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The increasing complexity of cellular network due to its continuous

evolution has made the conventional system level simulations time consuming

and cost prohibitive. By modeling base station (BS) and user locations as

spatial point processes, stochastic geometry has recently been recognized as

a tractable and efficient analytical tool to quantify key performance metrics.

The goal of this dissertation is to leverage stochastic geometry to develop

an accurate spatial point process model for the conventional homogeneous

macro cellular network, and to address the design and analysis challenges for

the emerging cellular networks that will explore new spectrum for cellular

communications.

First, this dissertation proposes to use the repulsive determinantal point

processes (DPPs) as an accurate model for macro BS locations in a cellular net-

work. Based on three unique computational properties of the DPPs, the exact

viii



expressions of several fundamental performance metrics for cellular networks

with DPP configured BSs are analytically derived and numerically evaluated.

Using hypothesis testing for various performance metrics of interest, the DPPs

are validated to be more accurate than the Poisson point process (PPP) or

the deterministic grid model.

Then the focus of this dissertation shifts to emerging networks that

exploit new spectrum for cellular communications. One promising option is

to allow the centrally scheduled cellular system to also access the unlicensed

spectrum, wherein a carrier sensing multiple access with collision avoidance

(CSMA/CA) protocol is usually used, as in Wi-Fi. A stochastic geometry-

based analytical framework is developed to characterize the performance met-

rics for neighboring Wi-Fi and cellular networks under various coexistence

mechanisms. In order to guarantee fair coexistence with Wi-Fi, it is shown

that the cellular network needs to adopt either a discontinuous transmission

pattern or its own CSMA/CA like mechanisms.

Next, this dissertation considers cellular networks operating in the mil-

limeter wave (mmWave) band, where directional beamforming is required to

establish viable connections. Therefore, a major design challenge is to learn

the necessary beamforming directions through the procedures that establish

the initial connection between the mobile user and the network. These proce-

dures are referred to as initial access, wherein cell search on the downlink and

random access on the uplink are the two major steps. Stochastic geometry is

again utilized to develop a unified analytical framework for three directional
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initial access protocols under a high mobility scenario where users and ran-

dom blockers are moving with high speed. The expected delay for a user to

succeed in initial access, and the average user-perceived downlink throughput

that accounts for the initial access overhead, are derived for all three protocols.

In particular, the protocol that has low beam-sweeping overhead during cell

search is found to achieve a good trade-off between the initial access delay and

user-perceived throughput performance.

Finally, in contrast to the high mobility scenario for initial access, the

directional cell search delay in a slow mobile network is analyzed. Specifically,

the BS and user locations are fixed for long period of time, and therefore a

strong temporal correlation for SINR is experienced. A closed-form expression

for the expected cell search delay is derived, indicating that the expected cell

search delay is infinite for noise-limited networks (e.g., mmWave) whenever the

non-line-of-sight path loss exponent is larger than 2. By contrast, the expected

cell search delay for interference-limited networks is proved to be infinite when

the number of beams to search at the BS is smaller than a certain threshold,

and finite otherwise.
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Chapter 1

Introduction

Comprehensive system level simulation is the conventional approach for

the evaluation and design of cellular networks. However, the ever-increasing

complexity of cellular networks renders simulation even more time consuming

and expensive. By utilizing spatial point processes to model the BS and the

user locations, stochastic geometry is recognized as a tractable system-level

analytical tool for deriving key performance metrics, providing important in-

sights, as well as guiding and narrowing simulations. Although such math-

ematical analysis of cellular networks has contributed greatly to our under-

standing of network behaviors in recent years, some limitations and challenges

still exist. Even for conventional macro cellular networks, the most widely

used Poisson point process (PPP) is an idealization of the BS locations. As

cellular networks evolve to explore new spectrum opportunities in the 5 GHz

unlicensed band or the mmWave bands, many challenges exist for stochastic

geometry analysis of cellular networks due to the unique characteristics of the

new spectrum. The objective of this dissertation is to address these limitations

and challenges.

This introductory chapter consists of three parts. Section 1.1 provides
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the background on why stochastic geometry is a powerful system level an-

alytical tool for large-scale cellular networks. Section 1.2 identifies several

limitations and challenges of stochastic geometry for cellular networks, as it

continues to evolve from homogeneous and macro BS-centric to a denser and

more heterogeneous network with wider spectrum. Finally, Section 1.3 sum-

maries the key contributions of this dissertation.

1.1 Stochastic Geometry for Analyzing Cellular Net-
works

The main advantage of the comprehensive system level simulations is

that it can investigate any arbitrary network scenario to any detail. This is en-

abled by implementing the desired network topology, wireless channel model,

traffic model, network protocols, and so on. Therefore, many key perfor-

mance metrics of cellular networks, including the signal-to-interference-plus-

noise ratio (SINR) distribution and the data rate, can be accurately determined

through simulations. However, a major limitation of simulation is that each

desired scenario needs to be simulated separately using distinctive system pa-

rameters. As the cellular network continues to evolve with more complicated

features and more system parameters to optimize, simulating all the scenarios

of interest can be very time-consuming. Due to the limited number of sce-

narios that can be simulated, the corresponding design insights can also be

quite restricted, and hard to infer for the scenarios that are not simulated. An

accurate yet efficient analytical tool is very desirable for investigating cellular
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network performance.

In recent years, stochastic geometry has become recognized as a very

powerful analytical tool for such investigations. Specifically, by modeling BS

and user locations as realizations of spatial point processes on the two dimen-

sional plane (i.e., R2), stochastic geometry provides an analytically tractable

approach for the analysis of cellular networks, enabling the characterization of

SINR distribution and mean data rate. The analytical expressions can reveal

the impact of system parameters on the key performance metrics, therefore

providing an efficient tool to extract design insights and optimize the system

performance. In addition, stochastic geometry analysis of cellular networks

provides a good complement to exhaustive simulations, since a large subset of

undesirable deployment parameters can be quickly eliminated through the ana-

lytical expressions while the remaining parameters can be investigated through

simulations [1].

Due to its simple definition and exceptional analytical tractability, the

PPP has become the most popular spatial point process for modeling BS and

user locations of cellular networks. For example, the SINR distribution can

be derived in closed-form and evaluated very efficiently for a Poisson cellular

network [2]. This is in sharp contrast to the conventional deterministic grid

network model, under which no closed form expression for SINR distribution

is available.

As cellular network continues to evolve with more complicated emerg-

ing features, many challenges for the stochastic geometry analysis of cellular
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networks have arisen. In the next section, we detail several challenges that

will be investigated in this dissertation.

1.2 Challenges in the Stochastic Geometry Analysis for
the Evolution Cellular Networks

Traditionally, a cellular system is deployed as a homogeneous, macro BS

centric network, where detailed network planning for macro BS deployment is

required to control interference and maximize coverage. In order to support the

exponentially growing mobile traffic demand [3], cellular networks have been

constantly evolved to provide faster and more reliable network connectivity.

Three major approaches to achieve such purpose include [4, 5]: (1) increase

bandwidth for cellular communications; (2) increase spectral efficiency, such

as adopting higher order multiple-input multiple-output (MIMO) or modula-

tion; and (3) increase cell density, such as deploying small BSs underlaid in the

conventional macro cells. Fig. 1.1 provides an illustration of these evolution

trends. Despite the simplicity of the analysis for single-tier Poisson cellular

network [2], we will highlight several major challenges of using stochastic ge-

ometry to analyze the cellular network during its evolution, for not only the

conventional macro cellular networks, but also when new spectrum opportu-

nities are exploited for cellular communications.

Accurate spatial point process model for macro BSs. As a result

of the careful network planning from the operators, the actual macro-cells are

irregular, and correlations exist among neighboring macro BS locations [6]. In
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Figure 1.1: Key methods for the evolution of cellular networks to achieve
higher capacity.

particular, the macro BSs typically exhibit a repulsive behavior, since no two

macro BSs are deployed arbitrarily close to each other. However, the conven-

tional deterministic grid model fails to capture the irregularity of the actual

macro BS deployment, and the complete spatial random PPP does not accu-

rately model the repulsiveness among macro BSs. Fig. 1.2 shows an example

of the actual macro BS deployment from Houston, and the fitted hexagonal

grid model and PPP model. It can be qualitatively observed from Fig. 1.2 that

the actual macro BS deployment is less regular than the hexagonal grid model,

but more regular than the PPP. Therefore, although PPP is highly tractable

and has been widely used for analyzing macro cellular network, its accuracy

for modeling actual macro BS deployment is sub-optimal. An accurate yet still

tractable point process model for macro BSs is thus necessary to better un-

derstand and further optimize the performance of the existing macro-cellular

networks.

Analytical model for coexisting cellular and Wi-Fi networks.

The conventional cellular systems (e.g., 2G, 3G, and 4G LTE) mainly operate
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(a) Actual macro BS (b) Fitted grid model (c) Fitted PPP

Figure 1.2: An actual macro BS deployment and the fitted hexagonal grid and
PPP models.

in the frequency bands that range from 700 MHz to 2.6 GHz [7], with each

component carrier has up to 20 MHz bandwidth [8]. These frequency bands

have become saturated in recent years due to the explosive growth of data

demanding applications generated by smartphones. Therefore, finding new

spectrum opportunities with wider bandwidth for cellular communications is

a key method to support the continuously growing mobile traffic demand.

One promising option is to allow small cell cellular network to simultaneously

access both the conventional licensed spectrum and the lightly used 5 GHz

unlicensed spectrum, through the carrier aggregation feature of LTE.

The main incumbent system in the 5 GHz unlicensed band is Wi-Fi,

which uses carrier sensing multiple access with collision avoidance (CSMA/CA)

protocol [9]. In particular, CSMA/CA guarantees a fair sharing of the spec-

trum by allowing Wi-Fi access points (APs) to transmit only when the channel

is sensed idle. However, the cellular network is centrally scheduled without
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Figure 1.3: An illustration of the how operating cellular in unlicensed band
could hurt Wi-Fi.

any carrier sensing mechanism, therefore directly operating cellular in the un-

licensed spectrum may significantly degrade Wi-Fi performance. A simple

example is shown in Fig. 1.3, where the Wi-Fi AP will never transmit due to

a consistently transmitting nearby cellular BS.

Given the above issue, it is important to design certain mechanisms to

protect Wi-Fi, and to characterize the corresponding system level performance

of the coexisting cellular and Wi-Fi networks. Stochastic geometry is a very

suitable tool for this purpose, but the analysis will also be challenging due to

the need for an accurate model of the CSMA/CA protocol, and techniques to

handle the correlation between both networks created by the carrier sensing

mechanism of Wi-Fi and potentially cellular as well.

Analysis and design for directional initial access in mmWave

cellular networks. In addition to the 5 GHz unlicensed spectrum, the

mmWave bands that range from 30 GHz to 300 GHz also offer tremendous

spectrum availability for cellular communications. However, mmWave bands

also pose challenges for cellular communications due to the high isotropic

pathloss and significant sensitivity to blockage effects. The key method to ad-
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dress these challenges is through highly directional beamforming at mmWave

BSs and mobile users, such that sufficient signal-to-noise ratio (SNR) can be

achieved through large directivity gain. This method is indeed feasible since

the small wavelength of mmWave allows large number of antenna arrays to be

placed in a compact form factor.

The requirement for high directionality to create viable mmWave links

has rendered the initial access, which is the process that allows a mobile user

to first connect to the cellular network, a central challenge for mmWave cellu-

lar networks. Specifically, the mmWave BSs and users are unaware of which

beam directions to use upon initial access, thus they must search over a po-

tentially large beamforming space to find each other, which could be very

time consuming. Therefore, it is essential to design initial access protocols for

mmWave cellular networks that can achieve small initial access delay and high

overall throughput performance. Stochastic geometry can be utilized to design

and analyze mmWave initial access protocols, which will require a reasonable

analytical model for initial access process, and accurate methods to handle

the spatial and temporal correlations of the initial access phases and the data

transmission phases.

1.3 Contributions and Organization

As explained above, this dissertation mainly aims to utilize stochastic

geometry to model and analyze the evolution of cellular networks, which will

advance conventional spatial point process models for macro BS locations,
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and tackle the challenges for designing and analyzing the emerging cellular

networks that operate in the unlicensed spectrum or mmWave bands. The

main technical contributions of this dissertation are covered in Chapter 2 to

Chapter 5, which are summarized as follows.

Modeling Macro BS Deployments using Determinantal Point

Processes. In Chapter 2, we propose the usage of the soft-core repulsive de-

terminantal point process to take into account the spatial repulsiveness among

macro BS locations. By leveraging several unique computational properties of

the DPPs, we have demonstrated that the macro cellular networks with DPP

configured BSs are analytically tractable. Specifically, we show that the empty

space function, the nearest neighbor function, the mean interference and the

signal-to-interference ratio (SIR) distribution have explicit analytical repre-

sentations and can be numerically evaluated for cellular networks with DPP

configured BSs. A diagonal approximation approach is shown to provide accu-

rate estimate of the actual SIR distribution in the high SIR regime, which can

be evaluated with much higher computational efficiency than the closed-form

results. In addition, the modeling accuracy of DPPs is investigated by fitting

three DPP models to real BS location data set. Using hypothesis testing for

various performance metrics of interest, we show that these fitted DPPs are

significantly more accurate than popular choices such as the PPP and the

perturbed hexagonal grid model.

Coexistence Analysis of Cellular and Wi-Fi Networks in the

Unlicensed Spectrum. A promising approach to meet the ever increasing
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data demand for cellular networks is to explore new spectrum opportunities,

such as the 5 GHz unlicensed spectrum. Allowing the centrally scheduled

cellular system to access the unlicensed spectrum could cause severe perfor-

mance degradation for the legacy Wi-Fi system, which is built upon the dis-

tributed CSMA/CA protocol. In Chapter 3, we leverage stochastic geometry

to characterize key performance metrics for neighboring Wi-Fi and cellular

networks in the unlicensed spectrum under various cellular coexistence pro-

tocols. The locations for small cell cellular BSs and Wi-Fi access points

are modeled as two independent homogeneous Poisson point processes, and

a modified Matern hard-core process is used to model the transmitter loca-

tions under the CSMA/CA protocol. Three cellular coexistence mechanisms

are investigated: (1) cellular with continuous transmission and no protocol

modifications; (2) cellular with discontinuous transmission; and (3) cellular

with listen-before-talk (LBT) and random back-off (BO) similar to Wi-Fi. For

each scenario, performance metrics including the medium access probability

(MAP), the signal-to-interference-plus-noise ratio (SINR) coverage probability,

the density of successful transmissions (DST), and the rate coverage probabil-

ity are analytically derived for both Wi-Fi and cellular networks. Compared

to the baseline scenario where one Wi-Fi network coexists with an additional

Wi-Fi network, the results show that Wi-Fi performance is severely degraded

when cellular BSs transmit continuously. However, the DST and rate coverage

probability of Wi-Fi can be improved while the cellular network maintains ac-

ceptable data rate performance, if cellular network adopts one or more of the
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following coexistence features: a shorter transmission duty cycle, lower channel

access priority, or more sensitive clear channel assessment (CCA) thresholds.

Initial Access Analysis in Millimeter Wave Cellular Networks

with High Mobility. In Chapter 4, the focus is shifted up from sub-6 GHz

communications to the mmWave band (> 30 GHz), which is a key enabling

technology for 5G. A central design challenge for mmWave cellular networks

is the initial access, which refers to the set of processes that allows a mobile

user to first connect to a cellular network. MmWave cellular systems generally

rely on directional beamforming in order to create a viable connection. The

beamforming direction must therefore be learned – as well as used – in the

initial access. Initial access consists of two main steps: cell search (CS) on the

downlink and random access (RA) on the uplink. Chapter 4 considers three

simple but representative initial access protocols that use various combinations

of directional beamforming and omnidirectional transmission and reception at

the mobile and the BS, during the CS and RA phases. A high mobility scenario

where users and random blockers are moving with relatively high speed is

considered. As a result, the BS and user PPPs appear to be independently

re-shuffled across different initial access cycles. Stochastic geometry is utilized

to provide a system-level analysis of the success probability for CS and RA for

each protocol, as well as of the initial access delay and user-perceived downlink

throughput (UPT). Of the considered protocols, the best trade-off between

initial access delay and UPT is achieved under a fast cell search protocol.

Directional Cell Search Delay in Cellular Networks with Slow
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Mobility. In contrast to the high mobility scenario that is investigated in

Chapter 4, a slow mobile network where BS and user locations are fixed across

a long period of time, is also an important application scenario. Due to the

importance of utilizing beam-sweeping to achieve extra directive gain for cell

search in the emerging 5G cellular networks, the directional cell search delay

performance for slow mobile networks is analyzed in Chapter 5. For a Pois-

son network with Rayleigh fading channels, a closed-form expression for the

expected cell search delay has been derived. Based on this expression, the

cell search delay for noise-limited and interference-limited networks are inves-

tigated. Specifically, the cell search delay for noise-limited network is proved

to have infinite mean value whenever the non-line-of-sight (NLOS) path loss

exponent is larger than 2. As the number of BS antennas/beams M increases,

the cell search delay for edge users is shown to be significantly reduced. As for

the interference-limited network, a phase transition for the expected cell search

delay exists in terms of M , such that the mean cell search delay is infinite when

M is smaller than a certain threshold and finite otherwise. Overall, Chapter 5

develops a tractable framework to analyze the directional cell search delay in

slow mobile networks, based on which beam-sweeping is demonstrated to be

essential in decreasing the cell search delay for emerging 5G cellular networks.

Finally, Chapter 6 concludes this dissertation by summarizing the key

contributions and discussing potential future research directions.
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Chapter 2

Modeling Macro BS Deployments using

Determinantal Point Processes1

As mentioned in the previous chapter, macro base stations have his-

torically been modeled by the deterministic grid-based model, especially the

hexagonal grid. However, as a result of detailed network planning, as well

as optimization of topological and demographic factors, the actual macro BS

deployment is irregular. Therefore, random spatial models become a natu-

ral candidate to model BS locations, where BSs form a realization of some

random point processes. Due to its simplicity and tractability, the complete

spatial random Poisson point process has become the most popular choice.

However, as shown in Fig. 1.2, the PPP assumption for the macro BS is ide-

alized since no two macro base stations are deployed arbitrarily close to each

other, which means the actual macro BS locations will exhibit repulsive behav-

ior. In order to accurately characterize the fundamental performance metrics,

it is of great importance to find alternative tractable point processes that can

model the interactions among macro BSs. This chapter proposes the use of

1This chapter has been published in [6, 10]. I am the primary author of these works.
Coauthor Dr. Harpreet Dhillon has provided many discussions and insightful feedbacks to
this work, and Dr. Jeffrey G. Andrews and Dr. François Baccelli are my supervisors.
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determinantal point process (DPP) to take into account these correlations; in

particular the repulsiveness among macro base station locations.

2.1 Related Works

The PPP has been widely used in prior works to model cellular BS

deployments not only because it can describe highly irregular placements, but

also because it allows the use of powerful tools from stochastic geometry for

tractable analysis. The downlink coverage probability and average downlink

Shannon rate for a single tier cellular network were derived in [2]. The analysis

of cellular networks with PPP distributed BSs has been extended to several

other network scenarios, such as HetNets [11–18], MIMO downlink cellular

networks [19–21], MIMO downlink HetNets [19, 21–23], and uplink cellular

networks [24,25].

In fact, real macro BS deployments exhibit repulsion among the BSs,

which means that macro BSs are typically distributed more regularly than the

realization of a PPP. Therefore, several research efforts have been devoted to

investigating more accurate point process models for representing BS deploy-

ments. One class of such point processes is the Gibbs point process [26–28].

