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Abstract—Achieving low-power operation in wireless sensor
networks with high data load or bursty traffic is challenging. The
hidden terminal problem is aggravated with increased amounts
of data in which traditional backoff-based contention resolution
mechanisms fail or induce high latency and energy costs. We
analyze and optimize Strawman, a receiver-initiated contention
resolution mechanism that copes with hidden terminals. We
propose new techniques to boost the performance of Strawman
while keeping the resolution overhead small. We finally validate
our improved mechanism via experiments.

I. INTRODUCTION

Wireless sensor networks experience traffic bursts due to

route [1] and code [2] updates, bulk transfers [3], and spatially-

temporally correlated events [4]. Traffic bursts aggravate the

hidden terminal problem, as nodes that are hidden to each

other may attempt to simultaneously send data to the same

neighbor, causing data collisions and losses. The emerging

class of receiver-initiated duty-cycled MAC protocols [5], [6],

[7] promises both reduced congestion and improved resilience

against hidden terminals, in comparison to traditional sender-

initiated protocols [8], [6]. In particular, the Strawman [7]

contention resolution mechanism – designed for receiver-

initiated duty-cycled protocols – mitigates the hidden terminal

problem through an RTS/CTS-like handshake.

With the recently proposed Strawman contention resolution

protocol [7] as outset, we analyze its key component for

efficiently coping with hidden terminals: the distribution used

to generate random-length packets. We propose improvements

to Strawman that increase both throughput and scalability.

We demonstrate improved performance with extensive sim-

ulations, and validate our models on real hardware.

The contention resolution mechanism is at the core of duty-

cycled low-power wireless protocols, where it is responsible

for resolving data packet collisions. Traditional contention

resolution mechanisms are backoff-based and are suspectible

to hidden terminals. Request-To-Send/Clear-To-Send mecha-

nisms (RTS/CTS) have long been employed to mitigate the

hidden terminal problem, but they suffer from high overhead

in low-power sensor networks [9].

Strawman solves the hidden terminal problem efficiently

by measuring which of multiple colliding random-length RTS

transmissions is the longest. The contender that (randomly)
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picks the longest length is granted channel access and sends

its data.

While Strawman has many promising properties, the initial

design also has some drawbacks that limits its throughput

and scalability. One such drawback is the use of a uniform

distribution to draw request length. In this paper we improve

Strawman by deriving the optimal request length distribution.

This paper contains three main contributions. First, we

model the basic Strawman mechanism and derive an enhanced

version, still based on the uniform distribution. Second, we

design, analyze and evaluate an optimal non-uniform request-

length distribution which outperforms the uniform distribution.

We also derive an approximation for Strawman that better

suits sensor networks. Third, through extensive simulations,

we demonstrate how hidden terminals and the capture-effect

affects our contention-resolution mechanisms.

This paper is structured as follows. After reviewing con-

tention resolution for sensor networks in Section II, we quan-

tify the amount of hidden terminals and their impact in a

sensor network testbed in Section III. We define a novel hidden

terminal metric, and run a set of experiments on the publicly

available TWIST sensor network testbed [11] to extract its

hidden terminal profile. With our TWIST-profile, we show

that contention resolution in sensor networks must handle

the hidden terminal problem, or risk significant performance

penalties. Section IV models the basic Strawman protocol,

which we then improve in Section V. Section VI evaluates

and compares our improved Strawman mechanisms.

II. CONTENTION RESOLUTION

Contention resolution in low-power wireless networks must

both have low overhead and cope with hidden terminals.

This section gives an overview of state-of-the-art contention

resolution in sensor networks.

A. Sender-initiated vs Receiver-initiated protocols
Contention-based medium access protocols (MACs) can

be partitioned into two classes: sender-initiated and receiver-

initiated. In sender-initiated protocols, the sender initiates a

new data transfer by a radio transmission. For example, Car-

rier Sense Multiple Access (CSMA) protocols belong to the

sender-initiated class. Low-power sender-initiated protocols

typically employ Low-Power Listening (LPL) [9]. LPL pro-

tocols use packet trains to implement a prolonged preamble,

that the intended receiver can detect while duty-cycling the

radio hardware. LPL has successfully been implemented on

packet-based IEEE 802.15.4 CC2420 radio [12], [8].
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In receiver-initiated protocols [5], [13], [6], [14] the receiver

initiates a new data transfer by transmitting a data probe

packet to all neighboring nodes. The probe is sometimes

referred to as a Ready-To-Receive (RTR) packet. Nodes with

receiver-destined data immediately transmit their data upon

receiving a probe. If receiver-side collisions are detected, the

receiver includes a random backoff window in the probe that

coupled with sender-side physical carrier sensing implements

a contention resolution mechanism similar to CSMA. The low-

power technique used in receiver-initiated protocols is called

Low Power Probing (LPP). Receiver-initiated protocols, in

comparison to sender-initiated, thus induces a fixed (but small)

overhead by the periodic probe transmissions, but avoids the

excessive packet transmissions associated with LPL’s packet

trains. Moreover, receiver-initiated protocols offer lower con-

gestion and higher throughput in certain scenarios [13].

