8 research outputs found

    Enabling Millimeter Wave Communication for 5G Cellular Networks: MAC-layer Perspective

    Get PDF
    Data traffic among mobile devices increases dramatically with emerging high-speed multimedia applications such as uncompressed video streaming. Many new applications beyond personal communications involve tens or even hundreds of billions wireless devices, such as wireless watch, e-health sensors, and wireless glass. The number of wireless devices and the data rates will continue to grow exponentially. Quantitative evidences forecast that total data rate by 2020 will be 1000 times of current 4G data rate. Next generation wireless networks need fundamental changes to satisfy the overwhelming capacity demands. Millimeter wave (mmWave) communication with huge available bandwidth is a very promising solution for next generation wireless networks to overcome the global bandwidth shortage at saturated microwave spectrum. The large available bandwidth can be directly translated into high capacity. mmWave communication has several propagation characteristics including strong pathloss, atmospheric and rain absorption, low diffraction around obstacles and penetration through objects. These propagation characteristics create challenges for next generation wireless networks to support various kinds of emerging applications with different QoS requirements. Our research focuses on how to effectively and efficiently exploit the large available mmWave bandwidth to achieve high capacity demand while overcoming these challenges on QoS provisioning for various kinds of applications. This thesis focuses on MAC protocol design and analysis for mmWave communication to provide required capacity and QoS to support various kinds of applications in next generation wireless networks. Specifically, from the transmitter/receiver perspective, multi-user beamforming based on codebook is conducted to determine best transmission/reception beams to increase network capacity considering the mutual interferences among concurrent links. From the channel perspective, both interfering and non-interfering concurrent links are scheduled to operate simultaneously to exploit spatial reuse and improve network capacity. Link outage problem resulting from the limited diffraction capability and low penetration capability of mmWave band is addressed for quality provisioning by enabling multi-hop transmission to replace the link in outage (for low-mobility scenarios) and buffer design with dynamic bandwidth allocation among all the users in the whole coverage area (for high-mobility scenarios). From the system perspective, system structure, network architecture, and candidate MAC are investigated and novel backoff mechanism for CSMA/CA is proposed to give more transmission opportunity to faraway nodes than nearby nodes in order to achieve better fairness and higher network capacity. In this thesis, we formulate each problem mentioned above as an optimization problem with the proposed algorithms to solve it. Extensive analytical and simulation results are provided to demonstrate the performance of the proposed algorithms in several aspects, such as network capacity, energy efficiency, link connectivity and so on

    Design of medium access control techniques for cooperative wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.García-García, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Radio Channel Characterization for Future Wireless Networks and Applications

    Get PDF
    The new frontier of Above-6GHz bands is revolutionizing the field of wireless telecommunications, requiring new radio channel models to support the development of future Giga-bit-per-second systems. Recently, deterministic ray-based models as Ray Tracing are catching on worldwide thanks to their frequency-agility and reliable predictions. A modern 3D Ray Tracing developed at University of Bologna has been indeed calibrated and used to investigate the Above-6GHz radio channel properties. As starting point, an item-level electromagnetic characterization of common items and materials has been achieved successfully to obtain information about the complex permittivity, scattering diagrams and even de-polarization effects, both utilizing Vector Spectrum Analyzer (at 7-15GHz) and custom Channel Sounder (at 70GHz). Thus, a complete tuning of the Ray Tracing has been completed for Above-6GHz frequencies. Then, 70GHz indoor doubledirectional channel measurements have been performed in collaboration with TU Ilmenau, in order to attain a multidimensional analysis of propagation mechanisms in time and space, outlining the differences between Below- and Above-6GHz propagation. Furthermore, multi-antenna systems, as Multiple-Input-Multiple- Output (MIMO) and Beamforming have been taken into considerations, as strategic technologies for Above-6GHz systems, focusing on their implementation, limits and differences. Finally, complex system simulations of Space-Division-Multiple- Access (SDMA) networks in indoor scenarios have been tested, to assess the capabilities of Beamforming. In particular, efficient Beam Search and Tracking algorithms have been proposed to assess the impact of interference on Multi-User Beamforming at 70GHz and, also, novel Multi-Beam Beamforming schemes have been tested at 60GHz to investigate diversity strategies to cope with NLOS link and Human Blockage events. Moreover, the novel concept of Ray-Tracing-assisted Beamforming has been outlined, showing that ray-based models represent today the promising key tools to evaluate, design and enhance the future Above-6GHz multi-antenna systems

    Saturated Throughput of a Cognitive IEEE 802.15.3c MAC in the Directional Contention Access Period

    No full text
    corecore