Gibbs models were validated to be statistically similar to real BS deployments

using SIR distribution and Voronoi cell area distribution [26]. The Strauss

process, which is an important class of Gibbs processes, can also provide ac-

curate statistical fit to real BS deployments [27, 28]. By contrast, the PPP

and the grid models were demonstrated to be less accurate models for real BS
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deployments [26,27]. A significant limitation of Gibbs processes is their lack of

tractability, since their probability generating functional is generally unknown

or difficult to compute [27]. Therefore, point processes that are both tractable

and accurate in modeling real BS deployments are desirable.

A promising option is to use the determinantal point processes, which

were introduced to model the interactions of fermions in quantum mechan-

ics [29]. For several reasons, DPPs are appealing to model cellular BS deploy-

ments. First, DPPs have soft and adaptable repulsiveness [30–32]. Second,

there exist quite effective statistical inference tools for DPPs [31, 32]. Third,

many stationary DPPs can be easily simulated [32–34]. Fourth, DPPs have

many attractive mathematical properties, which can be used for the analysis

of cellular network performance [35–37].

The Ginibre point process, which is a type of DPP, has been recently

proposed as a possible model for cellular BSs. Closed-form expressions of the

coverage probability and the mean data rate were derived for Ginibre single-

tier cellular networks in [37, 38], heterogeneous cellular networks in [39], and

downlink cellular networks in [40]. In [41], several spatial descriptive statistics

and the coverage probability were derived for Ginibre single-tier networks.

These results were empirically validated by comparing to real BS deployments.

However, the analysis for Ginibre configured cellular networks has been largely

facilitated by a specific property of the GPP model [42]. That being said, the

modeling accuracy and analytical tractability of using general DPPs to model

cellular BS deployments are still largely unexplored.
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2.2 Contributions

In this chapter, we will investigate the statistical modeling accuracy

and probabilistic properties for DPP configured macro BS networks. The

main contributions are summarized as follows:

First, in Chapter 2.4, we provide some backgrounds on stochastic ge-

ometry. In particular, we will illustrate the computational properties of PPP

that make it tractable for analyzing cellular networks, and explain why PPP

is idealized compared to the real macro BS deployment.

Second, in Chapter 2.6, we derive for the first time several key per-

formance metrics in cellular networks with DPP configured BSs. Specifically,

we derive the Laplace functional of the DPPs for functions satisfying certain

conditions. Based on the Laplace functional of DPPs, we are able to obtain

closed-form results for key performance metrics including the empty space

function, the nearest neighbor function, the mean total interference and the

signal-to-inference ratio (SIR) distribution.

Third, in Chapter 2.7, we propose to use the Quasi-Monte Carlo inte-

gration method for efficient evaluation of the derived empty space function,

nearest neighbor function, and mean total interference. An approximation for

the SIR distribution is proposed, which is shown to be numerically efficient

and accurate in the high SIR regime.

Finally, in Chapter 2.8, by fitting three stationary DPP models, namely

the Gauss, Cauchy and Generalized Gamma DPP, to real macro BS deploy-
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ments, we show DPP models are generally accurate in terms of spatial de-

scriptive statistics and coverage probability. We find that the Gauss DPP

model provides a reasonable fit while offering good mathematical tractabil-

ity. By combining the numerical and simulation results, we show that DPPs

outperform PPPs to predict key performance metrics in cellular networks.

2.3 System Model

We focus on a downlink single tier macro cellular network, where BSs

are assumed to be distributed according to a stationary point process Φ, while

the mobile users are uniformly distributed and independent of the BSs. Each

BS x ∈ Φ has single transmit antenna with transmit power P , and it is asso-

ciated with an independent mark hx which represents the small scale fading

effects between the BS and the typical user. Independent Rayleigh fading

channels with unit mean are assumed, which means hx ∼ exp(1) for ∀x ∈ Φ.

The shadowing effects are neglected. Since macro cellular network is typically

interference-limited, the thermal noise power is assumed to be 0. In addition,

the path loss function for a link with distance r is denoted by l(r) : R+ 7→ R+,

which is non-decreasing with respect to (w.r.t.) r.

2.4 Preliminaries on Poisson Point Process

In this section, the PPP will be defined, and several important compu-

tational prosperities that make PPP suitable for cellular network analysis are

explained. These preliminaries will be used throughout this dissertation.
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A spatial point process Φ is a random collection of points on the d-

dimensional Euclidean space, which is a counting measure that can be repre-

sented by the sum of Dirac measures on Rd:

Φ =
∑
i

δXi , (2.1)

where for any A ∈ Rd, δX(A) = 1 if X ∈ A and δX(A) = 0 otherwise.

Therefore, Φ(A) is a discrete random variable which counts the number of

points in A that belongs to Φ.

In particular, a PPP with intensity measure Λ is defined as the point

process such that for any bounded, mutually disjoint sets Ai ∈ Rd (i =

1, 2, ..., k), its finite dimensional distribution is given by [43–45]:

P
(

Φ(A1) = n1, ...,Φ(Ak) = nk

)
=

k∏
i=1

(
exp(−Λ(Ai))

Λ(Ai)
ni

ni!

)
. (2.2)

If the intensity measure Λ admits a density λ (i.e., Λ(dx) = λdx), then Φ is

called a homogeneous PPP with intensity λ.

Based on its definition, many unique computational properties of PPP

can be derived. Three commonly used properties for analyzing cellular net-

works are provided as follows.

1. Complete independence. An immediate implication of the PPP defi-

nition is that for any bounded, mutually disjoint sets Ai (i = 1, 2, ..., k),

(Φ(A1), ...,Φ(Ak)) is a vector of independent Poisson random variables, with

mean (Λ(A1), ...,Λ(Ak)).
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2. Closed-form Laplace functional. For any non-negative function f on

Rd, the Laplace functional of PPP with intensity measure Λ is given by:

E
[
exp

(
−
∫
Rd
f(x)Φ(dx)

)]
= exp

(
−
∫
Rd

(
1− exp(−f(x))

)
Λ(dx)

)
.

(2.3)

3. Slivnyak theorem. For any point x ∈ Rd and an event E, define the

reduced Palm distribution of a point process Φ as P!
x0

(E) = P(Φ \ {x0} ∈

E|x0 ∈ Φ) [44,45]. Slivnyak theorem states that PPP preserves its original

distribution under the reduced Palm distribution, which means:

P!
x0

(E) = P(Φ ∈ E), (2.4)

if Φ is a PPP. An alternative view of the Slivnyak theorem is that the

property observed by a typical point x0 of PPP Φ, is the same as that

observed by x0 in Φ ∪ {x0}, which means:

P(Φ ∈ E|x0 ∈ Φ) = P(Φ + δx0 ∈ E). (2.5)

In order to illustrate that PPP is a highly tractable model for analyzing

cellular networks, the downlink SIR distribution is derived for the system

model defined in Section 2.3. In particular, the BS and user locations are

modeled by two independent homogeneous PPPs Φ ∼ PPP(λ) and Φu ∼

PPP(λu) respectively. The path loss function is assumed to be l(r) = rβ,

where β represents the path loss exponent. Each user is associated with the

BS that provides the smallest path loss, which is equivalent to its closest BS.

19



First, by the Slivnyak theorem (2.5) and the stationarity of PPP, the

SIR distribution observed by a typical user of Φu is the same as that observed

at the origin of R2, i.e., we can assume the typical user is located in the origin.

The serving BS of the typical user is therefore x∗(0) = arg minx∈Φ{‖x‖}, and

the complementary cumulative distribution function (CCDF) of ‖x∗(0)‖ can

be derived as follows:

P(‖x∗(0)‖ ≥ r0)
(a)
= P(Φ(B(0, r0)) = 0)

(b)
= exp(−λπr2

0), (2.6)

where (a) holds by noting x∗(0) = arg minx∈Φ{‖x‖}, and (b) is from the defin-

ing property of PPP in (2.2). Based on (2.6), the probability density function

(PDF) of ‖x∗(0)‖ is given by:

f‖x∗(0)‖(r0) = λ2πr0 exp(−λπr2
0). (2.7)

The downlink SIR at the typical user is:

SIR(0) =
PF0/l(‖x∗(0)‖)∑

Xi∈Φ\x∗(0) PFi/l(‖Xi‖)
, (2.8)

where F0 and {Fi} represent independent and identically distributed expo-

nential (i.i.d.) random variables with unit mean. The closed-form CCDF for

SIR(0), or equivalently the coverage probability of the typical user, can be

derived as follows:

P
(

PF0/l(‖x∗(0)‖)∑
Xi∈Φ\x∗(0) PFi/l(‖Xi‖)

> T

)
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(a)
=

∫ ∞
0

P
(

PF0/l(r0)∑
Xi∈Φ\x∗(0) PFi/l(‖Xi‖)

> T

∣∣∣∣x∗(0) = (r0, 0)

)
f‖x∗(0)‖(r0)dr0

(b)
=

∫ ∞
0

P
(

PF0/l(r0)∑
Xi∈Φ\x∗(0) PFi/l(‖Xi‖)

> T

∣∣∣∣x∗(0) ∈ Φ,Φ(B(0, r0)) = 0

)
f‖x∗(0)‖(r0)dr0

(c)
=

∫ ∞
0

P
(

PF0/l(r0)∑
Xi∈Φ PFi/l(‖Xi‖)

> T

∣∣∣∣Φ(B(0, r0)) = 0

)
f‖x∗(0)‖(r0)dr0

(d)
=

∫ ∞
0

P
(

PF0/l(r0)∑
Xi∈Φ\B(0,r0) PFi/l(‖Xi‖)

> T

)
f‖x∗(0)‖(r0)dr0

(e)
=

∫ ∞
0

E
[ ∑
Xi∈Φ\B(0,r0)

exp

(
−TFil(r0)/l(‖Xi‖)

)]
f‖x∗(0)‖(r0)dr0

(f)
=

∫ ∞
0

E
[ ∏
Xi∈Φ\B(0,r0)

1

1 + T l(r0)/l(‖Xi‖)

]
f‖x∗(0)‖(r0)dr0

(g)
=

∫ ∞
0

exp

(
−2πλ

∫ ∞
r0

T l(r0)r

T l(r0) + l(r)
dr

)
λ2πr0 exp(−λπr2

0)dr0

(h)
=

1

1 + 2
∫∞

1
Trdr
T+rβ

. (2.9)

Step (a) is obtained by conditioning on the location of x∗(0) as (r0, 0), which

is independent of its angle since PPP is isotropic. Step (b) is because the

event {x∗(0) = (r0, 0)} is equivalent to {x∗(0) ∈ Φ} ∩ {Φ(B(0, r0)) = 0},

where B(0, r0) denotes the ball centered around origin with radius r0. Step (c)

and (d) follow from the Slivnyak theorem and complete independence of PPP

respectively. Since F0 and {Fi} are i.i.d. exponential random variables with

mean 1, step (e) and step (f) are obtained. Step (g) is derived by substituting

the nonnegative function f(x) = log(1 + T l(r0)/l(x))1‖x‖≥r0 into the Laplace

functional (2.3). Finally, step (h) is because the path loss function is l(r) = rβ.

As shown in (2.9), the coverage probability for Poisson network can

be easily evaluated, and many useful design insights can be observed directly
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from (2.9). For example, in the interference-limited Poisson cellular network,

the coverage probability does not depend on the BS intensity λ, and therefore

the area spectral efficiency scales linearly w.r.t. λ [2].

Although PPP has good analytical tractability for modeling macro cel-

lular networks, it neglects the repulsiveness among macro BS locations. By

generating 1000 realizations of the PPP fitted to the Houston macro BS de-

ployment in Fig. 1.2a, Fig. 2.1 evaluates the goodness-of-fit of the PPP in

terms of the coverage probability. Fig. 2.1 also evaluates the goodness-of-fit

for the perturbed hexagonal grid model, which is obtained by independently

perturbing each point of a hexagonal grid in the random direction by a dis-

tance d [26]. This distance is uniformly distributed between 0 and ηr, with r

being the radius of the hexagonal cells and η is chosen as 0.5 in our simulation.

Fig. 2.1 shows that the coverage probability of the PPP and of the perturbed

hexagonal grid model, correspond to a lower bound and an upper bound of

the actual coverage probability respectively. As a result, an accurate yet still

tractable point process model for macro BSs is necessary. In the rest of this

chapter, we will demonstrate that the determinantal point processes satisfy

such purpose.
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Figure 2.1: Coverage probability of the PPP and the perturbed grid model.

2.5 Mathematical Preliminaries on Determinantal Point
Processes

2.5.1 Definition of Determinantal Point Processes

DPPs are defined based on their n-th joint intensity. Consider a spatial

point process Φ defined on a locally compact space Λ; then Φ has n-th joint

intensity (or n-th order product density) ρ(n) : Λn → [0,∞) if for any Borel

function h : Λn → [0,∞):

E

6=∑
X1,...,Xn∈Φ

h(X1, ..., Xn) =

∫
Λ

· · ·
∫

Λ

ρ(n)(x1, ..., xn)

× h(x1, ..., xn)dx1· · · dxn, (2.10)

where 6= means X1, ..., Xn are pair-wise different. For all pairwise distinct

points x1, ..., xn, ρ(n)(x1, ..., xn)dx1· · · dxn is the probability of finding a point

in the region centered around xi with volume dxi (i = 1, ..., n). In particular,

ρ(1)(x) is the intensity function of Φ.
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Let C denote the complex plane; then for any function K : Λ×Λ→ C,

we use (K(xi, xj))1≤i,j≤n to denote the square matrix with K(xi, xj) as its

(i, j)-th entry. In addition, denote by det A the determinant of the square

matrix A.

Definition 2.5.1. The point process Φ defined on a locally compact space Λ

is called a determinantal point process with kernel K : Λ× Λ→ C, if its n-th

joint intensity has the following form:

ρ(n)(x1, ..., xn) = det (K(xi, xj))1≤i,j≤n , (x1, ..., xn) ∈ Λn. (2.11)

Note that PPP is a special case of DPP whenever K(x, y) = 0 for

x 6= y. For the rest of this chapter, the kernel function K(x, y) is assumed to

be a continuous, Hermitian, locally square integrable and non-negative definite

function2. We will focus on DPPs defined on the Euclidean plane R2, and we

denote the DPP Φ with kernel K by Φ ∼ DPP(K).

Remark 2.5.1. The repulsive nature of DPPs can be explained by the fact that

if K is continuous, then ρ(n)(x1, ..., xn) ≈ 0 when two points xi and xj for i 6= j

are close by. In contrast, the joint intensity of a stationary PPP with intensity

λ > 0 is ρ(n)(x1, ..., xn) = λn whenever xi 6= xj for i 6= j, which means two

distinct points on PPP can be arbitrarily close to each other with constant

probability.

2This is not a sufficient condition to guarantee the existence of the DPP. Readers are
referred to [31,32] for more details.
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A DPP Φ is stationary if its n-th order product density is invariant

under translations. A natural way to guarantee the stationarity of a DPP is

that its kernel K has the form:

K(x, y) = K0(x− y), x, y ∈ R2.

In this case, K0 is also referred to as the covariance function of the stationary

DPP. For stationary DPPs, the intensity measure is constant over R2. Further

if the stationary DPP is isotropic, i.e., invariant under rotations, its kernel

only depends on the distance between the node pair.

Definition 2.5.2. (Spectral Density[32]) The spectral density ϕ of a station-

ary DPP Φ with covariance function K0(t) is defined as the Fourier transform

of K0(t), i.e., ϕ(x) =
∫
R2 K0(t)e−2πix·tdt for x ∈ R2.

The spectral density is useful for simulating stationary DPPs. In addi-

tion, the spectral density can also be used to assess the existence of the DPP

associated with a certain kernel. Specifically, from Proposition 5.1 in [32], the

existence of a DPP is equivalent to its spectral density ϕ belonging to [0, 1].

2.5.2 Computational Properties of DPPs

We now list several important computational properties for the DPPs,

which make them suitable to analyze the cellular networks.

1. DPPs have closed-form joint intensities of any order. Specifically,

for any n ∈ N, the n-th joint intensity of Φ ∼ DPP(K) is given by (2.11).
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Therefore, higher order moment measures of shot noise fields such as the

mean/variance of interference in cellular networks can be derived.

2. DPPs have a closed-form Laplace functional for any nonnegative

measurable function f on R2 with compact support [35, Theorem 1.2].

Lemma 2.5.1 (Shirai et al. [35]). Consider Φ ∼ DPP(K) defined on R2,

where the kernel K guarantees the existence of Φ. Then Φ has the Laplace

functional:

E
[
exp

(
−
∫
R2

f(x)Φ(dx)

)]
=

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

×
n∏
i=1

(1− exp(−f(xi))) dx1...dxn, (2.12)

for any nonnegative measurable function f on R2 with compact support.

In fact, having a compact support is a strong requirement for the func-

tion f , and we are able to prove that (2.12) holds for more general functions.

Lemma 2.5.2. For Φ ∼ DPP(K) with kernel K guarantees the existence of Φ.

Then for any nonnegative measurable function f which satisfies the following

conditions3: (a) lim
|x|→∞

f(x) = 0; (b) lim
r→∞

∫
R2\B(0,r)

K(x, x)f(x)dx = 0; and (c)∫
R2 K(x, x)(1 − exp(−f(x)))dx < +∞, then the Laplace functional of Φ is

given by (2.12).

3For x ∈ R2 and r ≥ 0, B(x, r) (Bo(x, r)) denotes the closed (open) ball with center x
and radius r. In addition, Bc(x, r) denotes the complement of B(x, r).
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Proof. The proof is provided in Appendix 2.10.1.

Based on Lemma 2.5.2, we can derive the following two lemmas.

Lemma 2.5.3. If K guarantees the existence of Φ ∼ DPP(K), then the prob-

ability generating functional (pgfl) of Φ is:

G[v] ,E

(∏
x∈Φ

v(x)

)

=
+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

×
n∏
i=1

(1− v(xi)) dx1...dxn, (2.13)

for all measurable functions v : R2 → [0, 1], such that − log v satisfies the

conditions in Lemma 2.5.2.

Lemma 2.5.4. Consider a DPP Φ =
∑

i δxi, where Φ is defined on R2 with

kernel K. Each node xi ∈ Φ is associated with an i.i.d. mark pi, which is

independent of xi with probability law F (·). Then the Laplace functional of the

independently marked point process Φ̃ =
∑

i δ(xi,pi) is given by:

LΦ̃(f) ,E

[
exp

(
−
∑
i

f(xi, pi)

)]

=
+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

×
n∏
i=1

(
1−

∫
R+

exp(−f(xi, pi))F (dpi)

)
dx1...dxn, (2.14)

for any nonnegative measurable function f such that − log
∫
R+ exp(−f(x, p))F (dp)

satisfies the conditions in Lemma 2.5.2.
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Proof. The proof is provided in Appendix 2.10.2.

The Laplace functional provides a strong tool to analyze the shot noise

field of a DPP. In particular, it facilitates the analysis of interference and

coverage probability in cellular networks.

3. Under the reduced Palm distribution4, the DPP has the law of

another DPP whose kernel is given in closed-form [35, Theorem 1.7].

Lemma 2.5.5 (Shirai et al. [35]). Consider Φ ∼ DPP(K), where the kernel

K guarantees the existence of Φ. Then under the reduced Palm distribution

at x0 ∈ R2, Φ coincides with another DPP associated with kernel K !
x0

for

Lebesgue almost all x0 with K(x0, x0) > 0, where:

K !
x0

(x, y) =
1

K(x0, x0)
det

(
K(x, y) K(x, x0)
K(x0, y) K(x0, x0)

)
. (2.15)

This property shows that DPPs are closed under the reduced Palm

distribution, which provides a tool similar to Slyvniak’s theorem for Poisson

processes [44]. In cellular networks, when x0 is chosen as the serving base

station to the typical user, this property shows that all other interferers will

form another DPP with the modified kernel provided in (2.15).