B. The Hidden Terminal Problem
The hidden terminal problem [15] arises in wireless net-

works where the individual node radio ranges do not cover

the full network, such as in multi-hop sensor networks. More

specifically, hidden terminals are nodes that are outside radio

range of each other, but can communicate with a common

”middle” node e.g., a base station in 802.11. Contention

resolution based on physical carrier sensing (e.g. CSMA) that

does not handle hidden terminals risk packet collisions.

Request-To-Send/Clear-To-Send (RTS/CTS) is a mechanism

derived specifically to solve the hidden terminal problem. The

sender, prior to transmitting its data packet, first requests chan-

nel access by an RTS transmission. The receiver replies with a

CTS transmission (if the channel is available). All neighboring

nodes refrain from transmissions throughout the data transfer.

RTS/CTS mechanisms have been implemented in sensor net-

works [16], but has been shown to induce a high overhead

due to the small data payloads used in sensor networks [9].

Moreover, although the RTS/CTS mechanism can solve the

hidden terminal problem, it relies on all neighbors to be able

to overhear the RTS/CTS control packets, but overhearing is

not supported in modern duty-cycled networks [17].

The hidden terminal problem is aggravated in sensor net-

works with bursty traffic patterns. If the traffic is sparse,

the occurrence of the hidden terminals may be lessened by

adjusting the duty-cycle configuration [18], [8]. However, in

networks with bursty traffic, such as alarm networks that have

both spatially and temporally correlated traffic [19], a node

must be able to efficiently receive large amounts of data from

neighbors that may be hidden to each other.

Increasing the physical carrier sensitivity has been proposed

to reduce the amount of hidden terminals [20], as senders

get more sensitive to hearing each others transmissions. This

approach may indeed remove hidden terminals, but also re-

duces the overall network capacity when applied to sensor

networks. Since sensor networks typically span a much larger

area than is covered by a single node, the exposed terminal

problem is aggravated as the carrier sensitivity is increased:

weak ongoing transmissions hinder new transmissions. Finally,

Fig. 1. The Strawman contention resolution mechanism grants channel access
to the contender with the longest request transmissions.

hidden terminals may be very difficult to remove by increased

carrier sensitivity due to asymmetric links [21].

C. Capture effect
The discussion has hitherto considered packet collisions as

lost or corrupted data; if two nodes’ transmissions overlap

in time the receiver will not correctly receive any of them.

The capture effect phenomenon allows a radio to correctly

receive a data transmission even with simultaneous colliding
transmissions. The capture effect requires that (1) the over-

lapping transmissions differ in signal strength, and (2) that

the stronger transmission is initiated before the interfering

weaker transmission(s). Dutta et al. exploit the capture effect

to implement the network primitive backcast [6], and show

that the capture effect is effective on the CC2420 radio chip

as long as the signal strength difference is above 3 dB.

D. Strawman
The Strawman protocol [7] is illustrated in Figure 1.

Each Strawman contention period consists of four consecutive

messages: PROBE, REQUEST, DECISION, and DATA. The

receiver broadcasts a Strawman PROBE message to notify

neighbors that it is ready to receive data. All neighbors

that have data for the receiver contend for the channel by

sending an immediate REQUEST. Multiple REQUESTs may

thus collide at the receiver. The length of each REQUEST
message is chosen randomly by sampling from a uniform

distribution[7]. The receiver samples the channel for activity

during the REQUESTs, and estimates the payload length of

the longest REQUEST. The receiver then sends a DECISION
message containing the length estimate. The contender whose

REQUEST length matches the one specified in the DECISION
is granted channel access, and sends its DATA message.

Another contention round is initiated when the DATA has

been received, or after a timeout. The PROBE message has

dual purpose: it also acknowledges the last received DATA
packet. Note that if two contenders pick the same random

length, and hence are both granted channel access leading to

a DATA collision, the timeout will trigger another contention

period, and both data packets will be retransmitted due to

the lack of acknowledgement. Note also that the Strawman

contention resolution is used only if a receiver detects a data

collision, and thus otherwise has zero overhead. Strawman has

experimentally been shown to have high performance, and to

mitigate the hidden terminal problem [7]. In the following

sections we model and analyze the Strawman mechanism.



Parameters Description
N Number of contenders
K Maximum number that nodes can pick in REQUEST phase
tp Time for transmitting the PROBE packet
tpr Delay between PROBE and REQUEST packets
tr Duration of REQUEST phase
trd Delay between REQUEST and DECISION packets
td Time for transmitting the DECISION packet
tdd Delay between DECISION and DATA packets
tdata Time for transmitting DATA packet

From our analysis, we improve Strawman with an optimal non-

uniform request length distribution that significantly improves

system goodput as well as scalability.

III. A STUDY ON HIDDEN TERMINALS

Contention resolution mechanisms unable to handle the

hidden terminal problem risk severe performance degradation

in networks where hidden terminals do exist. This section

demonstrates a novel hidden terminal metric. We will again

use this metric to also evaluate Strawman in Section VI.

A. The Hidden Terminal Metric

Fig. 2. The receiver-specific hidden terminal metric is based on the receiver’s
(R) neighbors’ interconnections. The metric is defined as the complement of
the number of (detectable) neighbor links, divided by all possible links. R’s
hidden terminal metric shown in the figure is: 1−11/(5 ·4) = 45%.

