11 research outputs found

    Recent advances in wireless sensor networks with environmental energy harvesting

    Full text link
    Shu, L.; Liao, W.; Lloret, J.; Wang, L. (2016). Recent advances in wireless sensor networks with environmental energy harvesting. International Journal of Sensor Networks. 21(4):205-207. http://hdl.handle.net/10251/18736720520721

    A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Get PDF
    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime

    A Reverse Localization Scheme for Underwater Acoustic Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time

    Practical Design of a WSN to Monitor the Crop and its Irrigation System

    Get PDF
    [EN] Every day it becomes more necessary to control crops because of the environmental problems, such as the lack of water for irrigation. Therefore, the use of precision agriculture becomes more evident. When it comes to making decisions on crops, the need of applying the concept of Smart Agriculture, which focuses on utilizing different sensors and actuators, is evident. As the number of IoT devices used in agriculture grows exponentially, it is necessary to design the implemented network so that the data is transmitted without problems. This paper shows a wireless network design, in which we use the information collected by the sensors of a Wireless Sensor Network (WSN), and a Wireless Mesh Network (WMN) formed by Access Points (AP) to transmit the data to a network that monitors the crops and its irrigation system. In addition, through simulations, we show the maximum number of nodes that should be connected to an AP in order to have an efficient network.This work has been partially supported by the "Ministerio de Economía y Competitividad" in the "Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia, Subprograma Estatal de Generación de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.García-García, L.; Parra-Boronat, L.; Jimenez, JM.; Lloret, J.; Lorenz, P. (2018). Practical Design of a WSN to Monitor the Crop and its Irrigation System. Network Protocols and Algorithms. 10(4):35-52. https://doi.org/10.5296/npa.v10i4.14147S355210

    A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    Get PDF
    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis

    Saving Energy and Improving Communications using Cooperative Group-based Wireless Sensor Networks