4For a spatial point process Φ, denote P!
x0

(·) as the reduced Palm distribution given
x0 ∈ Φ. For any event A, a heuristic definition of P!

x0
(·) is: P!

x0
(A) = P(Φ\{x0} ∈ A|x0 ∈ Φ).

The readers are referred to [44, p. 131] for formal definitions.
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2.5.3 Examples of Stationary DPPs

In this chapter, we consider three stationary DPP models that are

proposed in [32].

Gauss DPP Model: A stationary point process Φ is a Gauss DPP if

it has covariance function:

K0(x) = λ exp(−‖x‖2/α2), x ∈ R2. (2.16)

In the above definition, λ denotes the spatial intensity of the Gauss DPP, while

α is a measure of its repulsiveness. In order to guarantee the existence of the

Gauss DPP model, the parameter pair (λ, α) needs to satisfy: λ ≤ (
√
πα)−2.

Cauchy DPP Model: The Cauchy DPP model has a covariance func-

tion:

K0(x) =
λ

(1 + ‖x‖2/α2)ν+1 , x ∈ R2. (2.17)

In this model, λ describes the intensity, while α is the scale parameter and ν

is the shape parameter. Both α and ν affect the repulsiveness of the Cauchy

DPP. To guarantee the existence of a Cauchy DPP, the parameters need to

satisfy: λ ≤ ν
(
√
πα)2 .

Generalized Gamma DPP Model: The Generalized Gamma DPP

model is defined based on its spectral density:

ϕ(x) = λ
να2

2πΓ(2/ν)
exp(−‖αx‖ν), (2.18)

where Γ(·) denotes the Euler Gamma function. The existence of a Generalized

Gamma DPP can be guaranteed when λ ≤ 2πΓ(2/ν)
να2 .
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2.6 Fundamental Analysis for Macro Cellular Networks
using DPPs

In this section, based on the three important computational properties

discussed in Chapter 2.5.2, we will derive several fundamental performance

metrics for the downlink macro cellular networks with DPP configured BSs:

(1) the empty space function; (2) the nearest neighbor function; (3) Laplace

transform of the total interference; and (4) the downlink SIR distribution.

2.6.1 Empty Space Function

The empty space function is the cumulative distribution function (CDF)

of the distance from the origin to its nearest point in the point process. Con-

sider Φ ∼ DPP(K) and let d(o,Φ) = inf{‖x‖ : x ∈ Φ}; then the empty space

function F (r) is defined as: F (r) = P (d(o,Φ) ≤ r) for r ≥ 0 [44]. In cellular

networks, when each user is associated with its nearest BS, the empty space

function provides the distribution of the distance from the typical user to its

serving BS, which further dictates the statistics of the received signal power

at the typical user. Based on the Laplace functional of DPP models provided

in Lemma 2.5.1, we have the following lemma:

Lemma 2.6.1. For any Φ ∼ DPP(K), the empty space function F (r) for

r ≥ 0 is given by:

F (r) =
+∞∑
n=1

(−1)n−1

n!

∫
(B(0,r))n

det (K(xi, xj))1≤i,j≤n dx1...dxn. (2.19)

Proof. The proof is provided in Appendix 2.10.3.
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Based on Lemma 2.6.1, we can also characterize the probability density

function (PDF) f(r) of the distance from the origin to its nearest point for all

stationary and isotropic DPPs Φ.

Corollary 2.6.2. Let F (r) denote the empty space function for a stationary

and isotropic DPP Φ with covariance function K. Then f(r) , dF (r)
dr

is given

by:

f(r) =2πr
+∞∑
n=0

(−1)n

n!

∫
(B(0,r))n

det(K(xi, xj))0≤i,j≤n

∣∣∣∣
x0=(r,0)

dx1...dxn. (2.20)

Proof. The proof is provided in Appendix 2.10.4.

2.6.2 Nearest Neighbor Function

The nearest neighbor function gives the distribution of the distance

from the typical point of a point process to its nearest neighbor in the same

point process. For all stationary DPPs Φ, the nearest neighbor function can be

defined based on the reduced Palm distribution of Φ as: D(r) = P!
o(d(o,Φ) ≤

r) [44].

In cellular networks, the nearest neighbor function provides the distri-

bution of the distance from a typical BS to its nearest neighboring BS, which

can be used as a metric to indicate the clustering/repulsive behavior of the

network. Specifically, compared to the PPP, a regularly deployed network

corresponds to a smaller nearest neighbor function, while a clustered network

corresponds to a larger nearest neighbor function. Therefore, when each user is
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associated with its nearest BS, the dominant interferers in regularly deployed

networks are farther from the serving BS than a completely random network.

Lemma 2.6.3. For any Φ ∼ DPP(K) defined on R2, its nearest neighbor

function D(r) is given by:

D(r) =
+∞∑
n=1

(−1)n−1

n!

∫
(B(0,r))n

det
(
K !
o(xi, xj)

)
1≤i,j≤n dx1...dxn, (2.21)

where K !
o(x, y) is:

K !
o(x, y) =

1

K(0, 0)
det

(
K(x, y) K(x, 0)
K(0, y) K(0, 0)

)
. (2.22)

This lemma can be proved noting if Φ̃ ∼ DPP(K !
o(x, y)), then it follows

from Lemma 2.5.5 that: P!
o(d(o,Φ) ≤ r) = P(d(o, Φ̃) ≤ r).

2.6.3 Interference Distribution

Interference is an important factor that limits the coverage probabil-

ity and mean data rate in wireless networks. In this section, we analyze the

properties of shot noise fields associated with a DPP. Our aim is to evaluate

interference in cellular networks under two BS association schemes. First, the

BS to which the typical user is associated is assumed to be at an arbitrary

but fixed location. We show that in this case, the mean interference is easy to

characterize with DPP configured BSs. This simple conditional interference

scenario provides a fundamental understanding of interference in wireless net-

works with DPP configured nodes. The results in this case can be extended to

ad-hoc networks as well. Second, each user is assumed to be associated with

its nearest BS. In this case, we derive the Laplace transform of interference.
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2.6.3.1 Interference with fixed associated BS scheme

Since Φ is invariant under translation and rotation, we assume the typi-

cal user located at the origin is served by the base station at x0 = (r0, 0), where

r0 denotes the distance from the origin to x0. Conditionally on x0 ∈ Φ being

the serving BS, the interference at the origin is: I =
∑

xi∈Φ\x0
Phxi/l(‖xi‖).

Lemma 2.6.4. Given x0 = (r0, 0) is the serving BS for the typical user located

at the origin, the mean interference seen by this typical user is:

E[I|x0 = (r0, 0)] = P

∫
R2

K !
x0

(x, x)/l(‖x‖)dx, (2.23)

where K !
x0

(·, ·) is given in (2.15)5.

Proof. This result is proved in Appendix 2.10.5.

In fact, all the higher order moment measures of the interference can

be calculated similarly based on Definition 2.5.1 and Lemma 2.5.5.

2.6.3.2 Interference with nearest BS association scheme

In this part, we consider the BS association scheme where each user

is served by its nearest BS. In single tier cellular networks, the nearest BS

association scheme provides the highest average received power for each user.

5This lemma can be seen as a general property of the shot noise field I created by a
DPP, since it holds for all function l(·).
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For a user located at y ∈ R2, its associated BS is denoted by x∗(y) =

argmin
x∈Φ

‖x − y‖. Consider the typical user located at the origin and its as-

sociated BS x∗(0). The interference at the typical user is then given by

I =
∑

xi∈Φ\x∗(0)

Phxi/l(‖xi‖), where hxi ∼ exp(1) denotes the Rayleigh fad-

ing variable from xi to the origin. In the next theorem, we provide the general

result which characterizes the Laplace transform of interference conditional on

the position of the BS nearest to the typical user.

Theorem 2.6.5. Conditionally on x∗(0) = x0 being the serving BS of the

typical user at the origin, if f(x, hx) = sPhx1|x|≥r0/l(‖x‖)− log 1|x|≥r0 satisfies

the conditions in Lemma 2.5.4, then the Laplace transform of the interference

at the typical user is:

E[e−sI |x∗(0) = x0]

=

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det(K !
x0

(xi, xj))1≤i,j≤n ×
n∏
i=1

[1− 1|xi|≥r0
1+sP/l(‖xi‖) ]dx1...dxn

+∞∑
n=0

(−1)n

n!

∫
B(0,r0)n

det(K !
x0

(xi, xj))1≤i,j≤ndx1...dxn

,

(2.24)

where r0 = |x∗(0)| and K !
x0

(·, ·) is given in (2.15).

Proof. Please see Appendix 2.10.6.

Remark 2.6.1. In contrast with what happens in the PPP case, because of

the repulsion among DPP points, Φ ∩ Bc(0, r0) and Φ ∩ Bo(0, r0) are not

independent.
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Remark 2.6.2. If Φ is a stationary PPP with intensity λ, then by substituting

det(K(xi, xj))1≤i,j≤n = det(K !
x0

(xi, xj))1≤i,j≤n = λn, Theorem 2.6.5 gives the

Laplace transform of the interference at the typical user to be:

E[e−sI |x∗(0) = x0] = exp

(
−λ
∫
Bc(0,r0)

(1− 1

1 + sP/l(‖x‖)
)ds

)
,

which is consistent with (12) in [2].

Since the Laplace transform fully characterizes the probability distribu-

tion, many important performance metrics can be derived using Theorem 2.6.5.

Specifically, the next lemma gives the mean interference under the nearest BS

association scheme.

Lemma 2.6.6. The mean interference at the typical user conditional on

x∗(0) = x0 is:

E[I|x∗(0) = x0]

=

+∞∑
n=0

(−1)n

n!

∫
(B(0,r0))n

∫
Bc(0,r0)

det(K !
x0

(xi, xj))1≤i,j≤n+1P/l(‖x1‖)dx1...dxn+1

+∞∑
n=0

(−1)n

n!

∫
(B(0,r0))n

det(K !
x0

(xi, xj))1≤i,j≤ndx1...dxn

,

where r0 = |x0|.

Proof. The proof is provided in Appendix 2.10.7.

Since the DPPs are assumed to be stationary and isotropic, thus only

the distance from the origin to its nearest BS will affect the mean interference

result, which can be observed from Lemma 2.6.6.
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2.6.4 SIR Distribution

Based on the same assumptions as in Section 2.6.3, we derive the SIR

distribution as the CCDF of the SIR at the typical user under the nearest BS

association scheme. Denote by x∗(0) the BS to which the typical user at the

origin associates, its received SIR can be expressed as:

SIR(0,Φ) =
Phx0/l(‖x∗(0)‖)∑

xi∈Φ\x∗(0) Phxi/l(‖xi‖)
. (2.25)

In Corollary 2.6.2, the probability density function for the distance from

the origin to its nearest BS has been characterized. Therefore, by combining

Corollary 2.6.2 and Theorem 2.6.5, we are able to compute the SIR distribution

of the typical user under the nearest BS association scheme.

Theorem 2.6.7. The SIR distribution of the typical user is given by:

P(SIR(0,Φ) > T )

=

∫ +∞

0

λ2π

[+∞∑
n=0

(−1)n

n!

∫
(R2)n

det(K !
x0

(xi, xj)1≤i,j≤n)

×
n∏
i=1

[1−
1|xi|≥r0

1 + T l(‖x0‖)/l(‖xi‖)
]

∣∣∣∣
x0=(r0,0)

dx1...dxn

]
r0dr0. (2.26)

Proof. Please see Appendix 2.10.8.

Remark 2.6.3. If we choose Φ as a stationary PPP with intensity λ, i.e.,

det(K(xi, xj))1≤i,j≤n = det(K !
x0

(xi, xj))1≤i,j≤n = λn, then Theorem 2.6.7 leads

to the same result as [2, Theorem 2].
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2.7 Numerical Evaluation

In this section, we provide the numerical method used to evaluate the

analytical results derived in Chapter 2.6. Fig. 2.2 shows the BS deployment6

of 115 BSs in a 16 km × 16 km area of Houston, which represent sprawling

and relatively flat areas where repulsion among BSs is expected. Based on the

maximum likelihood (ML) estimate method which is implemented in the soft-

ware package provided in [32], we have summarized the estimated parameters

for different DPPs fitted to the Houston data set in Table 2.1.

In the following, we will focus on the numerical results using the Gauss

DPP fitted to the Houston data set. Our simulation results for each metric are

based on the average of 1000 realizations of the fitted Gauss DPP. Realizations

of the Gauss DPP, Cauchy DPP and Generalized Gamma DPP fitted to the

Houston urban area deployment are shown in Fig. 2.3. From these figures, it

can be observed that the fitted DPPs are regularly distributed and close to the

real BS deployments. In Section 2.8, we will rigorously validate the accuracy

of these DPPs based on different summary statistics.

Table 2.1: DPP Parameters for the Houston Data Set

Model λ α ν
Gauss DPP 0.4492 0.8417 −

Cauchy DPP 0.4492 1.558 3.424
Generalized Gamma DPP 0.4492 2.539 2.63

The Laplace functional of DPPs involves a series representation, where

6BS location data was provided by Crown Castle.
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Figure 2.2: Houston data set

each term is a multi-dimensional integration. Therefore, we adopt the Quasi-

Monte Carlo (QMC) integration method [46] for efficient numerical integration.

The QMC integration method approximates the multi-dimensional integration

of function f : [0, 1]n → R as:∫
[0,1]n

f(x)dx ≈ 1

N

N−1∑
n=0

f(xn).

The sample points x0, ...,xN−1 ∈ [0, 1]n are chosen deterministically in the

QMC method, and we use the Sobol points generated in MATLAB as the

choice for sample points [47]. Compared to the regular Monte Carlo integration

method which uses a pseudo-random sequence as the sample points, the QMC

integration method converges much faster.
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Figure 2.3: Gauss DPP (left), Cauchy DPP (middle) and Generalized Gamma
DPP (right) fitted to the Houston BS deployment.

2.7.1 Empty Space Function

Since the QMC integration method requires integration over the unit

square, (2.19) can be rewritten as:

F (r) =
+∞∑
n=1

(−1)n−1(2r)2n

n!

∫
([0,1]×[0,1])n

det(K0(2r(xi−

xj)))1≤i,j≤n
∏
i

1{‖xi−( 1
2
, 1
2

)‖≤ 1
2
}dx1...dxn, (2.27)

where K0(x) is the covariance function for the DPP Φ.

The accuracy of (2.27) is verified by computing the empty space func-

tion of the Gauss DPP fitted to the Houston data set. Specifically, for the

Gauss DPP model, K0(x) = λ exp(−‖x/α‖2), where λ and α are chosen ac-

cording to Table 2.1. Fig. 2.4 shows the QMC integration results of (2.27)

with different numbers of Sobol points, as well as the simulation result for the

fitted Gauss DPP. We have observed that when the number of Sobol points is

211, (2.27) can be computed very efficiently (in a few seconds) and the QMC

integration results are accurate except for the part where F (r) is over 95%. If
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the number of Sobol points is increased to 215, the QMC integration method is

almost 10 times slower while the results are accurate for a much larger range

of r. This shows that small number of Sobol points is sufficient to achieve

accurate QMC integration results for small r, while more Sobol points are

needed to achieve accurate QMC integration result when r grows larger. In

contrast, simulating the empty space function involves generating 1000 real-

izations of the fitted Gauss DPP, which typically takes several minutes due

to the complicated algorithm to simulate DPP [32]. Therefore, the numerical

method using QMC integration is more efficient than simulation to evaluate

the empty space function.
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Figure 2.4: Empty space function of the fitted Gauss DPP.

The empty space function of the fitted PPP is also provided in Fig. 2.4.

Since the DPPs have more regularly spaced point pattern, they will have

larger empty space function than the PPPs. Equivalently, this means the

distance from the origin to its closest point on the DPPs is stochastically

less than for PPPs, which can be observed from Fig. 2.4 for the Gauss DPP.
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Therefore, if each user is associated with its nearest BS, DPPs will lead to a

stronger received power at the typical user compared to PPPs in the stochastic

dominance sense.

Nearest Neighbor Function: The QMC integration method is also

efficient in the numerical evaluation of the nearest neighbor function. Similar

to the empty space function, the QMC integration method with N = 211 takes

a few seconds to return D(r) in Fig. 2.5, which is accurate up to 95%. By

contrast, the QMC integration method is more accurate but almost ten times

slower when the number of sample points is increased to N = 215.
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Figure 2.5: Nearest neighbor function of the fitted Gauss DPP.

We can also observe from Fig. 2.5 that the fitted DPPs will have smaller

nearest neighbor function than the PPP, especially when r is small. This

indicates that the PPP will largely overestimate the nearest neighbor function

when r is small, which leads to much closer strong interfering BSs compared

to the Gauss DPP.
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2.7.2 Mean Interference

In this part, the mean interference of the Gauss DPP is numerically

evaluated for the path loss model l(r) = max(1, rβ), where β > 2 is the path

loss exponent.

2.7.2.1 Mean interference with fixed associated BS scheme

Corollary 2.7.1. Conditionally on x0 = (r0, 0) as the serving BS for the

typical user, the mean interference at the typical user when BSs are distributed

according to the Gauss DPP with parameters (λ, α) is given by:

E[I|x0 = (r0, 0)] =
Pπλβ

β − 2
− 2Pπλ exp(−2r2

0

α2
)(A1(r0) + A2(r0)),

where A1(r0) =
∫ 1

0
exp(−2r2

α2 )I0(4rr0
α2 )rdr, A2(r0) =

∫∞
1

exp(−2r2

α2 )r1−βI0(4rr0
α2 )dr.

Here I0(·) denotes the modified Bessel function of first kind with parameter

ν = 0 [48].

Based on the fact that
∫ 2π

0
exp(±β cos(x))dx = 2πI0(β) [48, p. 491],

this corollary can be derived by substituting the Gauss DPP kernel into

Lemma 2.6.4.

In Fig. 2.7, the mean interference for the Gauss DPP fitted to the

Houston data set is provided under different path loss exponents with P = 1.

From Fig. 2.7, it can be observed that the mean interference increases as r0

increases; this is because it increases the probability for the existence of a

strong interferer close to the typical user. In addition, given r0, the mean
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Figure 2.6: Houston data set

Figure 2.7: Mean interference under the fixed associated BS scheme.

interference is decreasing when the path loss exponent β increases; this is

because the path loss function is decreasing with respect to β for all interferers.

2.7.2.2 Mean interference with nearest BS association scheme

The Quasi-Monte Carlo integration method is adopted to evaluate the

mean interference under the nearest BS association scheme. In Fig. 2.9, the

mean interference is evaluated when the path loss exponent β is 3, 3.5, 4. It can

be observed from Fig. 2.9 that when r0 (i.e., the distance from the typical user

to its nearest BS) increases, the mean interference decreases. This is because

the strong interferers are farther away from the typical user when r0 increases,

which leads to a smaller aggregate interference. This is quite different from

the case when the BS associated to the typical user is assumed to be at some

fixed location. In addition, since the path loss function l(r) is non-decreasing

with respect to β given r, the mean interference decreases when β increases
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Figure 2.9: Mean interference under the nearest BS association scheme.

for a given r0.

2.7.3 SIR Distribution

The QMC integration method can, in principle, be used to numerically

evaluate (2.26). However, it is time consuming due to the need to evaluate mul-

tiple integrations over R2. Therefore, we use the diagonal approximation of the

matrix determinant [49] to roughly estimate (2.26). Specifically, the determi-

nant of matrix (K(xi, xj))1≤i,j≤n is approximated7 as det((K(xi, xj))1≤i,j≤n) ≈∏n
i=1K(xi, xi) under the diagonal approximation.

Lemma 2.7.2. Under the diagonal approximation, the SIR distribution of the
typical user is approximated as:

P(SIR(0,Φ) > T ) ≈
∫ +∞

0
λ2πr0 exp

(
−
∫
R2

K !
x0

(x, x)(1−
1|x|≥r0

1 + T l(‖x0‖)
l(‖x‖)

)

∣∣∣∣
x0=(r0,0)

dx

)
dr0.