We define a hidden terminal metric to allow controlled

evaluation of the impact of hidden terminals on contention

resolution mechanisms. The metric represents how well the

neighbors can detect each other’s transmissions, see Figure 2.

The metric is receiver-specific: different network nodes may

be subject to different amounts of hidden terminals.

Given a receiver R, we define R’s neighbors as the set of

nodes that have a Packet Reception Ratio (PRR) to R above

a fixed theshold. In Figure 2, neighbor N1 can detect N2’s

transmissions (+1), but N2 can not detect N1’s transmissions

(+0). The total number of detectable links in the example is

11, and so the resulting hidden terminal metric is 45% (If all

neighbors could detect all others’ transmissions, the hidden

terminal metric would be 0%). Note that a detectable link

may have a very low PRR, as long as the transmission can be

detected using physical carrier sensing.

B. Profiling a Testbed for Existence of Hidden Terminals

We extract a realistic range of hidden terminal metrics by

performing a set of experiments on the publicly available

TWIST sensor network testbed [11]. TWIST has 102 CC2420-

equipped sensor nodes. We define the minimum link layer PRR

theshold as 1/16 – a commonly used threshold in collection

protocols. We use the default physical carrier sense threshold

on the CC2420: -77 dBm.

Our experiments on TWIST show that the hidden termi-

nal metric varies significantly among different nodes in the

network. The hidden terminal metrics in the TWIST testbed

ranges between 11.0% and 29.4%. Using our experiment

traces, we furthermore model the capture effect effectiveness

by the amount of links that differ with more than 3 dB.

C. Hidden terminals on naive random backoff

Fig. 3. The performance of CSMA with random backoff degrades signifi-
cantly with increased hidden terminals. The figure shows the range of hidden
terminals found in the TWIST testbed experiments.

Using our hidden terminal metric, we now quantify the

impact of hidden terminals on a simulated CSMA-based star

topology with a single receiver, see Figure 3. The performance

degradation is clearly visible with increasing hidden terminals,

both with and without simulated capture effect. Note that

although the addition of capture effect improves performance,

the CSMA mechanism now fails to achieve one of its main ob-

jectives: fair contention resolution among contenders. Rather,

when relying on capture effect, only the strongest of the

contenders will transfer uncorrupted data.

IV. STRAWMAN MODEL

In what follows, we model and analyze the Strawman mech-

anism [7], and we propose simple and effective modifications

to improve its performance. Even though the conventional load

of the WSN is meant to be low to moderate, Strawman is

triggered to cope with sudden surges of the traffic.
In this regard we consider a snapshot of the network with a

receiver node and a set of transmitters, labelled n = 1, . . . ,N,

that contend to access the channel. Upon detecting a collision,

the receiver sends a Strawman PROBE packet as illustrated

in Figure 1. Transmitters now contend for the channel by

sending a REQUEST packet with random length xn chosen

with uniform distribution xn ∼ U [1,K], where the maximum

length K is referred to as the Strawman resolution.
Given the number of contenders N and the resolution K, the

success probability PN,K of a Strawman round is the probability

that one contender draws a number xn = k with k∈ [1,K] while

all other contenders draw smaller numbers, i.e.

PN,K =
K

∑
k=1

N

∑
n=1

Prob{xn = k, x j < k ∀ j �= n}

=
N

KN

K

∑
k=1

(k−1)N−1. (1)
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Fig. 4. Validation of the analytical model for Strawman contention resolution with uniform distribution. We plot the success probability PN,K of a Strawman
round, the average request length E[tr] and the goodput g against the ratio ρ = K/N for various number of contenders N = {5,10,25,50,75,100}.

The probability of successfully receiving a packet over m con-

secutive Strawman rounds follows a geometric distribution as

Ps(m) = 1− (1−PN,K)
m. (2)

Let x ∈ [1,K] be the length of the largest REQUEST packet.

Then, the average length of a request round is

E[x] =
K

∑
k=1

k ·Prob{x = k}

=
K

∑
k=1

k ·Prob{x≤ k} · (1−Prob{x < k|x≤ k})

=
K

∑
k=1

k
(

k
K

)N
[

1−
(

k−1

k

)N
]
. (3)

where Prob{x < k|x ≤ k} is the probability that the largest

number among all contenders is smaller than k conditioned to

the event that k is the maximum number that can be drawn.

Then, the average time duration E[tr] of a REQUEST phase is

E[tr] = tbE[x], (4)

where tb is the time to transmit one byte of data; for IEEE

802.15.4-compatible radios that transmit at 250kbps, tb = 8
250 .