    Full text link
    Wireless Sensor Networks (WSNs) can be used in many real applications (environmental monitoring, habitat monitoring, health, etc.). The energy consumption of each sensor should be as lower as possible, and methods for grouping nodes can improve the network performance. In this work, we show how organizing sensors in cooperative groups can reduce the global energy consumption of the WSN. We will also show that a cooperative group-based network reduces the number of the messages transmitted inside the WSNs, which implieasa reduction of energy consumed by the whole network, and, consequently, an increase of the network lifetime. The simulations will show how the number of groups improves the network performance. © 2011 Springer Science+Business Media, LLC.García Pineda, M.; Sendra Compte, S.; Lloret, J.; Canovas Solbes, A. (2013). Saving Energy and Improving Communications using Cooperative Group-based Wireless Sensor Networks. Telecommunication Systems. 52(4):2489-2502. doi:10.1007/s11235-011-9568-3S24892502524Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Journal of Computer Networks, 38(4), 393–422.Garcia, M., Bri, D., Sendra, S., & Lloret, J. (2010). Practical deployments of wireless sensor networks: a survey. Journal on Advances in Networks and Services, 3(1&2), 1–16.Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensors, 9(11), 8722–8747.Mainwaring, A., Polastre, J., Szewczyk, R., & Culler, D. (2002). Wireless sensor networks for habitat monitoring. In ACM workshop on sensor networks and applications (WSNA’02), Atlanta, GA, USA, September.Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2010, in press). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, pp. 1–9. doi: 10.1049/iet-com.2010.0654 .Sinha, A., & Chandrakasan, A. (2001). Dynamic power management in wireless sensor networks. IEEE Design & Test of Computers, 18(2), 62–74.Garcia, M., Coll, H., Bri, D., & Lloret, J. (2008). Using MANET protocols in wireless sensor and actor networks. In The second international conference on sensor technologies and applications (SENSORCOMM 2008), Cap Esterel, Costa Azul, France, 25–31 August.Lloret, J., García, M., Boronat, F., & Tomás, J. (2008). MANET protocols performance in group-based networks. In Wireless and mobile networking: Vol. 284 (Chap. 13, pp. 161–172). Berlin, Heidelberg, Boston: Springer.Lloret, J., García, M., & Tomás, J. (2008). Improving mobile and ad-hoc networks performance using group-based topologies. In Wireless sensor and actor networks 2008 (WSAN 2008), Ottawa, Canada, 14–15 July. Berlin, Heidelberg, New York: Springer.Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Journal of Computer Communications, 31(14), 3438–3450.Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: a group-based protocol for large wireless ad hoc and sensor networks. Journal of Computer Science and Technology, 23(3), 461–480.Lloret, J., García, M., Boronat, F., & Tomás, J. (2008). MANET protocols performance in group-based networks. In 10th IFIP international conference on mobile and wireless communications networks (MWCN 2008), Toulouse, France, 30 September–2 October.Garcia, M., Sendra, S., Lloret, J., & Lacuesta, R. (2010). Saving energy with cooperative group-based wireless sensor networks. In LNCS: Vol. 6240. Cooperative design, visualization, and engineering: CDVE 2010 (pp. 231–238), September. Berlin: Springer.Lloret, J., Sendra, S., Coll, H., & García, M. (2010). Saving energy in wireless local area sensor networks. Computer Journal, 53(10), 1658–1673.Meiyappan, S. S., Frederiks, G., & Hahn, S. (2006). Dynamic power save techniques for next generation WLAN systems. In Proceedings of the 38th southeastern symposium on system theory (SSST), Cookeville, Tennessee, USA, 5–7 March.Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. (2002). Energy aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.Min, R., Bhardwaj, M., Cho, S.-H., Shih, E., Sinha, A., Wang, A., & Chandrakasan, A. (2001). Low power wireless sensor networks. In Proceedings of international conference on VLSI design, India, Bangalore, 3–7 January.Salhieh, A., Weinmann, J., Kochha, M., & Schwiebert, L. (2001). Power efficient topologies for wireless sensor networks. In Proceedings of the IEEE international conference on parallel processing (pp. 156–163), 3–7 September.Jayashree, S., Manoj, B. S., & Murthy, C. S. R. (2004). A battery aware medium access control (BAMAC) protocol for Ad-hoc wireless network. In Proceedings of the 15th IEEE international symposium on personal, indoor and mobile radio communications (PIMRC 2004), Barcelona, Spain, 5–8 September (Vol. 2, pp. 995–999).Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings IEEE INFOCOM 2002, the 21st annual joint conference of the IEEE computer and communications societies, New York, USA, 23–27 June.Ching, C., & Schindelhauer, C. (2010). Utilizing detours for energy conservation in mobile wireless networks. Journal of Telecommunication Systems. doi: 10.1007/s11235-009-9188-3 .Gao, Q., Blow, K., Holding, D., Marshall, I., & Peng, X. (2004). Radio range adjustment for energy efficient wireless sensor networks. Journal of Ad Hoc Networks, 4(1), 75–82.Li, D., Jia, X., & Liu, H. (2004). Energy efficient broadcast routing in static ad hoc wireless networks. IEEE Transactions on Mobile Computing, 3(1), 1–8.Camilo, T., Carreto, C., Silva, J., & Boavida, F. (2006). An energy-efficient ant-based routing algorithm for wireless sensor networks. In Lecture notes in computer science: Vol. 4150. Ant colony optimization and swarm intelligence (pp. 49–59). Berlin: Springer.Younis, M., Youssef, M., & Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In Proceedings of the 10th IEEE international symposium on modeling, analysis, and simulation of computer and telecommunications systems (MASCOTS ’02) (pp. 129–136). Washington: IEEE Computer Society.Cheng, Z., Perillo, M., & Heinzelman, W. B. (2008). General network lifetime and cost models for evaluating sensor network deployment strategies. IEEE Transactions on Mobile Computing, 7(4), 484–497.Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man and Cybernetics Part A Systems and Humans, 35(1), 78–92.Vlajic, N., & Xia, D. (2006). Wireless sensor networks: to cluster or not to cluster? In International symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2006.Garcia, M., & Lloret, J. (2009). A cooperative group-based sensor network for environmental monitoring. In LNCS: Vol. 5738. Cooperative design, visualization, and engineering: CDVE 2009. (pp. 276–279). Berlin: Springer.Garcia, M., Bri, D., Boronat, F., & Lloret, J. (2008). A new neighbour selection strategy for group-based wireless sensor networks. In 4th int. conf. on networking and services, ICNS 2008. 16–21 March (pp. 109–114).Kaplan, E. D. (1996). Understanding GPS: principles and applications. Boston: Artech House.Stojmenovic, I. (2002). Position based routing in ad hoc networks. IEEE Communications Magazine, 40(7), 128–134.Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.Bhardwaj, M., Garnett, T., & Chandrakasan, A. P. (2001). Upper bounds on the lifetime of sensor networks. In: International conference on communications (ICC’01). June 2001 (pp. 785–790).Gibbons, A. (1985). Algorithmic graph theory. Cambridge: Cambridge University Press.Fraigniaud, P., Pelc, A., Peleg, D., & Perennes, S. (2000). Assigning labels in unknown anonymous networks. In Proceedings of the 19th annual ACM SIGACT-SIGOPS symposium on principles of distributed computing, Portland, OR, USA (Vol. 1, pp. 101–111).OPNET Modeler® Wireless Suite network simulator (2011). Available at http://www.opnet.com/solutions/network_rd/modeler_wireless.html