(2.28)

7The relative error bound for diagonal approximation is provided in [49, Theorem 1].
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Figure 2.11: Diagonal approximation to the SIR distribution of the fitted
Gauss DPP.

Lemma 2.7.2 can be proved by applying diagonal approximation to

Theorem 2.6.7, thus we omit the proof. Next, the QMC integration method

is used to evaluate the accuracy of Lemma 2.7.2 by assuming the BSs are

distributed according to the Gauss DPP. The power-law path loss model with

path loss exponent β = 4 is used for simplicity, i.e., l(r) = r4. It can be

observed from Fig. 2.11 that for the fitted Gauss DPP model, the diagonal

approximation to the SIR distribution is accurate compared to the simulation

result in the high SIR regime, i.e., when the SIR threshold is larger than 6 dB.

Therefore, we can use the diagonal approximation as an accurate estimate for

the SIR distribution in the high SIR regime.

Given the accuracy of the diagonal approximation, the effect of the

parameters of the DPP model on the SIR distribution can be easily evaluated
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by rewriting (24) as8:

P(SIR(0,Φ) > T ) ≈∫ +∞

0

π exp

[
−
∫ +∞

0

∫ 2π

0

(
1−

K2
0

(√
r0
λ

(r2 + 1− 2r cos θ)
)

λ2

)

×
(

1− 1r≥1

1 + Tr−β

)
r0rdθdr

]
dr0, (2.29)

where the path loss model is l(r) = rβ. Therefore, when the BSs are dis-

tributed according to the Gauss DPP model with parameters (λ, α), we can

deduce from (2.29) that given α, the SIR distribution will be larger when λ

is larger, which means BS densification will improve the SIR performance.

This observation is different from [2], which proves that when BSs are mod-

eled as a PPP, the SIR performance does not depend on the BS density. In

addition, (2.29) also shows that given λ, larger α will lead to a better SIR

distribution. Since larger α corresponds to greater repulsiveness for the Gauss

DPP model, this observation is consistent with the intuition that larger repul-

siveness among BSs will lead to better SIR performance.

2.8 Goodness-of-fit for Stationary DPPs to Model BS
Deployments

DPPs are attractive models for cellular networks not only because they

are mathematically tractable, but also because they can accurately model

8Since the covariance function K0(x) of a stationary and isotropic DPP Φ with kernel
K only depends on ‖x‖, so with a slight abuse of notation, we denote K0(‖x‖) = K0(x)
in (2.29).
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macro BS deployments. In this section, we provide rigorous investigation of

their modeling accuracy to real BS deployments in this section. Our simula-

tions are based on the publicly available package for DPP models [32] imple-

mented in R, which is used as a supplement to the Spatstat library [50].

2.8.1 Summary Statistics

To test the goodness-of-fit of these DPP models, we have used Ripley’s

K function and the coverage probability as performance metrics, which are

described below:

Ripley’s K function: Ripley’s K function is a second order spatial

summary statistic defined for stationary point processes. It counts the mean

number of points within distance r of a given point in the point process ex-

cluding the point itself. Formally, the K function K(r) for a stationary and

isotropic point process Φ with intensity λ is defined as:

K(r) =
E!
o (Φ(B(0, r)))

λ
, (2.30)

where E!
o(·) is the expectation with respect to the reduced Palm distribution

of Φ.

The K-function can also be interpreted in terms of pair correlation

function g0(r), i.e., K(r) = 2π
∫ r

0
tg0(t)dt. As discussed in the previous section,

the pair correlation function can be derived immediately from the kernel of

a DPP, so we can have closed form expression for several DPP models. For

example, the K-function for Gauss DPP can be derived as K(r) = πr2 −
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πα2

2

(
1− exp(−2r2

α2 )
)

.

The K-function is used as a measure of repulsiveness/clustering of spa-

tial point processes. Specifically, compared to the PPP which is completely

random, a repulsive point process model will have a smaller K function, while

a clustered point process model will have a larger K function. Closed-form

expressions of K function can be calculated for Gauss and Cauchy DPP [32],

which are strictly smaller than PPP. This explains the repulsiveness of these

two DPP models.

Coverage Probability: The coverage probability is defined as the

probability that the received SINR at the typical user is larger than the thresh-

old T . When measuring the fitting accuracy of spatial point processes to real

BS deployments, metrics related to the wireless system such as the coverage

probability are more practical. In particular, the coverage probability also

depends on the repulsive/clustering behavior of the underlying point process

used to model the BS deployment. Compared to the fitted PPP, due a larger

empty space function, the distance from the typical user to its serving BS is

stochastically less in a fitted repulsive point process. Similarly, due to a smaller

nearest neighbor function, the fitted repulsive point process has stochastically

larger distance from the serving BS to its closest interfering BS than the PPP

case. Therefore, from (2.25), a larger coverage probability is expected when

the BS deployments are modeled by more repulsive spatial point processes.

We will use the same parameter assumptions as in Section 2.7.3 for evaluating

the coverage probability. Since the thermal noise power is assumed to be 0,
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the CCDF of SIR at the typical user, i.e., P(SIR(0,Φ) > T ), coincides with its

coverage probability with threshold T .

2.8.2 Hypothesis Testing using Summary Statistics

In this part, we evaluate the goodness-of-fit of stationary DPP models

using the summary statistics discussed above. Particularly, we fit the real

BS deployments in Fig. 2.2 to the Gauss, Cauchy and Generalized Gamma

DPPs. To evaluate the goodness-of-fit for these DPP models, we generate 1000

realizations of each DPP model and examine whether the simulated DPPs fit

with the behavior of real BS deployments in terms of the summary statistics.

Specifically, based on the null hypothesis that real BS deployments can be

modeled as realizations of DPPs, we verify whether the K-function of the

real data set lies within the envelope of the simulated DPPs. We use similar

testing method for the coverage probability; a 95% confidence interval is used

for evaluation.

Goodness-of-fit for Gauss DPP Model: The testing results for

the K function of the fitted Gauss DPP are given in Fig. 2.12a, which clearly

show that the K functions of the real BS deployments lie within the envelope

of the fitted Gauss DPP. The coverage probability for the fitted Gauss DPP

is provided in Fig. 2.12b, from which it can be observed that the coverage

probability of the Houston data sets lies within the 95% confidence interval of

the simulated Gauss DPPs. In addition, the average coverage probability of

the fitted Gauss DPP is slightly lower than that of real data sets, which means
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Figure 2.12: Goodness-of-fit for the Gauss DPP.

that the fitted Gauss DPP corresponds to a slightly smaller repulsiveness than

the real deployments.

Therefore, in terms of the above summary statistics, the Gauss DPP

model can be used as a reasonable point process model for real BS deployments.

In addition, due to the concise definition of its kernel, the shot noise analysis

of the Gauss DPP is possible, which further motivates the use of Gauss DPPs

to model real-world macro BS deployments.

Goodness-of-fit for the Cauchy DPP Model: Based on the same

method as for the Gauss DPP model, we tested the goodness-of-fit for the

Cauchy DPP model. The fitting results for the K function and coverage prob-

ability are shown in Fig. 2.13a and Fig. 2.13b, from which it can be concluded

that the Cauchy DPP model is also a reasonable point process model for real

BS deployments. Compared to the fitted Gauss DPP, the average coverage

probability for the fitted Cauchy DPP in Fig. 2.13b is slightly lower than that

in Fig. 2.12b, which means the fitted Cauchy DPP corresponds to a smaller
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Figure 2.13: Goodness-of-fit for the Cauchy DPP.

repulsiveness than the Gauss DPP.

Goodness-of-fit for the Generalized Gamma DPP Model: The

goodness-of-fit for the Generalized Gamma DPP fitted to the Houston data

set is evaluated in Fig. 2.14. The Generalized Gamma DPP provides the best

fit among all these DPP models, especially in terms of coverage probability. In

Fig. 2.14, the average coverage probability of the fitted Generalized Gamma

DPP almost exactly matches the real BS deployment, while the average cov-

erage probability of the fitted Gauss DPP and the fitted Cauchy DPP all stay

below the real data set. This is because the Generalized Gamma DPP corre-

sponds to a higher repulsiveness, from which a larger coverage probability is

expected.

2.8.3 Repulsiveness of Different DPPs

In order to explain why the Generalized Gamma DPP has larger re-

pulsiveness, we use the metric suggested in [32] to measure the repulsive-
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Figure 2.14: Goodness-of-fit for the Generalized Gamma DPP.

ness of different DPPs. Specifically, from Lemma 2.5.5, the intensity mea-

sure of a stationary DPP Φ under its reduced Palm distribution is ρ
(1)
o (x) =

ρ(2)(0, x)/ρ(1)(x), where ρ(2) and ρ(1) are the second and the first joint inten-

sity of Φ. By calculating the difference of the total expected number of points

under the probability distribution P and the reduced Palm distribution P!
o, the

repulsiveness of a stationary DPP Φ with intensity λ can be measured using

the following metric [32]:

µ =

∫
R2

[
λ− ρ(1)

o (x)
]

dx =
1

λ

∫
R2

|K0(x)|2dx =
1

λ

∫
R2

|ϕ(x)|2dx, (2.31)

where K0(x) and ϕ(x) denote the covariance function and spectral density of

Φ respectively.

PPP has µ = 0 due to Slivnyak’s theorem, while the grid-based model

has µ = 1 since the point at the origin is excluded under reduced Palm distri-

bution. Generally, larger value of µ will correspond to a more repulsive point

process. This repulsiveness measure for the Gauss, Cauchy and Generalized
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Gamma model can be calculated as: µgauss = λπα2/2, µcauchy = λπα2/(2ν+1),

and µgengamma = λνα2/(21+2/νπΓ(2/ν)). Based on the parameters in Table 2.1,

we can calculate the repulsiveness measure of each DPP model fitted to the

Houston data set as µgauss = 0.4999, µcauchy = 0.4365 and µgengamma = 0.5905.

Similarly, the repulsiveness measure of each DPP model fitted to the LA data

set is given by µgauss = 0.5004, µcauchy = 0.4351, µgengamma = 0.5479. There-

fore, it can be concluded that the fitted Generalized Gamma DPP has the

largest repulsiveness, followed by the fitted Gauss DPP, while the fitted Cauchy

DPP is the least repulsive. Since higher repulsiveness will result in more regu-

larity for the point process, a Generalized Gamma DPP generally corresponds

to a larger average coverage probability.

2.9 Summary

In this chapter, the analytical tractability and the modeling accuracy of

using the determinantal point processes for macro BS locations are validated.

The state-of-the-art in DPP prior to this chapter is mainly focused on its

mathematical and statistical properties [32,35,36]. For example, [35,36] have

derived the reduced Palm distribution of the DPP, and the Laplace functional

of DPP when the functions have bounded support. This chapter is the first

work to introduce DPP as a feasible macro BS location model, and to pro-

vide rigorous analysis for the corresponding network performance. Specifically,

this chapter has derived the Laplace functional for DPPs and independently

marked DPPs, wherein the functions need to satisfy certain constraints but
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can potentially have unbounded support. Based on the reduced Palm distri-

bution of DPP [35] and the derived Laplace functional, the exact expressions

for important system performance metrics (e.g., the empty space function, the

mean interference, the SIR distribution) can be derived, which are given by se-

ries expansion forms. These expressions can be numerically evaluated through

the Quasi-Monte Carlo integration method in general, and can also retrieve

the results for Poisson cellular networks [2] when the DPP kernel is the degen-

erated Poisson kernel. By fitting the Gauss DPP model to a real macro BS

deployment using the statistical algorithm developed in [32], the determinan-

tal point processes are shown to be accurate in terms of the K function and

the coverage probability.

The methodologies for determinantal point processes derived in this

chapter provide the basis to investigate more advanced network models, such as

the MIMO networks and heterogeneous cellular networks, with determinantal

point process configured macro base stations.

2.10 Appendix

2.10.1 Proof of Lemma 2.5.2

For any function f satisfying the conditions in Lemma 2.5.2, define the

following function for k ∈ N:

fk(x) =

{
f(x), if x ∈ B(0, k),
0, otherwise.

(2.32)
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Based on Lemma 2.5.1, since each fk(x) has finite support, we have:

E
[
exp

(
−
∫
R2

fk(x)Φ(dx)

)]
=

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

n∏
i=1

(1− exp(−fk(xi))) dx1...dxn.

(2.33)

From the monotone convergence theorem, we have:

lim
k→∞

E
[
exp

(
−
∫
R2

fk(x)Φ(dx)

)]
= E

[
exp

(
−
∫
R2

f(x)Φ(dx)

)]
. (2.34)

Let us now show that:

lim
k→∞

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

n∏
i=1

(1− exp(−fk(xi))) dx1...dxn

=
+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

n∏
i=1

(1− exp(−f(xi))) dx1...dxn.

(2.35)

To prove this result, we use the following lemma [51, Theorem 7.11]:

Lemma 2.10.1. Suppose fn → f uniformly on a set E in a metric space.

Let x be a limit point on E such that lim
t→x

fn(t) exists for ∀n ∈ N, then

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

Let us denote that:

hn(k) =
n∑

m=0

∫
(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm.

We prove that {hn} converges uniformly ∀k ∈ N. This is because:∣∣∣∣∫
(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm

∣∣∣∣
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(a)

≤ 1

m!

(∫
R2

K(x, x)(1− exp(−f(x)))dx

)m
,Mm,

where (a) follows from Hadamard’s inequality, i.e., det((K(xi, xj))1≤i,j≤n ≤∏n
i=1 K(xi, xi) ifK is positive semi-definite. Since

∫
R2 K(x, x)(1−exp(−f(x)))dx

is finite by assumption,
∑∞

m=0Mm is also finite. Therefore, by Weierstrass M-

test [51, Theorem 7.10], {hn} converges uniformly.

Next, we show lim
k→∞

hn(k) exists for ∀n ∈ N. This is because for 0 ≤

m ≤ n, we have:

lim
k→∞

∫
(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm

(a)
=

∫
(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m lim

k→∞

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm

=

∫
(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−f(xi))) dx1...dxm.

(2.36)

Step (a) follows from the dominated convergence theorem (DCT): given m,

denote x , (x1, ..., xm) and gk(x) , (−1)m

m!
det (K(xi, xj))1≤i,j≤m

∏m
i=1(1 −

exp(−fk(xi))); then from the definition of fk(x), gk(x) converges pointwise to

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

∏m
i=1(1 − exp(−f(xi))). In addition, observe that

|gk(x)| ≤ 1
m!

∏m
i=1K(xi, xi)(1− exp(−f(xi))), we have∫

(R2)m

1

m!

m∏
i=1

K(xi, xi)(1− exp(−f(xi)))dx1...dxm

=

(∫
R2 K(x, x)(1− exp(−f(x)))dx

)m
m!

<∞.

Since each term of hn(k) has a finite limit when k →∞, thus lim
k→∞

hn(k) also

exists.
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Now we can apply Lemma 2.10.1 to hn(k) to derive the desired fact:

lim
k→∞

∞∑
m=0

(−1)m

m!

∫
(R2)m

det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm

= lim
k→∞

lim
n→∞

n∑
m=0

(−1)m

m!

∫
(R2)m

det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm

(a)
= lim

n→∞
lim
k→∞

n∑
m=0

(−1)m

m!

∫
(R2)m

det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−fk(xi))) dx1...dxm

(b)
=
∞∑
m=0

(−1)m

m!

∫
(R2)m

det (K(xi, xj))1≤i,j≤m

m∏
i=1

(1− exp(−f(xi))) dx1...dxm,

(2.37)

where (a) is derived using Lemma 2.10.1, and (b) follows from (2.36).

The proof of the lemma follows from (2.33), (2.34), and (2.35).

2.10.2 Proof of Lemma 2.5.4

This can be proved by the following procedure:

E

[
exp(−

∑
i

f(xi, pi))

]
(a)
=E

[∏
i

∫
R+

exp(−f(xi, p))F (dp)

]
(b)
=

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

n∏
i=1

(
1−

∫
R+

exp(−f(xi, pi))

× F (dpi)

)
dx1...dxn,

where (a) is because all the marks are i.i.d. and independent of DPP Φ, while

(b) comes from Corollary 2.5.3.
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2.10.3 Proof of Lemma 2.6.1

Choose f(x) = − log 1{‖x‖>r} for x ∈ R2, we have:

E
[
exp

(
−
∫
f(x)Φ(dx)

)]
= E

[
exp

(
−
∑
xi∈Φ

− log 1‖xi‖>r

)]
= P [d(o,Φ) > r] .

Therefore, based on Lemma 2.5.2, the empty space function is given by:

F (r) =1− E
[
exp

(
−
∫
f(x)Φ(dx)

)]
=1−

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det (K(xi, xj))1≤i,j≤n

×
n∏
i=1

(
1− exp(log 1{‖xi‖>r})

)
dx1...dxn

=
+∞∑
n=1

(−1)n−1

n!

∫
(B(0,r))n

det (K(xi, xj))1≤i,j≤n dx1...dxn.

2.10.4 Proof of Corollary 2.6.2

We start the proof with the following two lemmas:

Lemma 2.10.2. Consider two non-negative functions g(u, v) : R × Rd →

[0,∞), and p(u) : R → [0,+∞), which satisfy the following conditions: (1)

g(u, v) is non-decreasing, right continuous w.r.t. u, and g(u, v) = 0 for ∀u ≤

0; (2) p(u) is bounded, right continuous, and lim
u→+∞

p(u) = 0; (3) p(u) and

g(u, v) do not have common discontinuities for Lebesgue almost all v. Let

F (u) =
∫
Rd g(u, v)dv, we also assume that F (u) is continuous, non-decreasing
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and bounded on R. Then the following equation holds:∫
R
p(u)dF (u) =

∫
Rd×R

p(u)dug(u, v)dv, (2.38)

where the integrals w.r.t. dF (u) and dug(u, v) are in the Stieltjes sense.

Proof. Using Stieltjes integration by parts, we have the following:∫
R
p(u)dF (u) =

∫
R
p(u)du

∫
Rd
g(u, v)dv

(a)
= −

∫
R

∫
Rd
g(u, v)dvdp(u)

(b)
= −

∫
Rd

∫
R
g(u, v)dp(u)dv

(c)
=

∫
Rd

∫
R
p(u)dug(u, v)dv, (2.39)

where (a) and (c) are derived using integration by parts for the Stieltjes inte-

grals, and (b) follows from Fubini’s theorem.

Lemma 2.10.3 (Rubin [51]). Suppose {fn} is a sequence of differentiable

functions on [a, b] such that {fn(x0)} converges for some point x0 on [a, b].

If {f ′n} converges uniformly on [a, b] to f ′, then {fn} converges uniformly on

[a, b] to a function f , and f
′
(x) = lim

n→∞
f
′
n(x) for a ≤ x ≤ b.

We can express the empty space function as F (r) = lim
n→∞

Fn(r), where:

Fn(r) =
n∑
k=1

(−1)k−1

k!

∫
(B(0,r))k

det(K(xi, xj))1≤i,j≤kdx1...dxk.

From Lemma 2.6.1, we know Fn(r) converges pointwise to F (r) for any r ≥ 0.

Let u(·) denote the unit step function and δ(·) denote the Dirac measure. Note
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that Fn(r) is equal to 0 for r ≤ 0; then by taking p(v) = u(v)− u(v − r) with

r ∈ [0,∞), we have:

Fn(r) =

∫
R
p(v)dFn(v)

(a)
=

n∑
k=1

(−1)k−1

k!

∫
(R2)k×[0,r)

det(K(xi, xj))1≤i,j≤kd

[
k∏
i=1

u(v − |xi|)

]
dx1...dxk

(b)
=

n∑
k=1

(−1)k−1

k!