Similarly, let Ñ be the number of contenders winning a

Strawman round, then

E[Ñ] =
N

∑
n=1

n ·Prob{∃n nodes with xn = k,x j < k otherwise}

=
N

∑
n=1

n
(

N
n

) K

∑
k=1

( 1

K

)n(k−1

K

)N−n
. (5)

Let t0 � tp + tpr + trd + td + tdd denote the constant part of the

access delay in a Strawman round (all phases apart from the

REQUEST phase). Then, the expected round length is
E[Tround ] = E[tr]+ tdata + t0. (6)

Finally, we define the goodput as the portion of network-layer

transmitted traffic per round:

g =
PN,K

E[Tround ]
· tdata

=
N

KN ∑K
k=1(k−1)N−1 · tdata

tdata + t0 + 8
250KN ∑K

k=1 k
( k

K

)N
[
1− ( k−1

k

)N
] . (7)

Another relevant performance metric is the average delay for

a successful transmission, which can be defined as E[D] =
E[Tround ]

PN,K
. Notice that E[Tround ] represents the average round

duration for both successful and collided transmissions, since

a DATA packet is sent after DECISION period regardless of

the number of winning contenders. This mechanism, however,

is efficient as long as the length of the DATA packet is compa-

rable with the average REQUEST length. When DATA packets

are longer, it may be convenient to repeat the REQUEST phase

until one transmitter has been cleared. We will come back later

to how to design such a mechanism.

A. Model validation

We validate the analytical model with Monte Carlo simu-

lations. To simplify the exposition of the results for different

values of the Strawman resolution K and number of contenders

N, we define the ratio ρ � K/N. Figures 4(a)-4(c) show the

success probability PN,K of a Strawman round, the average

length E[tr] of a REQUEST phase, and the goodput g versus

the ratio ρ for various number of contenders N. For each case,

the analytical model nicely matches the numerical simulations.

Although the model equations (1)-(7) do not allow to

determine an explicit solution to optimization problems that

aim, for instance, to optimize K in order to maximize the

success probability or the network goodput for a given number

of contenders N, they offer valuable insight to properly tune

the Strawman mechanism in [7] and enhance its performance.

Particularly, Figures 4(a)-4(c) show that the success probability

PN,K of each round increases for increasing ratio ρ , irrespec-

tively of the number of contenders N. A large ρ , however, may

correspond to a large resolution K = ρN, which can induce

undesirable long REQUEST phase, eventually reducing the

achievable goodput. To find a good tradeoff, Table I presents

the ratio ρ� that maximizes the network goodput for the

number of contenders N used in Figure 4(c). For small N,

the success probability of each round PN,K can be enhanced

without significantly affecting E[tr] by choosing the ratio ρ� in

the range [5,7]. For a large number of contenders N, however,

the optimal goodput occurs at smaller ρ which keeps the

resolution K, and hence E[tr], to reasonable values.



TABLE I
THE RESOLUTION K� WHICH MAXIMIZES GOODPUT IN FIGURE 4(C) FOR

DIFFERENT NUMBER OF CONTENDERS N .

Number of contenders N 5 10 25 50 75 100
ρ� = K�/N 7 5 3.25 2.25 2 1.75

B. Parameter tuning with uniform distribution
We next exploit the insight offered by Figures 4(a)-4(c) to

modify the baseline Strawman mechanism [7] while keeping

the uniform distribution. The objective is to increase the

success probability at each round, while keeping the average

length of the REQUEST packets as short as possible.

The new mechanism runs in two steps: the first step is a

Strawman round where the parameters are initialized using the

guidelines from Table I. If a new collision occurs, a self-tuning

step is triggered to maximize the probability of success in all

subsequent rounds while reducing the length of the REQUEST
phase. For this end, we let only the colliding transmitters

participate in this step until a successful transmission occurs.

Although the number of colliding nodes is unknown to both

senders and receiver, the surviving transmitters can re-tune

the Strawman resolution K based on the estimated average

of colliding nodes E[Ñ]. Specifically, Figure 5, compares the

average number of winners E[Ñ] from (5) against simulations

for a fixed resolution K = N, showing that this number

stabilizes around 1.55. Removing the bias induced by the

successful rounds (i.e. Ñ > 1), we observe that the average

number of colliding transmitters is approximately E[Ñ]≈ 2.5
for all N, with relatively small standard deviation. Exploiting

this result, we re-tune the resolution as K̃ = ρ̃E[Ñ], where

one can use E[Ñ] ≈ [2,3] and choose ρ̃ ∈ [2,7] to guarantee

a high success probability. Hence, the new resolution K̃ is

a design parameter known at each node from the beginning.

Upon the first collision, the colliding nodes change resolution

from K to K̃ and compete again with a new Strawman round

as summarized in Algorithm 1.
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Fig. 5. Average number of winning contenders E[Ñ] and standard deviation
in each round for ρ = 1 and N ∈ [1,50].

V. STRAWMAN OPTIMIZATION

Although the analytical model proposed in Section IV

allows to optimally tune the parameters of the basic Strawman

mechanism, the use of a uniform probability distribution to

draw the request length remains, in general, suboptimal. In

Algorithm 1 E-Strawman.

Given N, K = ρ�N using Table I, and K̃ = ρ̃E[Ñ].
repeat

1. All contenders run Strawman with resolution K.

2. If a collision occur, for colliding nodes do:

a. Set K = K̃.

b. Re-run Strawman

c. If a new collision occurs go to Step 2.

until Successful data packet transmission.

what follows we derive the optimal distribution for the Straw-

man mechanism in a sense that maximizes the probability of

success PN,K for given N and K. Our analysis in many aspects

is similar to the problem studied by Tay et al. [10] to minimize

the collision probability of CSMA-based protocols.