    LoRaWAN Network for Fire Monitoring in Rural Environments

    Get PDF
    The number of forest fires that occurred in recent years in different parts of the world is causing increased concern in the population, as the consequences of these fires expand beyond the destruction of the ecosystem. However, with the proliferation of the Internet of Things (IoT) industry, solutions for early fire detection should be developed. The assessment of the fire risk of an area and the communication of this fact to the population could reduce the number of fires originated by accident or due to the carelessness of the users. This paper presents a low-cost network based on Long Range (LoRa) technology to autonomously evaluate the level of fire risk and the presence of a forest fire in rural areas. The system is comprised of several LoRa nodes with sensors to measure the temperature, relative humidity, wind speed and CO2 of the environment. The data from the nodes is stored and processed in a The Things Network (TTN) server that sends the data to a website for the graphic visualization of the collected data. The system is tested in a real environment and, the results show that it is possible to cover a circular area of a radius of 4 km with a single gateway.This work was partially supported by the “Ministerio de Ciencia, Innovación y Universidades” through the “Ayudas para la adquisición de equipamiento científico-técnico, Subprograma estatal de infraestructuras de investigación y equipamiento científico-técnico (plan Estatal I+D+i 2017-2020)” (project EQC2018-004988-P), by Universidad de Granada through the “Programa de Proyectos de Investigación Precompetitivos para Jóvenes Investigadores. Modalidad A jóvenes Doctores” of “Plan Propio de Investigación y Transferencia 2019” (PPJIA2019.10), by the Campus de Excelencia Internacional Global del Mar (CEI·Mar) through the “Ayudas Proyectos Jóvenes Investigadores CEI·Mar 2019”, (Project CEIJ-020), by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) (Project ERANETMED3-227 SMARTWATIR)

    Power saving and energy optimization techniques for Wireless Sensor Networks

    Full text link
    Wireless sensor networks have become increasingly popular due to their wide range of applications. Energy consumption is one of the biggest constraints of the wireless sensor node and this limitation combined with a typical deployment of large number of nodes have added many challenges to the design and management of wireless sensor networks. They are typically used for remote environment monitoring in areas where providing electrical power is difficult. Therefore, the devices need to be powered by batteries and alternative energy sources. Because battery energy is limited, the use of different techniques for energy saving is one of the hottest topics in WSNs. In this work, we present a survey of power saving and energy optimization techniques for wireless sensor networks, which enhances the ones in existence and introduces the reader to the most well known available methods that can be used to save energy. They are analyzed from several points of view: Device hardware, transmission, MAC and routing protocols.Sendra Compte, S.; Lloret, J.; García Pineda, M.; Toledo Alarcón, JF. (2011). Power saving and energy optimization techniques for Wireless Sensor Networks. Journal of Communications. 6(6):439-459. doi:10.4304/jcm.6.6.439-459S4394596

    A group-based architecture and protocol for wireless sensor networks

    Full text link
    There are many works related to wireless sensor networks (WSNs) where authors present new protocols with better or enhanced features, others just compare their performance or present an application, but this work tries to provide a different perspective. Why don¿t we see the network as a whole and split it into groups to give better network performance regardless of the routing protocol? For this reason, in this thesis we demonstrate through simulations that node¿s grouping feature in WSN improves the network¿s behavior. We propose the creation of a group-based architecture, where nodes have the same functionality within the network. Each group has a head node, which defines the area in which the nodes of such group are located. Each node has a unique node identifier (nodeID). First group¿s node makes a group identifier (groupID). New nodes will know their groupID and nodeID of their neighbors. End nodes are, physically, the nodes that define a group. When there is an event on a node, this event is sent to all nodes in its group in order to take an appropriate action. End nodes have connections to other end nodes of neighboring groups and they will be used to send data to other groups or to receive information from other groups and to distribute it within their group. Links between end nodes of different groups are established mainly depending on their position, but if there are multiple possibilities, neighbor nodes could be selected based on their ability ¿, being ¿ a choice parameter taking into account several network and nodes parameters. In order to set group¿s boundaries, we can consider two options, namely: i) limiting the group¿s diameter of a maximum number of hops, and ii) establishing boundaries of covered area. In order to improve the proposed group-based architecture, we add collaboration between groups. A collaborative group-based network gives better performance to the group and to the whole system, thereby avoiding unnecessary message forwarding and additional overheads while saving energy. Grouping nodes also diminishes the average network delay while allowing scaling the network considerably. In order to offer an optimized monitoring process, and in order to offer the best reply in particular environments, group-based collaborative systems are needed. They will simplify the monitoring needs while offering direct control. Finally, we propose a marine application where a variant of this groupbased architecture could be applied and deployed.García Pineda, M. (2013). A group-based architecture and protocol for wireless sensor networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/27599TESISPremios Extraordinarios de tesis doctorale

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422
    corecore