35,063 research outputs found

    A customizable multi-agent system for distributed data mining

    Get PDF
    We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances

    Patch-based Hybrid Modelling of Spatially Distributed Systems by Using Stochastic HYPE - ZebraNet as an Example

    Full text link
    Individual-based hybrid modelling of spatially distributed systems is usually expensive. Here, we consider a hybrid system in which mobile agents spread over the space and interact with each other when in close proximity. An individual-based model for this system needs to capture the spatial attributes of every agent and monitor the interaction between each pair of them. As a result, the cost of simulating this model grows exponentially as the number of agents increases. For this reason, a patch-based model with more abstraction but better scalability is advantageous. In a patch-based model, instead of representing each agent separately, we model the agents in a patch as an aggregation. This property significantly enhances the scalability of the model. In this paper, we convert an individual-based model for a spatially distributed network system for wild-life monitoring, ZebraNet, to a patch-based stochastic HYPE model with accurate performance evaluation. We show the ease and expressiveness of stochastic HYPE for patch-based modelling of hybrid systems. Moreover, a mean-field analytical model is proposed as the fluid flow approximation of the stochastic HYPE model, which can be used to investigate the average behaviour of the modelled system over an infinite number of simulation runs of the stochastic HYPE model.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Processing Diabetes mellitus composite events in MAGPIE

    Get PDF
    The focus of this research is in the definition of programmable expert Personal Health Systems (PHS) to monitor patients affected by chronic diseases using agent oriented programming and mobile computing to represent the interactions happening amongst the components of the system. The paper also discusses issues of knowledge representation within the medical domain when dealing with temporal patterns concerning the physiological values of the patient. In the presented agent based PHS the doctors can personalize for each patient monitoring rules that can be defined in a graphical way. Furthermore, to achieve better scalability, the computations for monitoring the patients are distributed among their devices rather than being performed in a centralized server. The system is evaluated using data of 21 diabetic patients to detect temporal patterns according to a set of monitoring rules defined. The system’s scalability is evaluated by comparing it with a centralized approach. The evaluation concerning the detection of temporal patterns highlights the system’s ability to monitor chronic patients affected by diabetes. Regarding the scalability, the results show the fact that an approach exploiting the use of mobile computing is more scalable than a centralized approach. Therefore, more likely to satisfy the needs of next generation PHSs. PHSs are becoming an adopted technology to deal with the surge of patients affected by chronic illnesses. This paper discusses architectural choices to make an agent based PHS more scalable by using a distributed mobile computing approach. It also discusses how to model the medical knowledge in the PHS in such a way that it is modifiable at run time. The evaluation highlights the necessity of distributing the reasoning to the mobile part of the system and that modifiable rules are able to deal with the change in lifestyle of the patients affected by chronic illnesses.Peer ReviewedPostprint (author's final draft

    Performance of Network and Service Monitoring Frameworks

    Get PDF
    The efficiency and the performance of anagement systems is becoming a hot research topic within the networks and services management community. This concern is due to the new challenges of large scale managed systems, where the management plane is integrated within the functional plane and where management activities have to carry accurate and up-to-date information. We defined a set of primary and secondary metrics to measure the performance of a management approach. Secondary metrics are derived from the primary ones and quantifies mainly the efficiency, the scalability and the impact of management activities. To validate our proposals, we have designed and developed a benchmarking platform dedicated to the measurement of the performance of a JMX manager-agent based management system. The second part of our work deals with the collection of measurement data sets from our JMX benchmarking platform. We mainly studied the effect of both load and the number of agents on the scalability, the impact of management activities on the user perceived performance of a managed server and the delays of JMX operations when carrying variables values. Our findings show that most of these delays follow a Weibull statistical distribution. We used this statistical model to study the behavior of a monitoring algorithm proposed in the literature, under heavy tail delays distribution. In this case, the view of the managed system on the manager side becomes noisy and out of date

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017

    LUNES: Agent-based Simulation of P2P Systems (Extended Version)

    Full text link
    We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which allows to simulate complex networks composed of a high number of nodes. LUNES is modular, since it splits the three phases of network topology creation, protocol simulation and performance evaluation. This permits to easily integrate external software tools into the main software architecture. The simulation of the interaction protocols among network nodes is performed via a simulation middleware that supports both the sequential and the parallel/distributed simulation approaches. In the latter case, a specific mechanism for the communication overhead-reduction is used; this guarantees high levels of performance and scalability. To demonstrate the efficiency of LUNES, we test the simulator with gossip protocols executed on top of networks (representing peer-to-peer overlays), generated with different topologies. Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011
    • …
    corecore