A. Optimal probability distribution
Given N ≥ 2 contenders and contention window K, Tay

et al. [10] derived the optimal distribution for CSMA-based

protocols by defining the following recursive function fk(N).
Definition 5.1: Given a (slot) number k ∈ [1,K] and N ≥ 2

contenders let fk(N) be defined as

f1(N) = 0, and fk(N) =
( N−1

N− fk−1(N)

)N−1 ∀ k ≥ 2. (8)

One can show by induction that

fk−1(N)< fk(N)< 1 ∀ k ≥ 2. (9)

Although originally thought for sender-initiated protocols, we

next prove that fk(N) can be used for deriving the optimal

request length distribution p� for Strawman.

Consider the Strawman contention resolution mechanism

with given number of contenders N and resolution K. Each

contender randomly picks a number k ∈ [1...K] independently

with probability pk. Let p be the associated probability mass

function. The success probability PN,K when N contenders

draw straws with this probability mass function is

PN,K =N pK(1− pK)
N−1 +N pK−1(1− pK− pK−1)

N−1

+ · · ·+N p1(1− pK− pK−1−·· ·− p1)
N−1

=N
K

∑
k=1

pk(1−
K

∑
r=k

pr)
N−1. (10)

The following lemma provides an expression for the first-order

optimality conditions for p to maximize PN,K :

Lemma 5.2: Given a probability distribution p, if
∂

∂ p j

(
pN,K

N

)
= 0 for j = 2, . . . ,K, then

(N− f j−1(N))p j = (1− f j−1(N))
(

1−
K

∑
r= j+1

pr

)
. (11)

Proof: The result follows from verifying ∂
∂ p j

(
pN,K

N

)
=

0 and induction. Due to space limitation, we omit the proof

details. The interested reader may refer to [22].

The following theorem defines the optimal probability distri-

bution for Strawman.



Theorem 5.3: Given N ≥ 2 contenders and a resolution

K, the probability distribution p� that maximizes Strawman

success probability PN,K over all distributions p is

p�k =
1− fk−1(N)

N− fk−1(N)

(
1−

K

∑
r=k+1

pr

)
∀k = 2, . . . ,K, (12)

Proof: Essentially, one can show that the maximum PN,K
occurs at an interior point of the interval [0,1] for all k.

Moreover, since p1 = 1−∑K
k=2 pk the maxp2,...,pK PN,K must

necessarily occur where ∂
∂ p j

(
pN,K

N

)
= 0 for all j = 2, . . . ,K, for

which Lemma 5.2 identifies p� in (12) as the unique solution.

Inspection of the second derivatives verifies that this solution

indeed yields a maximum.

Lemma 5.4: With N = 2 contenders and resolution K, the

optimal probability distribution p� is a uniform distribution.

Proof: For N = 2, it follows from (12) that p�2 =
1
N (1−∑K

r=3 pr) =
1
N (p�1 + p�2), hence p�2 = 1

N−1 p�1. Also for

k = 3 (12) results in p�3 =
N

(N−1)2

p�1 p�2
p�1+p�2

and consequently, p�3 =
1

(N−1)2 p�1. Similarly, it follows by recursive computation that

p�k =
1

(N−1)k−1 p�1. Summing the probabilities eventually leads to

p�1 +
p�1

N−1 + · · ·+
p�1

(N−1)K−1 = 1. Hence, with N = 2 contenders

p�k =
1
K ∀ k, i.e. a uniform distribution is optimal.

For the general case of N > 2 contenders, selecting a uni-

form distribution as in the original Strawman design in [7]

is suboptimal. The optimal probability distribution p� can

be computed numerically by first computing fk(N) for all

k = 1, . . . ,K using (8), and then applying (12) to compute p�k
recursively from k = K backwards. The recursive computation

of fk(N) with Eq. (8) takes O(K) arithmetic operations, while

the backward loop (12) takes O(K) steps as well. Therefore,

the computational complexity of the optimal probability dis-

tribution is linear in the resolution K.

B. Approximating the optimal distribution
Although computing the optimal probability is not too

expensive, it does not provide a closed form probability

distribution function. To grasp a better understanding of the

optimal distribution, in this section we study two different

approximation methods that simplify the computation of the

optimal distribution, but nonetheless, have a success probabil-

ity close to optimal. The advantage of such approximations is

that with small modifications one can re-use them for other

scenarios (e.g., adapted for CSMA-like protocols).

Figure 6 shows the optimal request length probability mass

function for N = 3 and N = 8 contenders, respectively, with

resolution K = 8, along with the region where the optimal

distribution p� takes values starting from N = 3 to N = ∞.

First we observe that the shape of the optimal distribution

p� resembles a geometric distribution. Starting from relatively

high p�1, the tail of the distribution decays when we move to

the larger numbers.

1) SIFT approximation: We first propose to use a geometric

approximation similar to SIFT [10].

