9,212 research outputs found

    Hidden Terminal-Aware Contention Resolution with an Optimal Distribution

    Get PDF
    Achieving low-power operation in wireless sensor networks with high data load or bursty traffic is challenging. The hidden terminal problem is aggravated with increased amounts of data in which traditional backoff-based contention resolution mechanisms fail or induce high latency and energy costs. We analyze and optimize Strawman, a receiver-initiated contention resolution mechanism that copes with hidden terminals. We propose new techniques to boost the performance of Strawman while keeping the resolution overhead small. We finally validate our improved mechanism via experiments

    Performance Analysis of Hierarchical Routing Protocols in Wireless Sensor Networks

    Full text link
    This work focusses on analyzing the optimization strategies of routing protocols with respect to energy utilization of sensor nodes in Wireless Sensor Network (WSNs). Different routing mechanisms have been proposed to address energy optimization problem in sensor nodes. Clustering mechanism is one of the popular WSNs routing mechanisms. In this paper, we first address energy limitation constraints with respect to maximizing network life time using linear programming formulation technique. To check the efficiency of different clustering scheme against modeled constraints, we select four cluster based routing protocols; Low Energy Adaptive Clustering Hierarchy (LEACH), Threshold Sensitive Energy Efficient sensor Network (TEEN), Stable Election Protocol (SEP), and Distributed Energy Efficient Clustering (DEEC). To validate our mathematical framework, we perform analytical simulations in MATLAB by choosing number of alive nodes, number of dead nodes, number of packets and number of CHs, as performance metrics.Comment: NGWMN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications
    • …
    corecore