∫
(R2)k×[0,r)

det(K(xi, xj))1≤i,j≤k

k∑
m=1

k∏
i=1,i 6=m

u(v − |xi|)

× δ|xm|(dv)dx1...dxk

(c)
=

n∑
k=1

(−1)k−1

k!

∫
(R2)k×[0,r)

k det(K(xi, xj))1≤i,j≤k

k∏
i=2

u(v − |xi|)δ|x1|(dv)dx1...dxk

=
n∑
k=1

(−1)k−1

(k − 1)!

∫ +∞

0

∫ 2π

0

∫
(R2)k−1

∫ r

0

det(K(xi, xj))1≤i,j≤k

∣∣∣∣
x1=(r1,θ)

×
k∏
i=2

u(v − |xi|)r1δr1(dv)dx2...dxkdθdr1

(d)
=

∫ r

0

n∑
k=1

(−1)k−1

(k − 1)!
2πv

∫
(B(0,v))k−1

det(K(xi, xj))1≤i,j≤k

∣∣∣∣
x1=(v,0)

dx2...dxkdv

(2.40)

Step (a) is derived by applying Lemma 2.10.2 to Fn(v) and p(v). Then (b)

follows from the product rule for differentials, and the fact that the Dirac

measure is the distributional derivative of the unit step function. Furthermore,

(c) is because the determinant det(K(xi, xj))1≤i,j≤n remains the same if we

swap the position of x1 and xk, which is equivalent to exchanging the first

row and the k-th row, and then the first column and the k-th column of

K(xi, xj)1≤i,j≤n. Finally, (d) follows from the the defining property of Dirac

measure, and noting that since Φ is stationary and isotropic, the integration is
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invariant w.r.t. the angle of x1. Notice that Fn(r) can be expressed as (2.40),

which shows it is differentiable.

Given r ∈ [0,∞), we can check F
′
n(v) converges uniformly for v ∈

[0, r] using Hadamard’s inequality for positive semi-definite matrices. Then by

applying Lemma 2.10.3 to {Fn}, we have:

F (r) =

∫ r

0

lim
n→∞

F
′

n(v)dv

=

∫ r

0

+∞∑
n=0

(−1)n

n!
2πv

∫
(B(0,v))n

det(K(xi, xj))0≤i,j≤n

∣∣∣∣
x0=(v,0)

dx1...dxndv.

2.10.5 Proof of Lemma 2.6.4

From Lemma 2.5.5, the mean interference can be expressed as:

E[
∑

xi∈Φ\x0

Phxi/l(‖xi‖)|x0 = (r0, 0)]

=E[
∑
xi∈Φ̃

Phxi/l(‖xi‖)]

(a)
=P

∫
R2

∫
R+

hK !
x0

(x, x) exp(−h)/l(‖x‖)dhdx

=P

∫
R2

K !
x0

(x, x)/l(‖x‖)dx,

where Φ̃ ∼ DPP(K !
x0

) follows from Lemma 2.5.5, and (a) follows from Camp-

bell’s theorem.

2.10.6 Proof of Theorem 2.6.5

Denote Φ̃ ∼ DPP(K !
x0

), we have:

E[exp(−sI)|x∗(0) = x0]
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=E[exp(−sI)|x0 ∈ Φ,Φ(Bo(0, r0)) = 0]

(a)
=E!

x0
[exp(−s

∑
xi∈Φ∩Bc(0,r0)

Phxi/l(‖xi‖))|Φ(Bo(0, r0)) = 0]

(b)
=
E[exp(−s

∑
xi∈Φ̃∩Bc(0,r0) Phxi/l(‖xi‖))1Φ̃(Bo(0,r0))=0]

P[Φ̃(Bo(0, r0)) = 0]
, (2.41)

where (a) follows from the Bayes’ rule, and the fact that conditionally on

x0 ∈ Φ, (Φ− δx0)(Bo(0, r0)) = 0 is equivalent to Φ(Bo(0, r0)) = 0 since x0 lies

on the boundary of the open ball Bo(0, r0). In addition, (b) follows from the

fact that for all random variables X and events A, E[X|A] = E[X1A]
P(A)

.

Next, it is clear that the denominator in (2.41) is given by:

P[Φ̃(Bo(0, r0)) = 0] = P[d(o, Φ̃) ≥ r0]

=
+∞∑
n=0

(−1)n

n!

∫
B(0,r0)n

det(K !
x0

(xi, xj))1≤i,j≤ndx1...dxn. (2.42)

The numerator in (2.41) is calculated as:

E
[
exp(−s

∑
xi∈Φ̃∩Bc(0,r0)

Phxi/l(‖xi‖))1Φ̃(Bo(0,r0))=0

]

=E
[
exp(−s

∑
xi∈Φ̃∩Bc(0,r0)

Phxi/l(‖xi‖))
∏
xi∈Φ̃

1|xi|≥r0

]
(a)
=

+∞∑
n=0

(−1)n

n!

∫
(R2)n

∫
(R+)n

det(K !
x0

(xi, xj))1≤i,j≤n

×
n∏
i=1

[
(1− exp(−sPhxi1|xi|≥r0/l(‖xi‖) + log 1|xi|≥r0)) exp(−hxi)dhi

]
dx1...dxn

=
+∞∑
n=0

(−1)n

n!

∫
(R2)n

det(K !
x0

(xi, xj))1≤i,j≤n

n∏
i=1

[
1−

1|xi|≥r0

1 + sP/l(‖xi‖)

]
dx1...dxn,

(2.43)
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where (a) is obtained from Lemma 2.5.4. Finally, substituting (2.42) and (2.43)

into (2.41) yields the result.

2.10.7 Proof of Lemma 2.6.6

Denote the empty space function as F (r), then the mean interference

is calculated as:

E[I|x∗(0) = x0]

=− d

ds
[E[exp(−sI)||x∗(0) = x0]]

∣∣∣∣
s=0

(a)
= − 1

1− F (r0)

+∞∑
n=0

(−1)n

n!

∫
(R2)n

det(K !
x0

(xi, xj))1≤i,j≤n
d

ds

n∏
i=1

[1−
1|xi|≥r0

1 + sP/l(‖xi‖)
]

× dx1...dxn

∣∣∣∣
s=0

(b)
= − 1

1− F (r0)

+∞∑
n=1

(−1)n

n!

∫
(R2)n

det(K !
x0

(xi, xj))1≤i,j≤n

×
n∑
k=1

n∏
i=1,i 6=k

[1−
1|xi|≥r0

1 + sP/l(‖xi‖)
]
P/l(xk)1|xk|≥r0

(1 + sP/l(‖xk‖))2
dx1...dxn

∣∣∣∣
s=0

(c)
=

+∞∑
n=1

(−1)n−1

n!

∫
(R2)n

det(K !
x0

(xi, xj))1≤i,j≤nn
n∏
i=2

1|xi|<r01|x1|≥r0P/l(‖x1‖)dx1...dxn

1− F (r0)

=

+∞∑
n=1

(−1)n−1

(n−1)!

∫
(B(0,r0))n−1

∫
Bc(0,r0)

det(K !
x0

(xi, xj))1≤i,j≤nP/l(‖x1‖)dx1...dxn

+∞∑
n=0

(−1)n

n!

∫
B(0,r0)n

det(K !
x0

(xi, xj))1≤i,j≤ndx1...dxn

,

Interchanging the infinite sum and the differentiation in (a) is guaranteed by

Lemma 2.10.3. Then (b) is derived by applying the derivative of product

rule. In addition, (c) is true since consider n points x1, ..., xn ∈ R2 such that
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|xk| ≥ r0 and the rest are within the open ball Bo(0, r0), then the determinant

det(K !
x0

(xi, xj))1≤i,j≤n remains the same if we swap the position of x1 and xk.

2.10.8 Proof of Theorem 2.6.7

Without loss of generality, assume x∗(0) = x0, which can be expressed

in polar form as x0 = (r0, θ). We know that x0 admits the probability density

dθ
2π
f(r0)dr0, where f(r0) is given in Corollary 2.6.2. Therefore, we have:

P(SIR(0,Φ) > T )

=

∫ +∞

0

∫ 2π

0

P[SIR(0,Φ) > T |x0 = (r0, θ)]
1

2π
f(r0)dθdr0

(a)
=

∫ +∞

0

P[SIR(0,Φ) > T |x0 = (r0, 0)]f(r0)dr0

=

∫ +∞

0

E[exp(−T l(x0)I)|x0 = (r0, 0)]f(r0)dr0,

where (a) is because the DPP is stationary and isotropic, so that the an-

gle of x0 will not affect the result of P[SIR(0,Φ) > T |x0 = (r0, θ)]. Since

det(K !
x0

(xi, xj))1≤i,j≤n = 1
K(x0,x0)

det(K(xi, xj))0≤i,j≤n, then the proof is com-

pleted by applying Corollary 2.6.2 and Theorem 2.6.5.
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Chapter 3

Coexistence Analysis of Cellular and Wi-Fi

Networks in the Unlicensed Spectrum1

The better exploitation of spectrum opportunities is a key component

for cellular communications to meet the ever increasing global mobile traffic

demand. Given that there is over 400 MHz of generally lightly used unlicensed

spectrum in the 5 GHz band, a promising approach is to extend cellular into

the unlicensed spectrum, so that the cellular network can aggregate carriers

on both licensed and unlicensed bands to provide higher transmission band-

width [54–61]. The main incumbent system in the unlicensed spectrum is

Wi-Fi, which is built on the distributed IEEE 802.11 CSMA/CA protocol [9].

CSMA/CA guarantees fair channel access by allowing Wi-Fi nodes to transmit

only when the channel is sensed to be idle for a certain back-off period. By

contrast, cellular systems are centrally scheduled, which assumes exclusive us-

age of the spectrum without any carrier sensing mechanisms. Therefore, this

medium access control (MAC) layer difference can potentially lead to very poor

Wi-Fi performance when the cellular network operates in the unlicensed spec-

1This chapter has been published in [52, 53]. I am the primary author of these works.
Coauthors Dr. Thomas Novlan and Dr. Charlie Zhang have provided many valuable dis-
cussions and insights to this work, and Dr. Jeffrey G. Andrews and Dr. François Baccelli
are my supervisors.
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trum without any protocol modifications. In order to protect Wi-Fi, cellular

networks can adopt either a discontinuous, duty-cycle transmission pattern,

or the listen-before-talk (LBT) with a random backoff mechanism similar to

Wi-Fi. Although the coexistence performance of cellular and Wi-Fi can be

evaluated through system level simulations, a more fundamental approach

would be helpful for transparent comparisons and understanding when and

why the various techniques succeed or fail. In particular, the complicated

CSMA/CA protocol and the corresponding correlations among the transmit-

ting Wi-Fi APs and cellular BSs render the analysis very challenging. In this

chapter, we propose a theoretical framework based on stochastic geometry to

model and analyze the coexistence issues that arise when cellular operates in

the unlicensed spectrum.

3.1 Related Works

Cellular in unlicensed spectrum operation is mainly designed for the

long term evolution (LTE) system [56], and several works have investigated

the coexistence of LTE and Wi-Fi through system level simulations [55,62–72].

When LTE transmits continuously, [62, 63] show that Wi-Fi is most often

blocked by the LTE interference, and the throughput performance of Wi-Fi

decreases significantly. A simple approach which requires minimal changes to

the current LTE protocol is to adopt a discontinuous transmission pattern,

also known as LTE-U [73]. By using the almost-blank subframes (ABS) fea-

ture to blank a certain fraction of LTE transmissions, Wi-Fi throughput can
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be effectively increased for indoor scenarios [63, 65], outdoor scenarios [66],

and indoor/outdoor mixed scenarios [66]. However, this discontinuous LTE

transmission scheme is infeasible in regions where the LBT feature is manda-

tory to transmit in the unlicensed spectrum [56, 71, 72]. In addition, through

real testing results, [74] shows the frequent on and off switching of LTE-U

transmissions will trigger the Wi-Fi rate control algorithm to lower the Wi-Fi

transmission rate [74]. Therefore, coexistence methodologies using the LBT

feature, also known as licensed-assisted access (LAA), have been considered

in [55, 66–68, 70–72]. With the adoption of LBT at each LTE Evolved Node

B (eNB), [55, 67, 68] show that LTE can deliver significant throughput while

maintaining fair coexistence with Wi-Fi. In [66], a random backoff mechanism

with fixed contention window size is proposed in addition to LBT. The LAA

operation of LTE in unlicensed spectrum is also investigated in [70], which

shows that the load-based LBT protocol of LAA with a backoff defer period

can achieve fair coexistence between LAA and Wi-Fi. By leverageing LTE and

WiFi antennas available on smartphones, a coexistence approach has been pro-

posed and implemented by USRP in [75], which enables LTE and Wi-Fi to

transmit simultaneously and decode the interfering signals successfully.

Despite system level simulation has been widely adopted to study the

coexistence issues of cellular (i.e., LTE) and Wi-Fi, it is usually very time-

consuming due to the complicated dynamics of the overlaid LTE and Wi-Fi

networks. Therefore, a mathematical approach would be helpful for more

efficient performance evaluation and transparent comparisons of various tech-
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niques. A fluid network model is used in [76] to analyze the coexistence perfor-

mance when LTE has no protocol modifications. However, the fluid network

model is limited to the analysis of deterministic networks, which do not cap-

ture the multi-path fading effects and random backoff mechanism of Wi-Fi.

A centralized optimization framework is proposed in [77] to optimize the ag-

gregate throughput of LTE and Wi-Fi. However, the analysis of [77] is based

on Bianchi’s model for CSMA/CA [78], which relies on the idealized assump-

tion that the collision probability of the contending APs is “constant and

independent”. Game theory has also been utilized to analyze the coexistence

performance of LTE and Wi-Fi [79], and multiple operators coexisting in the

unlicensed spectrum [80].

Fundamental understandings for the effects of various coexistence meth-

ods under dense cellular and Wi-Fi deployment scenarios are relatively rare.

Due to its tractability for cellular and Wi-Fi networks, stochastic geometry

is a natural candidate for analyzing cellular and Wi-Fi coexistence perfor-

mance. Specifically, the key performance metrics of cellular/Wi-Fi networks

can be derived by modeling the locations of base stations/access points (APs)

as a realization of certain spatial random point processes. A modified Matérn

hard-core point process, which gives a snapshot view of the simultaneous trans-

mitting CSMA/CA nodes, has been proposed and validated in [81] for dense

802.11 networks. This Matérn CSMA model is also used for analyzing other

CSMA/CA based networks, such as ad-hoc CSMA/CA networks with power

control [82], ad-hoc networks with channel-aware CSMA/CA protocols [83],
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CSMA/CA networks with controlled network topology (i.e., non-Poisson) [84],

and cognitive radio networks [85].

Due to its tractability for cellular and Wi-Fi networks, stochastic ge-

ometry is a natural candidate for analyzing cellular and Wi-Fi coexistence

performance. In [86], the coverage and throughput performance of coexisting

cellular and Wi-Fi networks were derived using stochastic geometry. However,

the analytical Wi-Fi throughput in [86] does not closely match the simulation

results. Also, the effect of possible cellular coexistence methods, including dis-

continuous transmission and LBT with random backoff, were not investigated

in [86].

3.2 Contributions

In this chapter, we develop an analytical framework to model various

cellular and Wi-Fi coexistence scenarios using stochastic geometry, based on

which key performance metrics for cellular and Wi-Fi networks can be quan-

tified. Specifically, three coexistence scenarios are studied depending on the

mechanism adopted by cellular network, including: (1) cellular with continuous

transmission and no protocol changes; (2) cellular with fixed duty-cycling dis-

continuous transmission; and (3) cellular with LBT and random backoff (BO)

mechanism. Several key performance metrics, including the medium access

probability (MAP), the SINR coverage probability, the density of successful

transmission (DST), and the rate coverage probability are derived under each

scenario. The accuracy of the analytical results is validated against simula-
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tion results using SINR coverage probability. The main design insights of this

chapter can be summarized as follows:

• Compared to the baseline scenario where the Wi-Fi network coexists with an

additional Wi-Fi network from another operator, the SINR coverage prob-

ability, DST, and rate coverage probability of Wi-Fi are severely degraded

when cellular BSs transmit persistently. In contrast, cellular network per-

formance is shown to be relatively robust to Wi-Fi’s presence.

• When the cellular network transmits discontinuously with a fixed duty cycle,

Wi-Fi generally has better DST and rate coverage under a synchronous

muting pattern among BSs compared to the asynchronous one; and a short

duty cycle for cellular transmission is required to protect Wi-Fi.

• When the cellular network follows the LBT and random BO mechanism, Wi-

Fi can achieve better DST and rate coverage performance compared to the

baseline scenario if cellular BSs accept either lower channel access priority

or more sensitive CCA threshold to protect Wi-Fi. Under both scenarios,

cellular network is shown to maintain acceptable rate coverage performance

despite using LBT and random BO.

Overall, this chapter provides a flexible stochastic geometry framework for

cellular and Wi-Fi coexistence, which validates and complements the system

level simulation studies of standardization efforts such as LTE-U forum [87]

and 3GPP [56].
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3.3 System Model

In this section, we present the spatial location model for Wi-Fi APs

and cellular BSs, the radio propagation assumptions, and the channel access

model for Wi-Fi and cellular.

3.3.1 Spatial locations

We focus on the scenario where two operators coexist in a single un-

licensed frequency band with bandwidth B. Operator 1 uses Wi-Fi, while

operator 2 uses cellular (e.g. LTE), which may implement certain coexis-

tence methods to better coexist with operator 1. Both Wi-Fi and cellular

are assumed to have full buffer downlink only traffic. Cellular in unlicensed

spectrum is mainly designed for femto cellular networks, wherein the small cell

BSs are deployed more randomly than the macro BSs [54,56,58,88]. Similarly,

most Wi-Fi AP deployments typically have unplanned nature. Therefore, the

locations for APs and BSs are modeled as realizations of two independent

homogeneous PPPs. Specifically, the AP process ΦW = {xi}i has intensity

λW
2, while the cellular BS process ΦL = {yk}k has intensity λL. As a result,

the numbers of APs and BSs in any region with area A are two independent

Poisson random variables with mean λWA and λLA respectively (resp.).

Both Wi-Fi stations (STAs) and cellular user equipments (UEs)3 are

2Note in any given time slot, not all Wi-Fi APs will be necessarily scheduled by
CSMA/CA.

3Wi-Fi STA and Wi-Fi users, as well as LTE UE and LTE users, are used interchangeably
in this chapter.
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also assumed to be distributed according to homogeneous PPPs. Each STA/UE

is associated with its closest AP/BS, which provides the strongest average re-

ceived power. We assume the STA/UE intensity is much larger than the

AP/BS intensity, such that each AP/BS has at least one STA/UE to serve.

Since both STAs and UEs are homogeneous PPPs, we can analyze the per-

formance of the typical STA/UE, which is assumed to be located at the ori-

gin. This is guaranteed by the independence assumption and Slyvniak’s the-

orem [44], which states that for any event A and PPP Φ, P(Φ ∈ A|o ∈ Φ) =

P(Φ∪{o} ∈ A). Index 0 is used for the serving AP/BS to the typical STA/UE,

which will be referred to as the closest or tagged AP/BS for the rest of the

chapter. In addition, the link between the typical STA/UE and the tagged

AP/BS is referred to as the typical Wi-Fi/cellular link. Since ΦW is a PPP

with intensity λW , the probability density function (PDF) of the distance from

the typical STA to the tagged AP is fW (r) = λW2πr exp(−λWπr2). Similarly,

the PDF from the typical UE to the tagged BS is fL(r) = λL2πr exp(−λLπr2).