Fig. 6. Optimal probability distribution p� and two approximation methods
for N = 3,8 contenders and K = 8. The shaded area represents the region
where p� moves for N ≥ 3. Starting from N = 3, the optimal mass distribution
for k ∈ [2,K] decreases with increasing N and it is redistributed in p�1. The
truncated geometric distribution Sift tends to overestimate p� for k ∈ [2,K]
and underestimate p�1, while the trapezoidal approximation offers a better fit.
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Fig. 7. Comparison of exact and approximated values of p�2, p�K , and Â for
the case (K, N0 +1) using equations (15), (16) and (17), respectively.

Result 5.5: Given N contenders and resolution K, the opti-

mal request length probability distribution p� can be approx-

imated with a truncated geometric distribution of the form

pk =
p ·qk−1

1−qK , (13)

where p = 1−N
−1

K−1 and q = 1− p.

Due to space limitations, we omit the details that lead us to

this result; The interested reader may refer to [22].

Now, similarly to Section IV, we can analyze Strawman

using the approximate probability distribution in (13). Specif-

ically, the success probability can be rewritten as

PN,K =
N

1−qK

K

∑
k=1

p ·qk−1(1−qk−1)N−1. (14)

By repeating the steps of Eq. (3)-(7), one can compute the

average length of a request round (in bytes) E[x], REQUEST
phase duration E[tr], and goodput respectively.

2) A trapezoidal approximation: Although the previous

approximation distributes probabilities coherently with the



shape of the optimal probability distribution p�, Figure 6

shows that this approximation is not very tight. Particularly, for

relatively high p�1 the mass of the geometric distribution tends

to be concentrated around the first small values of k, yielding

a high probability of collision. The optimal distribution p�,

on the other hand, assigns a larger probability to k = 1 and

has a fatter (and flatter) tail than a geometric distribution,

thus allowing larger straws k to be drawn, yielding lower

collision probability. In what follows we propose an alternative

approximation that aims at imitating the shape of the optimal

distribution more closely. The approximation is inspired by

the shape of the distribution for k ≥ 2.

Let p�(K,N) denote the optimal probability distribution for

a given K and N, and consider(K0,N0) = (3,2) for which the

optimal probability mass function is p�k(K0,N0) =
1
3 for k =

1, . . . ,3. We now proceed numerically: Figure 7 suggests the

following relation between p�2(K0,N0) and p�2(K,N0 +1)

p̂�2(K,N0 +1) = p�2(K0,N0)
(K0

K

)0.65
K ≥ K0, (15)

while p�K(K0,N0) and p�K(k,N0 +1) are related via

p̂�K(K,N0 +1) = p�K(K0,N0)
(K0

K

)
K ≥ K0. (16)

Furthermore, the complementary cumulative distribution func-

tion (CCDF) (A � 1− p�1 = ∑K
k=2 p�k) is approximately

Â(K,N0 +1) = 1− log(K +K0)

K
K ≥ K0. (17)

Finally, we draw similar plots for the CCDF for the optimal

distribution and N > N0. These plots reveal the following area

approximation Â(K,N) for arbitrary K > K0, N > N0:

Â(K,N) = Â(K,N0 +1)

(
N0 +1

N

) 3
4

. (18)

Figure 8 shows the accuracy of the approximation in (18) for

resolution K = 8, 32 and up to N = 200 contenders.

Our second step is to make a linear interpolation of request

length probabilities between p�2 and p�K and assigning the

remaining probability mass to p1. Let θ(K) =
p̂�2(K,N0+1)

p̂�K(K,N0+1)

denote the estimated ratio between the extreme points of p� in

the region [2,K] for N =N0+1. By approximating the optimal

probability distribution p� between [2,K] with a trapezoidal

shape, we can estimate the values of p�2 and p�K as

p̂�2(K,N) = 2θ(K)
1+θ(K)

Â(K,N)
K−1 ∀K > K0, N > N0

p̂�K(K,N) = 2
1+θ(K)

Â(K,N)
K−1 ∀K > K0, N > N0.

(19)

Finally, the estimates p̂�k(K,N) with k = 3, . . .K − 1 can be

obtained by a simple linear interpolation between p̂�2(K,N)
and p̂�K(K,N), while p̂�1(K,N) = 1−∑K

k=2 p̂�k(K,N). Taking a

closer look at Figure 6, one can compare the trapezoidal and

the geometric approximations for K = 8 and N = 3,8. While

the truncated geometric distribution tends to overestimate p�

for k ∈ [2,K] and largely underestimates p�1, the trapezoidal

approximation offers a better fit.
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Fig. 8. Comparison of the CCDF of optimal distribution and the estimated
area in equation (18) for resolution K = 8, 32 and N ∈ [2, 200] contenders.
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Fig. 10. Comparison of success probability tuned for N = {2,8,32,64} and
resolution K = 16. The actual number of contenders ranges in n ∈ [1,200].
The maximum PN,K happens when n = N.

VI. EVALUATION

We evaluate how our improved Strawman mechanism per-

forms in goodput, reliability, and scalability, and compare it

against previously proposed Strawman mechanism [7]. We

also compare the performance of receiver initiated contention

resolution with sender initiated random backoff.

With the hidden terminal profile from Section III, we can

perform experiments in controlled environments, to study the

impact of both hidden terminals and the capture effect. Note

that although Strawman would too benefit from capture effect,

we choose to not enable it in the Strawman experiments.

