloud computing. Peer-to-Peer Netw Appl 1–13Yang H, Kim H, Mtonga K (2014) An efficient privacy-preserving authentication scheme with adaptive key evolution in remote health monitoring system. Peer-to-Peer Netw Appl 1–11Silva BM, Rodrigues JJ, Canelo F, Lopes IM, Lloret J (2014) Towards a cooperative security system for mobile-health applications. Electron Commer Re 1–27Flynn D, Gregory P, Makki H, Gabbay M (2009) Expectations and experiences of eHealth in primary care: a qualitative practice-based investigation. Int J Med Inform 78(9):588–604Thampi SM (2010) Survey of search and replication schemes in unstructured P2P networks. Netw Protoc Algoritm 2(1):93–131Khan SM, Mallesh N, Nambiar A, Wright M (2010) The dynamics of salsa: a robust structured P2P system. Netw Protoc Algoritm 2(4):40–60Garcia M, Hammoumi M, Canovas A, Lloret J (2011) Controlling P2P file-sharing networks’ traffic. Netw Protoc Algoritm 3(4):54–92Lloret J, Garcia M, Tomas J, Rodrigues JJPC (2014) Architecture and protocol for InterCloud communication. Inf Sci 258:434–451Chowdhury CR (2014) A survey of cloud based health care system. Int J Innov Res Comput Commun Eng 2(8):5477–5481Ghosh R, Papapanagiotou I, Boloor KA (2014) Survey on research initiatives for healthcare clouds. Cloud Computing Applications for Quality Health Care Delivery. IGI Global 1–18Donahue S (2010) Can cloud computing help fix health care? Cloudbook J 1(6):1–6Deng M, Petkovic M, Nalin M, Baroni IA (2011) Home healthcare system in the cloud--addressing security and privacy challenges. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 549–556Wang X, Gui Q, Liu B, Chen Y, Jin Z (2013) Leveraging mobile cloud for telemedicine: a performance study in medical monitoring. In proceedings of the 39th Annual Northeast Bioengineering Conference (NEBEC 2013), Syracuse, pp 49–50Alamri A (2012) Cloud-based e-health multimedia framework for heterogeneous network. In proceedings of the 2012 I.E. International Conference on Multimedia and Expo Workshops (ICMEW 2012), Melbourne, pp 447–452Constantinescu L, Kim J, Feng DD (2012) Sparkmed: a framework for dynamic integration of multimedia medical data into distributed m-health systems. IEEE Trans Inf Technol Biomed 16(1):40–52Botts N, Thoms B, Noamani A, Horan TA (2010) Cloud computing architectures for the underserved: public health cyberinfrastructures through a network of healthatms. In proceedings of the 43rd Hawaii International Conference on System Sciences (HICSS 2010), Honolulu, pp 1–10Fan L, Buchanan W, Thummler C, Lo O, Khedim A, Uthmani O, Lawson A, Bell D (2011) DACAR platform for eHealth services cloud. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 219–226Ruiz-Zafra A, Benghazi K, Noguera M, Garrido JL (2013) Zappa: An Open Mobile Platform to Build Cloud-Based m-Health Systems. In proceedings of the 4th International Symposium on Ambient Intelligence (ISAmI 2013), Salamanca, pp 87–94Nijon S, Dickerson RF, Asare P, Li Q, Hong D, Stankovic JA, Hu P, Shen G, Jiang X (2013) Auditeur: a mobile-cloud service platform for acoustic event detection on smartphones. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM, Taipei, pp 403–416Lloret J, Diaz JR, Boronat F, Jiménez JM (2006) A fault-tolerant P2P-based protocol for logical networks interconnection. In proceedings of the International Conference on Networking and Services (ICNS’06), Silicon ValleyLloret J, Palau C, Boronat F, Tomas J (2008) Improving networks using group-based topologies. Comput Commun 31(14):3438–3450Lloret J, Boronat Segui F, Palau C, Esteve M (2005) Two levels SPF-based system to interconnect partially decentralized P2P file sharing networks. In proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services.(ICAS-ICNS 2005), Papeete, p 39Cramer C, Kutzner K, Fuhrmann T (2004) Bootstrapping locality-aware P2P networkS. In proceedings of the 12th IEEE International Conference on Networks (ICON 2004), Singapore, pp 357–361FIPS 180-1 - Secure Hash Standard, SHA-1. National Institute of Standards and Technology. http://www.itl.nist.gov/fipspubs/fip180-1.htm [Last access: Dec. 30, 2014]Eastlake D., Jones P., US Secure Hash Algorithm 1 (SHA1),(2001). In IETF website, Available at: http://www.ietf.org/rfc/rfc3174.txt [Last access: March 20, 2015]Lacuesta R, Lloret J, Garcia M, Peñalver L (2011) Two secure and energy-saving spontaneous Ad-Hoc protocol for wireless mesh client networks. J Netw Comput Appl 3(2):492–50