3.3.2 Propagation Assumptions

The transmit power for each AP and BS is assumed to be PW and

respectively PL. A common free space path loss model with reference distance

of 1 meter is used for both Wi-Fi and cellular links, which is given by l(d) =

20 log10(4π
λc

) + 10α log10(d) dB. Here λc denotes the wavelength, α denotes the

path loss exponent, and d denotes the link length. The large-scale shadowing

effects are neglected for simplicity. All the channels are assumed to be subject
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Table 3.1: Notation and Simulation Parameters

Symbol Definition Simulation Value
ΦW , λW Wi-Fi AP PPP and intensity
ΦL, λL Cellular BS PPP and intensity
PW , PL Wi-Fi AP, cellular BS transmit

power
23 dBm, 23 dBm

Γcs, Γed Carrier sensing and energy detection
thresholds

-82 dBm, -62 dBm

eWi , eLk Medium access indicator for AP xi,
BS yk

x0, y0 The tagged AP and tagged BS (i.e.,
the AP and BS closest to the typical
STA and UE resp.)

fW (r), fL(r) PDF of the distance from tagged
AP/BS to typical STA/UE

fc, B Carrier frequency and bandwidth of
the unlicensed band

5 GHz, 20 MHz

α Path loss exponent 4
σ2
N Noise power 0

to i.i.d. Rayleigh fading, with each fading variable exponentially distributed

with parameter µ. The thermal noise power is σ2
N . Notation and system

parameters are listed in Table 5.1.

3.3.3 Modeling Channel Access for Wi-Fi

In contrast to cellular which is a centrally-scheduled system, Wi-Fi im-

plements the distributed CSMA/CA protocol for channel access coordination

among multiple APs. The CSMA/CA protocol consists of the physical layer

clear channel assessment (CCA) process and a random backoff mechanism,

such that two nearby nodes will never transmit simultaneously. In particular,

73



the Wi-Fi device will hold CCA as busy if any valid Wi-Fi signal that exceeds

the carrier sense (CS) threshold Γcs is detected, or if any signal that exceeds the

energy detection threshold (ED) Γed is received [9]. Similar to [76], we assume

Wi-Fi devices detect the BS transmission with the energy detection threshold

Γed since the cellular signal is not decodable. As soon as a CSMA/CA device

observes an idle channel, it needs to follow a random back-off period before

transmission. This back-off period is chosen randomly from a set of possible

values called the contention window.

To model the locations of Wi-Fi APs which simultaneously access the

channel at a given time, we adapt the formulation of [81] to account for the

coexisting cellular network. We can define the contender of a Wi-Fi AP xi as

the other Wi-Fi APs and the LTE BSs whose power received by xi exceeds the

threshold Γcs and Γed respectively. Each Wi-Fi AP xi has an independent mark

tWi to represent the random back-off period, which is uniformly distributed

on [0, 1]. Each Wi-Fi AP obtains channel access for packet transmission if it

chooses a smaller timer, i.e., back-off period, than all its contenders. A medium

access indicator eWi is assigned to each AP, which is equal to 1 if the AP is

allowed to transmit by the CSMA/CA protocol, and 0 otherwise. Depending

on the specific coexistence mechanism of cellular network, the medium access

indicator for each AP is determined differently. The Palm probability [44,

p.131] that the medium access indicator of a Wi-Fi AP is equal to 1 is referred

to as the medium access probability, or MAP for short.

The considered channel access mechanism has some limitations, such as
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it has a fixed contention window size which does not capture the exponential

backoff, and it is also more suitable for synchronized and slotted version of

CSMA/CA. Nevertheless, it is able to model the key feature of CSMA/CA

in IEEE 802.11 standard [9], such that each CSMA/CA device transmits if

it does not carrier sense any other CSMA/CA device with a smaller back-

off timer. In addition, through comparisons with simulation results, [81, 89]

show this simplified model provides a reasonable conservative representation

of transmitting APs in the actual CSMA/CA networks.

3.3.4 Definition of Performance Metrics

The main performance metrics that are analyzed include the MAP of

the tagged AP and BS, as well as the SINR coverage probability for the typical

STA and UE. Specifically, given the tagged AP x0 transmits (i.e., eW0 = 1),

the received SINR of the typical Wi-Fi STA is:

SINRW
0 =

PWF
W
0,0/l(‖x0‖)∑

xj∈ΦW \{x0}
PWFW

j,0e
W
j /l(‖xj‖) +

∑
ym∈ΦL

PLFLW
m,0 e

L
m/l(‖ym‖) + σ2

N

, (3.1)

where eWj and eLm represent the medium access indicator for AP xj and BS ym

respectively. The SINR coverage probability of the typical STA with SINR

threshold T is defined as P(SINRW
0 > T |eW0 = 1), which gives the instan-

taneous SINR performance of the typical Wi-Fi link. Equivalently, this can

also be interpreted as the fraction of Wi-Fi links that achieve the SINR level

T . Similarly, the received SINR of the typical UE given the tagged BS y0
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transmits is:

SINRL
0 =

PLF
L
0,0/l(‖y0‖)∑

xj∈ΦW

PWFWL
j,0 eWj /l(‖xj‖) +

∑
ym∈ΦL\{y0}

PLFL
m,0e

L
m/l(‖yj‖) + σ2

N

, (3.2)

and the SINR coverage probability is P(SINRL
0 > T |eL0 = 1).

Based on the MAP and the SINR distribution, we will compare different

cellular coexistence mechanisms using the density of successful transmission

and the rate coverage probability, which are defined as follows.

Definition 3.3.1 (Density of Successful Transmissions). For decoding SINR

requirement T , the density of successful transmission, or DST for short, is

defined as the mean number of successful transmission links per unit area [90].

Since the typical Wi-Fi/cellular link is activated only when the tagged AP/BS

accesses the channel, the DST for Wi-Fi and cellular are given by:

dWsuc(λW , λL, T ) = λWE[eW0 ]P(SINRW
0 > T |eW0 = 1),

dLsuc(λW , λL, T ) = λLE[eL0 ]P(SINRL
0 > T |eL0 = 1). (3.3)

Definition 3.3.2 (Rate coverage). The rate coverage probability with thresh-

old ρ is defined as the probability for the tagged Wi-Fi AP/cellular BS to

support an aggregate data rate of ρ, given by4:

PW
rate(λW , λL, ρ) = P(B log(1 + SINRW

0 )E[eW0 ] > ρ|eW0 = 1),

PL
rate(λW , λL, ρ) = P(B log(1 + SINRL

0 )E[eL0 ] > ρ|eL0 = 1). (3.4)

4The user-perceived data rate distribution can be obtained from (3.4) by considering the
average fraction of resource that each user achieves.
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The terms E[eW0 ] and E[eL0 ] in (3.4) account for the fact that the tagged

AP and tagged BS have channel access for E[eW0 ] and E[eL0 ] fraction of time

respectively. Equivalently, the rate coverage probability gives the fraction of

Wi-Fi APs/cellular BSs that can support an aggregate data rate of ρ for the

rest of the chapter.

Remark 3.3.1. Since both ΦW and ΦL are stationary and isotropic, the above

performance metrics are invariant with respect to (w.r.t.) the angle of the

tagged AP x0 and tagged BS y0. Without loss of generality, the angle of x0

and y0 are assumed to be 0. In addition, the PDF of ‖x0‖ and ‖y0‖ are given

by fW (·) and fL(·) respectively, which are defined in Table 5.1.

Finally, we define several functions that will be used throughout this

chapter in Table II. Specifically, NL
0 (y, r,Γ) and NW

0 (y, r,Γ) represent the

expected number of BSs and APs respectively in R2 \ B(0, r), whose sig-

nal power received at y ∈ R2 exceeds Γ. In addition, CL
0 (y1,Γ1, y2,Γ2) and

CW
0 (y1,Γ1, y2,Γ2) represent the expected number of BSs and APs respectively

in R2 \ B(0, ‖y2‖), whose signal powers received at y1 ∈ R2 and y2 ∈ R2 ex-

ceed Γ1 and Γ2 respectively. Moreover, M , V and U are functions helping to

calculate the conditional MAP in the following sections.

3.4 Cellular with Continuous Transmission and No Pro-
tocol Change

In this section, the MAP and SINR coverage performance for the cel-

lular and Wi-Fi networks are investigated when cellular BSs transmit contin-
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Table 3.2: Notations and Definitions of Special Functions

Notation Definition
NL

0 (y, r,Γ) λL
∫
R2\B(0,r) exp(−µ Γ

PL
l(‖x− y‖))dx

NW
0 (y, r,Γ) λW

∫
R2\B(0,r) exp(−µ Γ

PW
l(‖x− y‖))dx

NL
1 (r,Γ), NW

1 (r,Γ) NL
0 (y, r,Γ), NW

0 (y, r,Γ) (polar coordinates of y = (r, 0))

NL
2 (r), NW

2 (r) NL
0 (y, r,Γed), N

W
0 (y, r,Γcs) (polar coordinates of y = (r, 0))

NL
3 (Γ), NW

3 (Γ) NL
0 (o, 0,Γ), NW

0 (o, 0,Γ)

NL, NW NL
0 (o, 0,Γed), N

W
0 (o, 0,Γcs)

CL0 (y1,Γ1, y2,Γ2) λL
∫
R2\B(0,‖y2‖) exp(−µ Γ1

PL
l(‖x− y1‖)− µ Γ2

PL
l(‖x− y2‖))dx

CW0 (y1,Γ1, y2,Γ2) λW
∫
R2\B(0,‖y2‖) exp(−µ Γ1

PW
l(‖x− y1‖)−µ Γ2

PW
l(‖x− y2‖))dx

CL1 (y1, y2), CW1 (y1, y2) CL0 (y1,Γed, y2,Γed), C
W
0 (y1,Γcs, y2,Γcs)

CL2 (y1), CW2 (y1) CL0 (y1,Γed, o,Γed), C
W
0 (y1, ,Γcs, o,Γcs)

M(N1, N2, N3) (1−exp(−N1)
N1

− 1−exp(−N1−N2+N3)
N1+N2−N3

)/(N2 −N3)

V (x, s1, s2, N1, N2, N3) (1 − exp(−µs1l(‖x‖)))M(N1, N2, N3) + (1 −
exp(−µs2l(‖x‖)))M(N2, N1, N3)

U(x, s,N1) 1−exp(−N1)
N1

− exp(−µsl(‖x‖))(1−exp(−N1)
N2

1
− exp(−N1)

N1
)

uously without any protocol modifications.

3.4.1 Medium Access Probability

From the CSMA/CA protocol described in Section II-C, a Wi-Fi AP

will not transmit whenever it has an cellular BS as its contender, i.e., the

power it receives from any cellular BS exceeds the energy detection threshold

Γed. Therefore, the medium access indicator eWi for AP xi is:

eWi =
∏
yk∈ΦL

1
GLWki /l(‖yk−xi‖)≤

Γed
PL

∏
xj∈ΦW \{xi}

(
1tWj ≥tWi + 1tWj <tWi

1GWji /l(‖xj−xi‖)≤
Γcs
PW

)
.

(3.5)

The first part of (3.5) means each Wi-Fi AP will not transmit whenever it has

any cellular contender, while the second part of (3.5) means each Wi-Fi AP
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Figure 3.1: Empirical CDF of total cellular interference and strongest cellular
interferer at a typical AP.

will not transmit whenever any of its Wi-Fi contenders has a smaller back-off

timer.

Remark 3.4.1. Although (3.5) is consistent with IEEE 802.11 specifications [9],

energy detection is typically implemented based on total interference [56],

i.e., each AP will report channel as busy if the total (non Wi-Fi) interfer-

ence exceeds the energy detection threshold Γed. Nevertheless, under the as-

sumption that BSs/APs have a PPP distribution, (3.5) is a reasonable model

for the total interference based energy detection since: (1) the tail distribu-

tion of the total interference asymptotically approaches that of the interfer-

ence from the strongest interferer [91]; (2) ED threshold Γed is 20 dB higher

than the CS threshold Γcs, which makes Γed a relatively large number; (3)

simulation results in Fig. 3.1 show that given Γed = −62dBm and AP xi,

P(
∑

yk∈ΦL

PLG
LW
ki

l(‖yk−xi‖)
≤ Γed) ≈ P(maxyk∈ΦL

PLG
LW
ki

l(‖yk−xi‖)
≤ Γed) for various values

of α and λL; and (4) there is no known closed-form interference distribution

with PPP distributed transmitters [91].
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Lemma 3.4.1. When cellular transmits continuously with no protocol modi-

fications, the MAP for a typical Wi-Fi AP is given by:

pW0,MAP(λW , λL) = exp(−NL)
1− exp(−NW )

NW
, (3.6)

where NL and NW are defined in Table 3.2.

Proof. Please see Appendix 3.9.1.

Remark 3.4.2. By the addition of the cellular network with intensity λL, the

MAP for a typical AP is degraded by exp(−NL) compared to the Wi-Fi only

scenario. Note that the decrease is exponential w.r.t. λL, the cellular BS

intensity.

Based on the system parameters listed in Table 5.1, the MAP for the

typical Wi-Fi AP is plotted in Fig. 3.2 w.r.t. different AP and BS intensities.

From Fig. 3.2, it can be observed that with low cellular BS intensity (e.g.

cellular BS intensity is less than 100/km2), the MAP for the typical Wi-Fi AP

is not much affected by the additional cellular network as a result of the high

energy detection threshold for cellular signals. However, when the cellular BS

intensity increases to over 100/km2, the additional BSs significantly degrade

the MAP of the typical Wi-Fi AP.

Since the tagged AP is closer to the typical STA than other APs, the

MAP of the tagged AP will be a biased version for the MAP of typical AP:
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Figure 3.2: Effect of AP and BS intensities on the MAP for the typical Wi-Fi
AP.

Corollary 3.4.2. When cellular transmits continuously with no protocol mod-

ifications, the MAP for the tagged Wi-Fi AP is given by:

p̂W0,MAP(λW , λL) =

∫ ∞
0

1− exp(−NW
2 (r0))

NW
2 (r0)

exp(−NL)fW (r0)dr0, (3.7)

where fW is defined in Table 5.1, while NL and NW
2 are defined in Table 3.2.

Proof. The proof is provided in Appendix 3.9.2.

3.4.2 SINR Coverage Probability

3.4.2.1 SINR Coverage Probability of Typical Wi-Fi STA

Since cellular BSs transmit continuously with no protocol modifica-

tions, the medium access indicator for each cellular BS is 1 almost surely. The

medium access indicator eWj in (3.5) depends on both ΦL and ΦW . So there

exists a correlation between the interference from cellular BSs and that from

the Wi-Fi APs. Later we will show that if we substitute ΦL by another inde-

pendent PPP Φ
′
L with intensity λL in (3.5), the corresponding SINR coverage

81



is an accurate approximation. This means the correlation between the inter-

ference from BSs and APs is mostly captured by the statistical effect of ΦL on

determining the MAP for Wi-Fi APs. Given the tagged AP is located at x0,

we first derive the conditional MAP for another Wi-Fi AP and x0 to transmit

simultaneously.

Corollary 3.4.3. Conditionally on the fact that the tagged AP x0 = (r0, 0)

transmits, the probability for another AP x ∈ ΦW ∩Bc(0, r0) to transmit is:

h1(r0, x) =
V (x− x0,

Γcs
PW
, Γcs
PW
, NW

2 (r0), NW
0 (x, r0,Γcs), C

W
1 (x, x0))

U(x− x0,
Γcs
PW
, NW

2 (r0)) exp(NL − CL
2 (x− x0))

, (3.8)

where Bc(0, r0) is defined in Table 5.1.

Proof. The proof is provided in Appendix 3.9.3.

Then the SINR coverage performance of the typical STA, denoted by

pW0 (T, λW , λL), is obtained as follows:

Lemma 3.4.4. The SINR coverage probability of the typical Wi-Fi STA with

the SINR threshold T can be approximated as:

pW0 (T, λW , λL) ≈
∫ ∞

0

exp

(
−µT l(r0)

σ2
N

PW

)
exp

(
−
∫
R2

T l(r0)λL
PW
PL

l(‖x‖) + T l(r0)
dx

)
× exp

(
−
∫
R2\B(0,r0)

T l(r0)λWh1(r0, x)

l(‖x‖) + T l(r0)
dx

)
fW (r0)dr0. (3.9)

Proof. The proof is provided in Appendix 3.9.4.
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Figure 3.3: SINR coverage for the typical Wi-Fi STA.

Remark 3.4.3. For the rest of this chapter, given the tagged AP or tagged BS

located at (r0, 0) transmits, we use the term “non-homogeneous PPP approxi-

mation” to refer to the process of approximating Wi-Fi/cellular interferers as a

non-homogeneous PPP with intensity λWh(r0, x)/λLh(r0, x), where h denotes

the conditional MAP of the AP/BS located at x. The non-homogeneous PPP

approximation models the dependencies of cellular/Wi-Fi interferers on the

tagged BS/AP, but neglects the correlations among the cellular/Wi-Fi inter-

ferers. The accuracy of non-homogeneous PPP approximation has been well

validated for standalone CSMA/CA networks [81–85, 90], and it will be used

in this chapter to derive the SINR distribution for the coexisting cellular and

Wi-Fi networks.

Based on the parameters in Table 5.1, Fig. 3.3 gives the SINR coverage

performance of the typical Wi-Fi STA. The simulation results are obtained

from the following procedure. First, 50 realizations for BS PPP and 50 real-

izations for AP PPP are generated in an 1 km × 1 km area, which results in
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a total of 2500 combinations of the BS and AP processes. For each combina-

tion, we determine the medium access indicator at each AP according to (3.5).

In addition, 50 uniformly chosen locations for the typical STA are generated,

and we evaluate the received SINR at each STA location if the serving AP

transmits. Finally, the SINR coverage probability is obtained as the fraction

of STAs whose received SINR exceeds the threshold T .

It can be observed from Fig. 3.3 that Lemma 3.4.4 provides an accu-

rate estimate of the actual SINR coverage. When λL = 0, Wi-Fi achieves good

SINR performance due to the carrier sensing for Wi-Fi interferers. However,

when coexisting with cellular, the additional interference contributed by the

consistently transmitting BSs significantly impacts the SINR coverage of the

typical Wi-Fi STA. The smaller the AP intensity λW , the more significant the

cellular interference, which will lead to worse Wi-Fi SINR coverage perfor-

mance. In Fig. 3.3, given λL, the Wi-Fi SINR coverage for λW = 200 is worse

than the case when λW = 400.

3.4.2.2 SINR Coverage Probability of Typical UE

The SINR coverage probability of the typical UE, which is denoted by

pL0 (T, λW , λL), is given in the following lemma:

Lemma 3.4.5. The SINR coverage probability for a typical cellular UE with

SINR threshold T can be approximated by:

pL0 (T, λW , λL)
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Figure 3.4: SINR coverage for the typical cellular UE.

≈
∫ ∞

0

exp

(
−µT l(r0)

σ2
N

PL

)
exp

(
−
∫
R2\B(0,r0)

TλLl(r0)dy

T l(r0) + l(‖y‖)

)
× exp

(
−
∫
R2

T l(r0)λWh
W
1 (r0, x)

T l(r0) + PL
PW

l(‖x‖)

)
fL(r0)dr0 (3.10)

where hW1 (r0, x) = 1−exp(−NW )
NW exp(−NL

0 (x, r0,Γed))(1−exp(−µΓed
PL

l(‖y0−x‖)))

denotes the conditional MAP for AP x given the tagged BS y0 = (r0, 0) trans-

mits.

Proof. Please see Appendix 3.9.5.

Remark 3.4.4. The first two terms in (3.10) come from the thermal noise and

the BS interferers respectively, which give the same result as Theorem 2 in [2].

In contrast, the effect of coexisting transmitting Wi-Fi APs is reflected in the

third term, which decreases by increasing the Wi-Fi AP intensity λW or the

energy detection threshold Γed.