We simulate two different Strawman implementation over-

heads: ideal and realistic. We base the ideal overhead on the

CC2420 radio datasheet [12]: tpr = 0.192μs and trd = 0.300μs.

The realistic overhead, in contrast, is obtained from measure-

ments on our implementation on Contiki and the TmoteSky

sensor platform: tpr = 1.1ms and trd = 1.2ms. CSMA is

evaluated only with an idealistic overhead, as we have no

corresponding implementation available.

A. Optimizing Uniform Strawman
We first compare the performance of the basic Strawman

mechanism [7] with our enhanced version, E-Strawman, pro-

posed in Section IV for REQUEST lengths drawn using a
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Fig. 9. Comparison of StrawMAN and E-StrawMAN for uniform probability distribution. We plot the success probability PN,K of a round, the average
request length E[tr] and the goodput g against the ratio ρ = K/N for N = {5,10,25,50} contenders.

uniform probability distribution. Figure 9 compares the suc-

cess probability, average request length and goodput of Straw-

man and E-Strawman. Figure 9(b) shows that E-Strawman

strongly reduces the average request length. Not surprisingly,

E-Strawman offers higher success probability and goodput for

ratios ρ < 2, while it converges to the same performance of

Strawman for higher values of ρ . Essentially, the performance

gain of E-Strawman vanishes for high values of ρ where

Strawman exhibits a fairly high success round probability.

However, for a large number of contenders N, Strawman is

optimal to work with small values of ρ where E-Strawman

typically outperforms Strawman.

B. Robustness of the optimal distribution and approximation
As proven in Section V, drawing the request lengths xn from

a uniform distribution is optimal only for N = 2 contenders.

On the other hand, given a resolution K, the probability

distribution p� derived in Theorem 5.3 is optimal only if the

number of contenders is exactly N. The effective number of

contenders n, however, is typically unknown and needs to be

estimated. In what follows we will refer to N as the estimated

number of contenders, and we evaluate the robustness of

the optimal distribution, as well as the trapezoidal and SIFT

approximations, when N �= n.

To this end, Figure 10 shows the success probability of a

Strawman round with three distributions computed for N =
2,8,32,64, when the effective number of contenders ranges in

n ∈ [2,200]. Not surprisingly, the maximum value of the suc-

cess probability using p� occurs at n = N. More interestingly,

we notice that overestimating the number of contenders N,

i.e. for N > n, can potentially lead to small success probability

using either of the distributions. Essentially, if N is larger than

the effective number of contenders, the distribution p� and

its approximations overestimate the optimal p1, thus letting

most of the contenders draw small numbers and eventually

producing multiple winners, hence a collision. To the contrary,

underestimating the number of contenders (i.e. for N < n)

is less harmful. In either case, the trapezoidal approximation

always yields higher success probability than its counterpart

SIFT. More importantly, Figure 10 shows that if N is in a
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Fig. 11. Scalability of trapezoid approximation: the plot shows that with
large number of contenders trapezoid approximation decays smoothers than
sift approximation. the experiment is conducted with K = 8,64.

range of 20%−30% from the effective number of contenders

n, the performance loss is small compared to the case n = N.

Another important aspect is the scalability. To this end, Fig-

ure 11 illustrates the success probability of a Strawman round

with optimal distribution, trapezoidal and SIFT approxima-

tions, respectively, computed for two fixed resolutions K = 8

and K = 64 with n = N for a large number of contenders1. We

observe that the optimal success probability of a strawman

round when the distribution p� is tuned to the exact number

of contenders only depends on the resolution K, with better

performance for higher K. The solid line corresponds to the

envelope of the maximum points of Figure 10 which happens

when n = N. In all cases, the trapezoidal approximation

always yields better performance than the SIFT approximation.

Combined with the insights from Figure 10, similar results can

be obtained when the estimated N in a range of 20%− 30%

from the effective number of contenders.

C. Experimental validation
We next validate the Strawman mechanism with trapezoidal

approximation designed with resolution K = 16 and N ranging

1Obviously, such a high range of contenders is not intended to reflect any
practical scenario, but only to analyze numerically the protocol behavior.
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Fig. 12. Success probability and goodput validation with experimental results
for Strawman mechanism using the trapezoidal approximation design with
K = 16 and N = 10,15,20, and 25 nodes.

from 10 to 25 contenders. Figure 12 shows a very accurate

match between the simulation and experimental values of the

success probability and goodput of Strawman for all cases.

Leveraging on this match, we will continue our evaluation

through extensive simulations.

D. Idealistic Networks: No Hidden Terminal Problem
In the first experiment we simulate Strawman in a network

without any hidden terminals, and measure reliability and

goodput. A large number of (interfering) collisions lowers

both the reliability and the goodput metrics, whereas a large

protocol overhead majorly affects the goodput metric.

Figure 13(a) compares the reliability of Strawman with

CSMA contention resolution mechanism. Our first observation

regarding to the optimal and approximation distributions of

Strawman is that the performance of Strawman in these cases

remains mostly unchanged with respect to increasing number

of contenders. This behavior is due to the scalability property

of these distributions and confirms the results of Figure 11.

