4,500 research outputs found

    Ontology based approach for video transmission over the network

    Full text link
    With the increase in the bandwidth & the transmission speed over the internet, transmission of multimedia objects like video, audio, images has become an easier work. In this paper we provide an approach that can be useful for transmission of video objects over the internet without much fuzz. The approach provides a ontology based framework that is used to establish an automatic deployment of video transmission system. Further the video is compressed using the structural flow mechanism that uses the wavelet principle for compression of video frames. Finally the video transmission algorithm known as RRDBFSF algorithm is provided that makes use of the concept of restrictive flooding to avoid redundancy thereby increasing the efficiency.Comment: 7 pages, 2 figures, 4 table

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel
    corecore