The SINR coverage for the typical cellular UE is evaluated using both

the simulation and analytical results of Lemma 3.4.5. It is given in Fig. 3.4.
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The SINR coverage performance when λW = 0 is independent of the BS in-

tensity under Rayleigh fading channels for negligible thermal noise power [2].

From Fig. 3.4, the accuracy of Lemma 3.4.5 can be validated. In addition,

it can be observed that the typical cellular UE achieves better SINR cover-

age when increasing the BS intensity λL or decreasing the AP intensity λW ,

with the SINR coverage for λW = 0 as an upper bound. In particular, when

λL = λW , the MAP for each Wi-Fi AP becomes smaller by increasing λL, and

therefore a better SINR coverage can be achieved by the cellular UE when λL

is larger. Overall, it can be observed from Fig. 3.4 that unless λL � λW , the

typical cellular UE achieves reasonable SINR performance compared to the

case when λW = 0, which demonstrates the robustness of the cellular system

to the coexisting Wi-Fi system.

Therefore, when cellular coexists with Wi-Fi without any protocol

changes, cellular is able to maintain good SINR coverage performance, while

Wi-Fi experiences drastically degraded SINR coverage. This imbalanced per-

formance means some fair coexistence methods have to be implemented by

cellular in order to guarantee a reasonable performance for Wi-Fi network.

The DST and rate coverage performance for cellular and Wi-Fi can be derived

directly from Corollary 3.4.2, Lemma 3.4.4 and Lemma 3.4.5. The detailed

discussions are provided in Section 3.7.

Finally, although we consider a downlink only scenario for Wi-Fi, simi-

lar techniques can be used to derive the MAP and SINR coverage performance

when Wi-Fi uplink traffic also exists. Since STAs will apply the same channel
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access mechanism as APs, the medium access indicator for each AP and STA

will account for both the contending APs and STAs. The detailed performance

analysis when Wi-Fi uplink traffic exists is left to future work.

3.5 Cellular with Discontinuous Transmission

A straightforward scheme to guarantee the fair-coexistence between Wi-

Fi and cellular is to let cellular adopt a discontinuous, duty-cycle transmission

pattern, which is also know as LTE-U [73, 87]. Specifically, within a fixed

transmission interval, cellular network transmits for a fraction η of time (0 ≤

η ≤ 1), and is muted for the complementary 1-η fraction.

The cellular transmission duy cycle η can be fixed or adaptively ad-

justed based on Wi-Fi medium utilization [73]. Generally, η needs to be chosen

in such a way that cellular shall not impact Wi-Fi more than an additional

Wi-Fi network w.r.t. SINR coverage probability, rate coverage, etc. We con-

sider a static muting pattern for cellular, where all the BSs follow the same

muting pattern either synchronously or asynchronously. If the BSs are muted

synchronously, they transmit and mute at the same time. If the BSs are

muted asynchronously, the neighboring BSs could adopt a shifted version of

the muting pattern [66]. For simplicity, we assume each BS is transmitting

with probability η at a given time under the asynchronous scheme. In the rest

of this section, the time-averaged DST and rate coverage performance when

cellular transmits discontinuously are derived.
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3.5.1 Cellular Network with Synchronous Discontinuous Transmis-
sion Pattern

In this case, since all BSs transmit and mute at the same time, the

MAP for the tagged Wi-Fi AP during cellular “On” and “Off” period are

p̂W0,MAP (λW , λL) and p̂W0,MAP (λW , 0) respectively, where p̂W0,MAP is given in (3.7).

Similarly, the SINR coverage probability of the typical Wi-Fi STA (resp.

cellular UE) with threshold T is pW0 (T, λW , λL) (resp. pL0 (T, λW , λL)) and

pW0 (T, λW , 0) (resp. 0) during cellular “On” and “Off” period respectively,

where pW0 and pL0 are provided in Lemma 3.4.4 and Lemma 3.4.5. Define the

time-averaged DST with SINR threshold T as the time-averaged fraction of

links that can support SINR level T .

Lemma 3.5.1. When cellular network adopts a synchronous discontinuous

transmission pattern with duty cycle η, the time-averaged DST with threshold

T for the Wi-Fi and cellular network are given by:

dW1,suc(λW , λL, T, η) = ηλW p̂
W
0,MAP (λW , λL)pW0 (T, λW , λL)

+ (1− η)λW p̂
W
0,MAP (λW , 0)pW0 (T, λW , 0),

dL1,suc(λW , λL, T, η) = ηλLp
L
0 (T, λW , λL), (3.11)

respectively.

Since cellular transmits for η fraction of time and silences for 1 − η

fraction time, Lemma 3.5.1 can be obtained directly from Definition 3.3.1.

The time-averaged rate coverage probability with threshold ρ is defined

as the time-averaged fraction of BSs/APs that can support an aggregate data

88



rate of ρ. Since each cellular BS transmits for η fraction of time, we treat the

MAP of the tagged BS as η in (3.4).

Lemma 3.5.2. When cellular network adopts a synchronous discontinuous

transmission pattern with duty cycle η, the time-averaged rate coverage prob-

ability with rate threshold ρ for Wi-Fi and cellular are given by:

PW
1,rate(λW , λL, ρ, η) =ηpW0 (2

ρ

Bp̂W
0,MAP

(λW ,λL) − 1, λW , λL)

+ (1− η)pW0 (2
ρ

Bp̂W
0,MAP

(λW ,0) − 1, λW , 0),

PL
1,rate(λW , λL, ρ, η) =pL0 (2

ρ
Bη − 1, λW , λL), (3.12)

respectively.

Proof. Please see Appendix 3.9.6.

It is straightforward from (3.11) and (3.12) that better DST and rate

coverage can be achieved by Wi-Fi when η decreases. By contrast, since

pL0 (T, λW , λL) is a decreasing function w.r.t. the SINR threshold T , cellular

achieves better DST and rate coverage when η increases.

3.5.2 Cellular Network with Asynchronous Discontinuous Trans-
mission Pattern

Since each BS transmits independently with probability η at a given

time, the BSs contributing to the interference of Wi-Fi form a PPP with

intensity ηλL. Therefore, the MAP for the tagged AP is p̂W0,MAP(λW , ηλL), and

the SINR coverage probability with threshold T for the typical Wi-Fi station
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is pW0 (T, λW , ηλL). Correspondingly, the time-averaged DST of Wi-Fi is given

by:

dW2,suc(λW , λL, T, η) = λW p̂
W
0,MAP (λW , ηλL)pW0 (T, λW , ηλL), (3.13)

and the time-averaged rate coverage probability of Wi-Fi is given by:

PW
2,rate(λW , λL, ρ, η) = pW0 (2

ρ

Bp̂W
0,MAP

(λW ,ηλL) − 1, λW , ηλL). (3.14)

According to (3.13) and (3.14), Wi-Fi achieves better DST and rate coverage

when η decreases.

For cellular network, during the η fraction of time that the tagged BS

transmits, the interfering BSs form a PPP with intensity ηλL. Thus, the

time-averaged DST of cellular is given by:

dL2,suc(λW , λL, T, η) = λLη

∫ ∞
0

pL0 (r0, T, λW , ηλL)2πλLr0 exp(−λLπr2
0)dr0,

(3.15)

and the time-averaged rate coverage probability is given by:

PL
2,rate(λW , λL, ρ, η) =

∫ ∞
0

pL0 (r0, 2
ρ
Bη − 1, λW , ηλL)2πλLr0 exp(−λLπr2

0)dr0,

(3.16)

where pL0 (r0, T, λW , λL) is derived in Lemma 3.4.5.

3.5.3 Comparison of Synchronous and Asynchronous Muting Pat-
terns

Fig. 3.5 and Fig. 3.6 show the analytical time-averaged DST and rate

coverage performance when λW = 400 APs/km2 and λL = 400 BSs/km2. In
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Figure 3.5: DST comparison.

terms of Wi-Fi DST and rate coverage performance, the synchronous cellular

muting pattern generally outperforms the asynchronous one. This is due to

fact that when all cellular BSs are muted, Wi-Fi APs observe a much cleaner

channel and therefore benefit more compared to the asynchronous scheme.

Since cellular interferers form an independent thinning of the BS process un-

der the asynchronous muting pattern, the latter outperforms the synchronous

pattern in terms of DST and rate coverage. In addition, Fig. 3.5 and Fig. 3.6

also indicate that cellular needs to adopt a short transmission duty cycle η

(e.g., less than 50%) to protect Wi-Fi. However, cellular is also more sensitive

to the transmission duty cycle compared to Wi-Fi, which means that a very

small η leads to much degraded performance of cellular. Therefore, a syn-

chronous muting pattern with a reasonably short cellular transmission duty

cycle (e.g., within 33.3% to 50%) is suggested to best protect Wi-Fi.
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Figure 3.6: Rate coverage comparison.

3.6 Cellular with Listen-before-talk and Random Back-
off

Besides cellular with discontinuous transmission, another fair coexis-

tence method is to let cellular implement the listen-before-talk (LBT) and

random backoff (BO) mechanism similar to Wi-Fi. This is also known as the

licensed assisted access (LAA), which is proposed by 3GPP as a global solu-

tion to guarantee fair coexistence between cellular and Wi-Fi. Specifically, we

consider each BS implements carrier sense mechanism to detect strong inter-

fering cellular and Wi-Fi neighbors with a common threshold ΓL. In addition,

each BS implements a random back off timer, which is uniformly distributed

between a and b. The value of (a, b) determines how aggressively cellular BSs

access the channel. The medium access indicators for AP xi and BS yk are

given as follows:

eWi =
∏

xj∈ΦW \{xi}

(
1tWj ≥tWi + 1tWj <tWi

1 GW
ji

l(‖xj−xi‖)
≤ Γcs
PW

)∏
ym∈ΦL

(
1tLm≥tWi + 1tLm<t

W
i
1 GLW

mi
l(‖ym−xi‖)

≤Γed
PL

)
,
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eLk =
∏

xj∈ΦW

(
1tWj ≥tLk

+ 1tWj <tLk
1 GWL

jk
l(‖yk−xj‖)

≤ ΓL

PW

) ∏
ym∈ΦL\{yk}

(
1tLm≥tLk

+ 1tLm<t
L
k
1 GL

mk
l(‖ym−yk‖)

≤ΓL

PL

)
.

(3.17)

The expression for eWi means AP xi does not transmit whenever the power

it receives from any AP or BS with a smaller back-off timer exceeds Γcs or

Γed; while the expression for eLk means BS yk does not transmit whenever the

power it receives from any AP or BS with a smaller back-off timer exceeds

ΓL. By implementing the LBT and random BO scheme, cellular has some

flexibility in choosing the sensing threshold (i.e., ΓL), and the channel access

priority (i.e., (a, b)) to better coexist with Wi-Fi. In particular, two channel

access priority scenarios of cellular are considered, namely when cellular has

the same channel access priority as Wi-Fi, and when cellular has the lower

channel access priority than Wi-Fi. These two scenarios correspond to the

cases when (a, b) = (0, 1) and (a, b) = (1, 2), which are analyzed in the rest of

the section.

3.6.1 Cellular with Same Channel Access Priority as Wi-Fi when
(a, b) = (0, 1)

In this case, cellular network has the same channel access priority as

Wi-Fi in terms of the random backoff procedure. In addition, the sensitivity

of cellular to interfering signals is controlled by the threshold ΓL. A more

sensitive ΓL provides a better protection to Wi-Fi, and vice versa. The MAP

for a typical AP and BS can be easily derived from (3.17):

Lemma 3.6.1. When cellular follows the LBT and random BO mechanism
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with (a, b) = (0, 1), the MAPs for typical AP and BS, denoted by pW3,MAP and

pL3,MAP respectively, are given by:

pW3,MAP(λW , λL) =
1− exp(−NW −NL)

NW +NL
,

pL3,MAP(λW , λL) =
1− exp(−NW

3 (ΓL)−NL
3 (ΓL))

NW
3 (ΓL) +NL

3 (ΓL)
,

where NW , NL, NW
3 (ΓL) and NL

3 (ΓL) are defined in Table 3.2.

Lemma 3.6.1 can be proved similarly to Lemma 3.4.1; thus the detailed

proof is omitted.

Remark 3.6.1. Lemma 3.6.1 shows that 1
1+NW+NL ≤ pW3,MAP(λW , λL) < 1

NW+NL .

Therefore, the MAP for the typical Wi-Fi AP is inversely proportional to the

total number of its Wi-Fi and cellular contenders. Similarly, the MAP for the

typical BS is inversely proportional to the total number of APs and BSs whose

power received by the typical BS exceeds ΓL.

Corollary 3.6.2. When cellular implements LBT and random BO with con-

tention window size [a, b] = [0, 1], the MAPs of the tagged Wi-Fi AP and

cellular BS are given by:

E(eW0 ) =

∫ ∞
0

1− exp(−NW
2 (r0)−NL)

NW
2 (r0) +NL

fW (r0)dr0,

E(eL0 ) =

∫ ∞
0

1− exp(−NW
3 (ΓL)−NL

1 (r0,Γ
L))

NW
3 (ΓL) +NL

1 (r0,ΓL)
fL(r0)dr0,

respectively.

In terms of MAP, the effect of the additional cellular network on Wi-Fi

is similar to that of deploying another CSMA/CA network with intensity λL
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and transmit power PL. However, since each STA (UE) can only associate

with its closest AP (BS), the cellular (Wi-Fi) network becomes a closed access

CSMA/CA network to Wi-Fi (cellular), which may have significant impact

on SINR performance. Since the transmitting BS/AP process is a depen-

dent thinning of ΦL/ΦW , whose Laplace functional is generally unknown in

a closed form, the independent non-homogeneous PPP approximation to the

transmitting BS and AP point processes is used. First, we derive the following

conditional MAP for each AP/BS given the tagged AP transmits.

Corollary 3.6.3. Conditionally on the fact that tagged AP x0 = (r0, 0) trans-

mits, the probability for another AP xi ∈ ΦW ∩Bc(0, r0) to transmit is:

hW2 (r0, xi) =
V (xi − x0,

Γcs
PW
, Γcs
PW
, N1, N2, N3)

U(xi − x0,
Γcs
PW
, N2)

, (3.18)

where N1 = NW
0 (xi, r0,Γcs) +NL, N2 = NW

2 (r0) +NL and N3 = CW
1 (x0, xi) +

CL
2 (xi − x0).

Corollary 3.6.4. Conditionally on the fact that tagged AP x0 = (r0, 0) trans-

mits, the probability for BS yk ∈ ΦL to transmit is:

hL2 (r0, yk) =
V (yk − x0,

ΓL

PW
, Γed
PL
, N4, N5, N6)

U(yk − x0,
Γed
PL
, N5)

, (3.19)

where N4 = NW
0 (yk, r0,Γ

L)+NL
3 (ΓL), N5 = NW

2 (r0)+NL, N6 = CW
0 (yk,Γ

L, x0,Γcs)

+CL
0 (yk − x0,Γ

L, o,Γed).

The proof of Corollary 3.6.3 is provided in the Appendix 3.9.7, while

Corollary 3.6.4 can be proved in a similar way to Corollary 3.6.3; thus we omit

the detailed proof.
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Given the tagged AP x0 transmits, we resort to approximating the

interfering AP and BS process by two independent non-homogeneous PPPs

with intensities λWh
W
2 (r0, x) and λLh

L
2 (r0, x) respectively, which leads to the

following approximate SINR coverage of the typical Wi-Fi STA:

Lemma 3.6.5. When cellular network implements the listen-before-talk and

random backoff mechanism with (a, b) = (0, 1), the approximate SINR coverage

probability of the typical STA is given by:

pW3 (T, λW , λL) ≈
∫ ∞

0

exp

(
−µT l(r0)

σ2
N

PW

)
exp

(
−
∫
R2

T l(r0)λLh
L
2 (r0, y)

PW
PL

l(‖y‖) + T l(r0)
dy

)
× exp

(
−
∫
R2\B(0,r0)

T l(r0)λWh
W
2 (r0, x)

l(‖x‖) + T l(r0)
dx

)
fW (r0)dr0.

(3.20)

Lemma 3.6.5 can be easily proved using the non-homogeneous PPP

approximation; thus we omit the detailed proof.

Remark 3.6.2. The first and second terms in (3.20) stem from thermal noise

and interferers respectively, while the third term stems from the transmitting

Wi-Fi interferers. The intensity of the Wi-Fi interferers at x ∈ R2 ∩ Bo(0, r0)

is described by the function λWh
W
2 (r0, x). Note that when ‖x‖ → ∞, we have

NW
0 (x, r0,Γcs)→ NW , CW

1 (x0, x)→ 0 and CL
2 (x−x0)→ 0, which gives the fol-

lowing asymptotic result: lim
‖x‖→∞

λWh
W
2 (r0, x) = λWp

W
3,MAP(λW , λL). The inten-

sity of cellular interferers also satisfies the asymptotic result: lim
‖y‖→∞

λLh
L
2 (r0, y) =

λLp
L
3,MAP(λW , λL).

Similar to Wi-Fi, given the tagged BS is located at y0 = (r0, 0), the
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modified medium access indicators for each AP and BS are given by:

êWi =
∏

xj∈ΦW \{xi}

(
1tWj ≥tWi + 1tWj <tWi

1GWji /l(‖xj−xi‖)≤
Γcs
PW

)

×
∏

ym∈(ΦL∩Bc(0,r0)+δy0 )

(
1tLm≥tWi + 1tLm<t

W
i
1
GLWmi /l(‖ym−xi‖)≤

Γed
PL

)
,

êLk =
∏

xj∈ΦW

(
1tWj ≥tLk

+ 1tWj <tLk
1
GWL
jk /l(‖yk−xj‖)≤ ΓL

PW

)
×

∏
ym∈(ΦL∩Bc(0,r0)+δy0 )\{yk}

(
1tLm≥tLk

+ 1tLm<t
L
k
1
GLmk/l(‖ym−yk‖)≤

ΓL

PL

)
.

By following the same procedure as Corollary 3.6.3 and Corollary 3.6.4, we

can calculate the conditional MAP for each AP and BS, given the tagged BS

of the typical UE transmits.

Corollary 3.6.6. Conditionally on the fact that the tagged BS y0 = (r0, 0)

transmits, the probability for another AP xi ∈ ΦW ∩Bc(0, r0) to transmit is:

hW3 (r0, xi) =
V (xi − y0,

Γed
PL
, ΓL

PW
, N1, N2, N3)

U(xi − y0,
ΓL

PW
, N1)

,

where N1 = NW
3 (ΓL) + NL

1 (r0,Γ
L), N2 = NW + NL

0 (xi, r0,Γed), and N3 =

CW
0 (y0 − xi,ΓL, o,Γcs) + CL

0 (xi,Γed, y0,Γ
L).

Corollary 3.6.7. Conditionally on the fact that the tagged BS y0 = (r0, 0)

transmits, the probability for another AP xi ∈ ΦW ∩Bc(0, r0) to transmit is:

hL3 (r0, yk) =
V (yk − y0,

ΓL

PL
, ΓL

PL
, N4, N5, N6)

U(yk − y0,
ΓL

PL
, N4)

,

where N4 = NW
3 (ΓL) +NL

1 (r0,Γ
L), N5 = NW

3 (ΓL) +NL
0 (yk, r0,Γ

L), and N6 =

CW
0 (y0 − yk,ΓL, o,ΓL) + CL

0 (yk,Γ
L, y0,Γ

L).
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Based on Corollary 3.6.6 and Corollay 3.6.7, the SINR coverage of the

typical UE can also be derived using the non-homogeneous PPP approximation

of the interfering BSs and APs:

Lemma 3.6.8. When cellular network implements listen-before-talk and ran-

dom backoff mechanism with (a, b) = (0, 1), the approximate SINR coverage

probability of the typical cellular UE is:

pL3 (T, λW , λL) ≈
∫ ∞

0

exp

(
−µT l(r0)

σ2
N

PW

)
exp

(
−
∫
R2

T l(r0)λWh
W
3 (r0, x)

PL
PW

l(‖x‖) + T l(r0)
dx

)
× exp

(
−
∫
R2\B(0,r0)

T l(r0)λLh
L
3 (r0, y)

l(‖y‖) + T l(r0)
dy

)
fL(r0)dr0.