Figure 13(a) shows that CSMA and Strawman with a uni-

form distribution do not scale well with increasing number of

contenders. For instance, considering Strawman with uniform

distribution and using K=16, the parameter ρ =K/N decreases

from 16/5 to 16/100. Now, we can observe two things. First,

for ρ = 16/5≈ 3 Strawman and E-Strawman have roughly the

same performance (which is confirmed by the same starting

point in Figure 9 shows). Second, for decreasing ρ (i.e.,

by increasing N), E-Strawman becomes better than the basic

Strawman. However, the resolution used for each N is smaller

than the K� recommended in Table I; since we are moving to

smaller values of ρ both methods introduce poor performance.

Figure 14(a) shows the experiment goodput. Note how

the implementation overhead affects Strawman’s goodput: the

realistic overhead vs the ideal overhead.

E. Hidden Terminals Without Capture Effect
Strawman, in contrast to CSMA, is designed to cope with

the hidden terminal problem. We now include hidden terminals

as profiled in Section III. We do not, however, yet include the

(positive) effects of the capture effect phenomenon. Neither

Strawman nor CSMA is designed to exploit the capture effect,

and so it is interesting to study how they behave without

capture effect. Moreover, capture effect efficiency differs with

network types and radio hardware.

Figure 13(b) shows how the reliability of the mechanisms is

affected by hidden terminals. Whereas Strawman is unaffected

by the addition of hidden terminals, CSMA suffers signifi-

cantly. The goodput experiments, as shown in Figure 14(b),

show that CSMA networks deliver almost no data to the

receiver due to interfering packet collisions.

F. Testbed Profile: Hidden Terminals and Capture Effect

We finally enable the capture effect phenomenon, thus fully

mimicking the testbed in Section III. For CSMA, we can ob-

serve an increase in both reliability (Figure 13(c)) and goodput

(Figure 14(c)). Strawman is not simulated with capture effect

in these experiments, and thus has the same performance. As

these experiments show, Strawman outperforms CSMA even

when CSMA benefits from capture effect.

We observe an interesting phenomenon in these experi-

ments: CSMA with uniform distribution appears to perform

better with more contenders. At first glance, this is highly

counter-intuitive: CSMA with uniform distribution was shown

to scale badly even without hidden terminals (Figure 13(a) and

Figure 14(a)). After careful studying of experiment logs we at-

tribute this behavior to a complex interaction between capture

effect and the random backoff-distribution. The uniform distri-

bution renders more collisions at early stages of a transmission,

whereas the SIFT distribution achieves a higher probability

of a single transmission. If a neighbor in the uniform-based

network manages to successfully initiate a transmission to the

receiver (due to capture effect), the probability is high that

several other neighbors are also transmitting (with a lower

signal strength), thus blocking the rest of the network from

interfering transmissions. This initial result motivates us to

further study the relation between capture effect and hidden

terminals, and demonstrates that protocols must be evaluated

in realistic but controlled environments.

This evaluation has compared Strawman with CSMA in

three scenarios with increasing realism. We observe that

hidden terminals, with or without capture effect, may greatly

degrade performance of contention resolution mechanisms.

Strawman is, however, shown to yield the same high perfor-

mance both with and without hidden terminals.

VII. CONCLUSIONS

The Strawman contention resolution mechanism offers high

performance and solves the hidden terminal problem. Us-

ing a hidden terminal testbed profile, we show that random

backoff-based approaches suffer severe performance degra-

dation whereas Strawman does not. We model the basic

Strawman mechanism, and improve it with an optimal random

length distribution. Our improved distribution outperforms the

basic Strawman in both goodput and scalability.
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(b) Without capture effect
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(c) Testbed profile

Fig. 13. The reliability—the ratio successful transmissions—of Strawman remains high in both (a) an idealistic network setting without hidden terminals,
(b) with hidden terminals but without capture effect, and (c) with both hidden terminals and capture effect. The right-most network setting represents our
testbed profile from Section III. Random backoff-based CSMA, in contrast, suffers from its inability to handle the hidden terminal problem. (All experiments
assume a star network with [5,100] senders and maximum length K = 16.)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of contenders

G
oo

dp
ut

(T
ra

ns
m

is
si

on
 E

ffi
ci

en
cy

)

Strawman opt. distr., realistic overhead
Strawman approx. distr., realistic overhead
Strawman unif. distr., realistic overhead
E−Strawman, realistic overhead
CSMA opt. distr., ideal overhead
CSMA SIFT. distr., ideal overhead
CSMA unif. distr., ideal overhead

(a) Without hidden terminals

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of contenders

G
oo

dp
ut

(T
ra

ns
m

is
si

on
 E

ffi
ci

en
cy

)

(b) Without capture effect
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(c) Testbed profile

Fig. 14. The receiver goodput of Strawman is independent of the number of contenders. The Strawman ideal overhead graphs show the best achievable
goodput, whereas the realistic overhead graphs show the performance based on our implementation overhead measurements. (a) As expected, SIFT outperforms
Strawman in idealistic networks without hidden terminals. With the (b) addition of hidden terminals and (c) capture effect, however, Strawman has both
significantly better scalability and higher goodput. (All experiments assume a star network with [5,100] senders and maximum length K = 16.)
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