    Multicast-Based Mobile Ipv6 Join/Leave Mechanism Software

    Get PDF
    Increasing demand for mobility in the Internet has created the need for a routing protocol that allows a host to roam in the network. Mobile IP is a solution that enables an IP host to leave its home link while transparently maintaining all of its present connections and remaining reachable to the rest of the Internet. The Internet Engineering Task Force (IETF) has standardized Mobile IPv4. Mobile IPv6 is a work in progress in the IETF, offering support for IPv6 mobile nodes. Although it is not yet standardized, every IPv6 node is required to implement Mobile IPv6, which means that mobility must be widely supported. IP-multicast provides efficient algorithms for multiple packet delivery. It also provides location-independent group addressing. The receiver-initiated approach for IP-multicast enables new receivers to join to a nearby branch of an already established multicast tree. Hence, IP-multicast provides a scalable infrastructure for efficient, location-independent, packet delivery.The recent advances in wireless communication technology and the growth of the Internet have paved the way for wireless networking and IP mobility. Unlike conventional wired networks, wireless networks possess different channel characteristics and mobility dynamics that render network design and analysis more cha1lenging. Performance during handoff where the mobile moves from one cell, or coverage area, to another is a significant factor in evaluating wireless networks

    Quality-of-service in wireless sensor networks: state-of-the-art and future directions

    Get PDF
    Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions

    A Surface-based In-House Network Medium for Power, Communication and Interaction

    Get PDF
    Recent advances in communication and signal processing methodologies have paved the way for a high speed home network Power Line Communication (PLC) system. The development of powerline communications and powerline control as a cost effective and rapid mechanism for delivering communication and control services are becoming attractive in PLC application, to determine the best mix of hard and software to support infrastructure development for particular applications using power line communication. Integrating appliances in the home through a wired network often proves to be impractical: routing cables is usually difficult, changing the network structure afterwards even more so, and portable devices can only be connected at fixed connection points. Wireless networks aren’t the answer either: batteries have to be regularly replaced or changed, and what they add to the device’s size and weight might be disproportionate for smaller appliances. In Pin&Play, we explore a design space in between typical wired and wireless networks, investigating the use of surfaces to network objects that are attached to it. This article gives an overview of the network model, and describes functioning prototypes that were built as a proof of concept. The first phase of the development is already demonstrated both in appropriate conferences and publications. [1] The intention of researchers is to introduce this work to powerline community; as this research enters phase II of the Pin&Play architecture to investigate, develop prototype systems, and conduct studies in two concrete application areas. The first area is user-centric and concerned with support for collaborative work on large surfaces. The second area is focused on exhibition spaces and trade fairs, and concerned with combination of physical media such as movable walls and digital infrastructure for fast deployment of engaging installations. In this paper we have described the functionality of the Pin&Play architecture and introduced the second phase together with future plans. Figure 1 shows technical approach, using a surface with simple layered structure Pushpin connectors, dual pin or coaxial
    corecore