121 research outputs found

    Fabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation

    Get PDF
    Magnetically manipulated microrobots are demonstrated for targeted cell transportation. Full three‐dimensional (3D) porous structures are fabricated with an SU‐8 photoresist using a 3D laser lithography system. Nickel and titanium are deposited as a magnetic material and biocompatible material, respectively. The fabricated microrobots are controlled in the fluid by external magnetic fields. Human embryonic kidney 239 (HEK 239) cells are cultivated in the microrobot to show the possibility for targeted cell transportation

    System integration of magnetic medical microrobots: from design to control

    Get PDF
    Magnetic microrobots are ideal for medical applications owing to their deep tissue penetration, precise control, and flexible movement. After decades of development, various magnetic microrobots have been used to achieve medical functions such as targeted delivery, cell manipulation, and minimally invasive surgery. This review introduces the research status and latest progress in the design and control systems of magnetic medical microrobots from a system integration perspective and summarizes the advantages and limitations of the research to provide a reference for developers. Finally, the future development direction of magnetic medical microrobot design and control systems are discussed

    4D Printing at the Microscale

    Get PDF
    3D printing of adaptive and dynamic structures, also known as 4D printing, is one of the key challenges in contemporary materials science. The additional dimension refers to the ability of 3D printed structures to change their properties—for example, shape—over time in a controlled fashion as the result of external stimulation. Within the last years, significant efforts have been undertaken in the development of new responsive materials for printing at the macroscale. However, 4D printing at the microscale is still in its early stages. Thus, this progress report will focus on emerging materials for 4D printing at the microscale as well as their challenges and potential applications. Hydrogels and liquid crystalline and composite materials have been identified as the main classes of materials representing the state of the art of the growing field. For each type of material, the challenges and critical barriers in the material design and their performance in 4D microprinting are discussed. Importantly, further necessary strategies are proposed to overcome the limitations of the current approaches and move toward their application in fields such as biomedicine, microrobotics, or optics

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    A Review on Active 3D Microstructures via Direct Laser Lithography

    Get PDF
    Direct laser lithography (DLL) is a key enabling technology for 3D constructs at the microscale and its potential is rapidly growing toward the development of active microstructures. The rationale of this work is based on the different involved methodology, which is referred as indirect, when passive microstructures become active through postprocessing steps, and direct, when active structures are directly obtained by fabricating microstructures with active materials or by introducing heterogeneous mechanical properties and specific design. An in‐depth analysis of both indirect and direct methods is provided. In particular, the wide range of materials and strategies involved in each method is reported, including advantages and disadvantages, as well as examples of fabricated structures and their applications. Finally, the different techniques are briefly summarized, and critically discussed by highlighting how the new synergies between DLL and active materials are opening completely new scenarios, in particular for sensing (e.g., mechanical) and actuation at the microscale

    MILiMAC:Flexible Catheter With Miniaturized Electromagnets as a Small-Footprint System for Microrobotic Tasks

    Get PDF
    Advancements in medical microrobotics have given rise to an abundance of agents capable of localised interaction with human body in small scales. Nevertheless, clinically-relevant applications of this technology are still limited by the auxiliary infrastructure required for actuation of micro-agents. In this letter, we approach this challenge. Using finite-element analysis, we show that miniaturization of electromagnets can be used to create systems capable of providing magnetic forces adequate for micro-agent steering, while retaining small footprint and power consumption. We use these observations to create MILiMAC (Microrobotic Infrastructure Loaded into Magnetically-Actuated Catheter). MILiMAC is a flexible catheter employing three miniaturized electromagnets to provide localized magnetic actuation at the deeply-seated microsurgery site. We test our approach in a proof-of-concept study deploying MILiMAC inside a test platform to deliver and steer a 600 [\boldsymbol{\mu }m] ferromagnetic microbead. The bead is steered along a set of user-defined trajectories using closed-loop position control. Across all trajectories the best performance metrics are the mean error of 0.41 [mm] and the steady-state error of 0.27 [mm]
    corecore