3.6.2 Cellular with Lower Channel Access Priority as Wi-Fi when
(a,b) = (1,2)

In this case, since the random backoff timer for each cellular BS is

always larger than that of Wi-Fi APs, cellular has a lower channel access

priority. Specifically, the medium access indicator for each Wi-Fi AP and

cellular BS in (3.17) can be simplified to:

eWi =
∏

xj∈ΦW \{xi}

(
1tWj ≥tWi + 1tWj <tWi

1GWji /l(‖xj−xi‖)≤
Γcs
PW

)
,

eLk =
∏

xj∈ΦW

1
GWL
jk /l(‖xj−yk‖)≤ ΓL

PW

∏
ym∈ΦL\{yk}

(
1tLm≥tLk

+ 1tLm<t
L
k
1
GLmk/l(‖ym−yk‖)≤

ΓL

PL

)
.

(3.21)

The MAP for the typical AP and BS are given in the following lemma.

Lemma 3.6.9. When cellular network follows a LBT and random BO mecha-

nism with (a, b) = (1, 2), the MAPs for typical AP and BS, denoted by pW4,MAP
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and pL4,MAP respectively, are given by:

pW4,MAP(λW , λL) =
1− exp(−NW )

NW
,

pL4,MAP(λW , λL) = exp(−NW
3 (ΓL))

1− exp(−NL
3 (ΓL))

NL
3 (ΓL)

,

respectively.

Corollary 3.6.10. When cellular network follows a LBT and random BO

mechanism with (a, b) = (1, 2), the MAP for the tagged Wi-Fi AP and cellular

BS are given by:

p̂W4,MAP(λW , λL) =

∫ ∞
0

1− exp(−NW
2 (r0))

NW
2 (r0)

fW (r0)dr0,

p̂L4,MAP(λW , λL) =

∫ ∞
0

exp(−NW
3 (ΓL)),

1− exp(−NL
1 (r0,Γ

L))

NL
1 (r0,ΓL)

fL(r0)dr0,

respectively.

In terms of MAP, this scheme is optimal to protect Wi-Fi since each

AP has the same MAP as if cellular does not exist. In contrast, since BSs

will not transmit whenever a strong interfering AP exists, BSs will have a role

similar to APs in the scenario when cellular transmits continuously.

In order to determine the coverage probability for the typical STA and

typical UE, procedures similar to that of the previous parts are used. In

particular, the conditional MAP PxiΦW
(eWi = 1|eW0 = 1, x0 = (r0, 0)), denoted

by hW4 (r0, xi), can be directly obtained from Corollary 3.4.3 by making λL = 0,

which is given by:

hW4 (r0, xi) =
V (x− x0,

Γcs
PW
, Γcs
PW
, NW

2 (r0), NW
0 (x, r0,Γcs), C

W
2 (x, x0))

U(x− x0,
Γcs
PW
, NW

2 (r0))
.
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In addition, denote the conditional probability PykΦL
(eLk = 1|eW0 = 1, x0 =

(r0, 0)) by hL4 (r0, yk), we get:

hL4 (r0, yk) =

1−exp(−NL
3 (ΓL))

NL
3 (ΓL)

1−exp(−NW
2 (r0)+CW0 (yk,Γ

L,x0,Γcs))

NW
2 (r0)−CW0 (yk,ΓL,x0,Γcs)

(1− exp(−µ ΓL

PW
l(‖x0 − yk‖)))

1−exp(−NW
2 (r0))

NW
2 (r0)

exp(NW
0 (yk, r0,ΓL))

.

By applying the non-homogeneous PPP approximation to Wi-Fi and cellular

interferers, the SINR coverage probability of the typical STA can be derived

by the following procedures which are similar to that of Lemma 3.6.5:

Lemma 3.6.11. When cellular implements the listen-before-talk and random

backoff mechanism with (a, b) = (1, 2), the approximate SINR coverage proba-

bility of a typical Wi-Fi STA is:

pW4 (T, λW , λL) ≈
∫ ∞

0

exp

(
−µT l(r0)

σ2
N

PW

)
exp

(
−
∫
R2

T l(r0)λLh
L
4 (r0, y)

PW
PL

l(‖y‖) + T l(r0)
dy

)
× exp

(
−
∫
R2\B(0,r0)

T l(r0)λWh
W
4 (r0, x)

l(‖x‖) + T l(r0)
dx

)
fW (r0)dr0.

Next, given the tagged BS of the typical UE is located at y0 = (r0, 0),

the two conditional probabilities PxiΦW
(eWi = 1|eL0 = 1, y0 = (r0, 0)) and

PykΦL
(eLk = 1|eL0 = 1, y0 = (r0, 0)), denoted by hW5 (r0, xi) and hL5 (r0, yk) re-

spectively, are given in (3.22) and (3.23):

hW5 (r0, xi) =
1− exp(−NW + CW

0 (y0 − xi,ΓL, o,Γcs))
NW − CW

0 (y0 − xi,ΓL, o,Γcs)
, (3.22)

hL5 (r0, yk) =
(1− exp(−µΓL

PL
l(‖yk − y0‖)))(M(N4, N5, N6) +M(N5, N4, N6))

exp(NW
3 (ΓL)− CW

0 (y0 − yk,ΓL, o,ΓL))U(yk − y0,
ΓL

PL
, N4)

,

(3.23)
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where N4 = NL
1 (r0,Γ

L), N5 = NL
0 (yk, r0,Γ

L) and N6 = CL
0 (yk,Γ

L, y0,Γ
L)

in (3.23).

Based on hW5 and hL5 , the SINR coverage probability of the typical UE

can be derived by applying the non-homogeneous PPP approximation:

Lemma 3.6.12. When cellular network implements the listen-before-talk and

random backoff mechanism with (a, b) = (1, 2), the approximate SINR coverage

probability of the typical cellular UE is:

pL4 (T, λW , λL) ≈
∫ ∞

0

exp

(
−µT l(r0)

σ2
N

PW

)
exp

(
−
∫
R2\B(0,r0)

T l(r0)λLh
L
5 (r0, y)

l(‖y‖) + T l(r0)
dy

)
× exp

(
−
∫
R2

T l(r0)λWh
W
5 (r0, x)

PL
PW

l(‖x‖) + T l(r0)
dx

)
fL(r0)dr0.

The SINR coverage performance of the typical STA and UE under two

cellular channel access priority schemes is plotted in Fig. 3.7 and Fig. 3.8,

where the simulation results are obtained from the definition of SINR in (3.1)

and (3.2). The accuracy of the approximations can be validated for various

cellular sensing thresholds and AP/BS densities. Since both Wi-Fi/cellular

adopt the LBT and random backoff mechanism, a good overall SINR coverage

probability can be achieved for Wi-Fi and cellular. In addition, given cellular

contention window size (a, b), both Wi-Fi STA and cellular UE can achieve

better SINR performance with a more sensitive threshold ΓL, which is due

to less cellular interference. It can also be observed that when cellular has

lower channel access priority, a less sensitive threshold ΓL is needed to obtain

a similar Wi-Fi SINR performance as in the case when cellular has the same

channel access priority as Wi-Fi.
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Figure 3.7: Wi-Fi SINR performance under different cellular channel access
priorities and ΓL.
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Figure 3.8: Cellular SINR performance under different channel access priorities
and ΓL.

3.7 Performance Comparisons of Different Coexistence
Mechanisms

In this section, the DST and rate coverage performance for each coex-

istence scenario are compared through numerical evaluations. As mentioned

earlier, cellular in unlicensed spectrum operation is mainly designed for LTE.

In particular, we use Wi-Fi + LTE (Wi-Fi + LTE-U, and Wi-Fi + LAA re-

spectively) to denote the scenario when Wi-Fi operator 1 coexists with another
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Figure 3.9: DST comparisons under different coexistence scenarios.

operator 2, which uses cellular with no protocol change (cellular with discon-

tinuous transmission, and cellular with LBT and random BO respectively).

The baseline performance of Wi-Fi operator 1 is when operator 2 also uses

Wi-Fi (i.e., Wi-Fi + Wi-Fi). The Wi-Fi MAP and SINR coverage of the base-

line scenario can be obtained directly from Lemma 3.6.1 and Lemma 3.6.5 by

setting all the sensing thresholds to Γcs. In addition, we focus on a dense net-

work deployment where λW = 400 APs/km2 and λL = 400 BSs/km2. Based on

the MAP and approximate SINR coverage probability, we have investigated

the DST and rate coverage probability of Wi-Fi and cellular under all the

coexistence scenarios in Fig. 3.9 and Fig. 3.10.

Fig. 3.9a shows that under Wi-Fi+LTE, Wi-Fi has the worst DST per-

formance since it experiences strong interference from the persistent transmit-

ting cellular BSs. In addition, Wi-Fi achieves similar DST performance when

operator 2 implements one of the following mechanisms: (1) LTE-U with a
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Figure 3.10: Rate coverage comparisons under different coexistence scenarios.

short duty cycle (e.g., 50%); (2) LAA with same channel access priority as

Wi-Fi and a more sensitive sensing threshold (e.g., (a, b) = (0, 1), ΓL = −82

dBm); and (3) LAA with lower channel access priority than Wi-Fi and a less

sensitive sensing threshold (e.g., (a, b) = (1, 2), ΓL = −77 dBm). Compared to

the baseline scenario, Wi-Fi has better DST under the above scenarios, espe-

cially in the low SINR threshold regime. This is because although Wi-Fi has

better SINR coverage performance under the baseline scenario, its DST suffers

from the much degraded MAP due to the highly sensitive sensing threshold

Γcs. Furthermore, when operator 2 implements LAA with the -62 dBm energy

detection threshold, the DST performance of Wi-Fi is not much improved over

Wi-Fi + LTE. Therefore, the -62 dBm energy detection threshold is too con-

servative to protect Wi-Fi, and a more sensitive threshold ΓL is recommended

for LAA. In contrast, Fig. 3.9b shows that operator 2 has significantly lower

(around 50%) DST when using LTE-U or LAA with a sensitive sensing thresh-

old (e.g., -82 dBm or -77 dBm), which is mainly due to the decreased MAP
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for BSs.

In terms of rate coverage, it can be observed from Fig. 3.10a that when

operator 2 adopts LTE-U with a 50% duty cycle or LAA with a sensitive

sensing threshold (e.g., -82 dBm or -77 dBm), Wi-Fi has similar performance

as the baseline scenario in low rate threshold regime (e.g. less than 5 Mbps),

and better performance with medium to high rate threshold (e.g., more than

10 Mbps). If LAA uses the -62 dBm energy detection threshold, the rate

coverage of Wi-Fi has negligible improvement over the Wi-Fi + LTE scenario,

which means the energy detection threshold does not suffice to protect Wi-

Fi. In addition, due to the degraded SINR performance, Wi-Fi has worse rate

performance under Wi-Fi + LTE than the baseline scenario. Meanwhile, when

the sensing threshold of LAA is -82 dBm or -77 dBm, Fig. 3.10b shows that the

rate loss of operator 2 under Wi-Fi + LAA is around 30% to 40% compared

to Wi-Fi + LTE. In contrast, the rate loss under Wi-Fi + LTE-U is slightly

more than 50% for most rate thresholds.

Overall, under Wi-Fi + LTE, the DST and rate coverage probability

of Wi-Fi decreases significantly compared to the baseline performance, which

makes it an impractical scenario to operate cellular in unlicensed spectrum.

Under Wi-Fi + LTE-U, LTE-U operator 2 has the flexibility to guarantee good

DST and rate coverage performance for Wi-Fi operator 1 by choosing a low

cellular transmission duty cycle. In addition, LTE-U has low implementation

cost due to its simple scheme. However, LTE-U also has the following disad-

vantages: (1) the LTE-U operator has much degraded DST and rate coverage
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performance under low transmission duty cycle; (2) LTE-U is only feasible in

certain regions and/or unlicensed bands where LBT feature is not required,

such as the 5.725-5.825 GHz band in U.S. [56]; (3) LTE-U transmissions are

more likely to collide with Wi-Fi acknowledgment packets due to the lack of

a CCA procedure, which means Wi-Fi SINR coverage under Wi-Fi + LTE-U

may not as easily translate into the rate performance as Wi-Fi + LAA; and

(4) LTE-U has practical cross-layer issues, such that the frequent on and off

switching of LTE will trigger the Wi-Fi rate control algorithm to lower the

Wi-Fi transmission rate [74]. In contrast, under Wi-Fi + LAA, by choosing

an appropriate LAA channel access priority (i.e., contention window size) and

sensing threshold, Wi-Fi operator 1 also achieves better DST and rate cover-

age performance compared to the baseline scenario, while LAA operator 2 can

maintain acceptable rate coverage performance. Additionally, LAA also meets

the global requirement for operation in the unlicensed spectrum. The main

disadvantage of LAA versus LTE-U is that LAA requires more complicated

implementation for the LBT and random BO feature. Therefore, in terms

of performance comparisons and practical constraints, cellular with LBT and

random BO (i.e., LAA) is more promising than cellular with discontinuous

transmission (i.e., LTE-U) to provide a global efficient solution to the coexis-

tence issues of cellular and Wi-Fi in unlicensed spectrum.
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3.8 Summary

This chapter has proposed a probabilistic framework using stochastic

geometry to analyze the MAC protocols for coexisting cellular network and

CSMA/CA based Wi-Fi network. The proposed framework has adapted the

modified Matérn point process that has been previously used for the stan-

dalone CSMA network [81] and cognitive CSMA networks [85], to the new

application scenario of coexisting cellular and Wi-Fi networks. Specifically,

several coexistence scenarios are analytically investigated, including when cel-

lular BSs always have the medium access, and when cellular BSs adopt the

CSMA/CA with tunable random back-off timer and sensing threshold. Based

on the retaining indicator for each cellular BS/Wi-Fi AP, the MAP of a typical

BS/AP, as well as the conditional MAP of a BS/AP given the tagged BS/AP

is retained, can be quantified for each coexistence scenario. By leveraging

the derived conditional MAP, we adopt the second order moment matching

approach [81,85] to approximate the cellular and Wi-Fi interferers as indepen-

dent non-homogeneous PPPs, so that the approximate SINR and rate cover-

age distribution can be derived. This chapter has shown through the proposed

methodology that cellular network can be a good neighbor to Wi-Fi by ma-

nipulating its transmission duty cycle, sensing threshold, or channel access

priority.

The analytical framework proposed in this chapter validates and com-

plements the system level simulation studies of standardization efforts includ-

ing LTE-U [87] and LAA [56], which can be utilized by both academia and
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industry to rigorously study cellular and Wi-Fi coexistence performance un-

der various scenarios, such as when multiple unlicensed bands are available,

or when both downlink and uplink traffic exist.

3.9 Appendix

3.9.1 Proof of Lemma 3.4.1

The MAP of Wi-Fi AP xi is the Palm probability that its medium

access indicator is equal to 1. Given its timer tWi = t, the MAP can be derived

as:

ExiΦW

[ ∏
yk∈ΦL

1
GLWki /l(‖yk−xi‖)≤

Γed
PL

∏
xj∈ΦW \{xi}

(
1tWj ≥t + 1tWj <t1GWji /l(‖xj−xi‖)≤

Γcs
PW

)]
(a)
=E

[∏
k

(
1− exp(−µΓed

PL
l(‖yk − xi‖))

)]
E!xi

ΦW

[∏
j

(
1− t exp(−µΓcs

PW
l(‖xj − xi‖))

)]
(b)
= exp(−NL) exp(−tNW ),

where (a) follows from the fact that ΦL is independent of ΦW , and (b) follows

from Slyvniak’s theorem and the PGFL of a homogeneous PPP. Finally noting

that t ∼ U(0, 1) and deconditioning on t gives the desired result.

3.9.2 Proof of Corollary 3.4.2

According to Remark 3.3.1, given the tagged AP is located at x0 =

(r0, 0), we have:

P(eW0 = 1|x0 = (r0, 0))
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=Ex0
ΦW

(∏
yk∈ΦL

1 GLW
ki

l(‖yk−x0‖)
≤Γed
PL

∏
xj∈ΦW \{x0}

(
1tWj ≥tW0 + 1tWj <tW0

× 1 GW
j0

l(‖xj−x0‖)
≤ Γcs
PW

)∣∣∣∣ΦW (Bo(0, r0)) = 0

)

=E

 ∏
yk∈ΦL

1
GLWk0 /l(‖yk−x0‖)≤

Γed
PL

∏
xj∈ΦW∩Bc(0,r0)

(
1tWj ≥tW0 + 1tWj <tW0

1GWj0 /l(‖xj−x0‖)≤ Γcs
PW

)
=

1− exp(−NW
2 (r0))

NW
2 (r0)

exp(−NL),

Finally, Corollary 3.4.2 is derived by incorporating the distribution of ‖x0‖.

3.9.3 Proof of Corollary 3.4.3

For AP xi ∈ ΦW , the conditional MAP of xi given the tagged AP

x0 = (r0, 0) transmits is:

PxiΦW
(eWi = 1|eW0 = 1, x0 ∈ ΦW ,ΦW (Bo(0, r0)) = 0)

(a)
=
P xi,x0

ΦW
(eWi = 1, eW0 = 1|ΦW (Bo(0, r0)) = 0)

P xi,x0

ΦW
(eW0 = 1|ΦW (Bo(0, ‖x0‖)) = 0)

(b)
=
Exi

ΦW
(êWi ê

W
0 )

Exi
ΦW

(êW0 )
, (3.24)

where (a) follows from the Bayes’ rule, and (b) is derived by applying the Slyv-

niak’s theorem and de-conditioning. The modified medium access indicators

for xi and x0 are:

êWi =
∏

xj∈(ΦW∩Bc(0,r0)+δx0 )\{xi}

(
1tWj ≥tWi + 1tWj <tWi

1 GW
ji

l(‖xj−xi‖)
≤ Γcs
PW

) ∏
yk∈ΦL

1 GLW
ki

l(‖yk−xi‖)
≤Γed
PL

,

êW0 =
∏

xj∈ΦW∩Bc(0,r0)

(
1tWj ≥tW0 + 1tWj <tW0

1 GW
j0

l(‖xj−x0‖)
≤ Γcs
PW

) ∏
yk∈ΦL

1 GLW
k0

l(‖yk−x0‖)
≤Γed
PL

.

(3.25)
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Therefore, the denominator in (3.24) is given by:

ExiΦW

 ∏
xj∈ΦW∩Bc(0,r0)

(
1tWj ≥tW0 + 1tWj <tW0

1 GW
j0

l(‖xj−x0‖)
≤ Γcs
PW

) ∏
yk∈ΦL

1 GLW
k0

l(‖yk−x0‖)
≤Γed
PL


=

∫ 1

0

E

 ∏
xj∈(ΦW∩Bc(0,r0)+δxi )

(
1tWj ≥t + 1tWj <t1GWj0 /l(‖xj−x0‖)≤ Γcs

PW

)∣∣∣∣tW0 = t

 dt

× E

[ ∏
yk∈ΦL

1
GLWk0 /l(‖yk−x0‖)≤

Γed
PL

]

=U(xi − x0,
Γcs
PW

, NW
2 (r0)) exp(−NL). (3.26)

On the other hand, the numerator in (3.24) can be computed as:

ExiΦW
(êWi ê

W
0 )

(a)
=E
[ ∏
xj∈(ΦW∩Bc(0,r0)+δx0 )

(
1tWj ≥tWi + 1tWj <tWi

1GWji /l(‖xj−xi‖)≤
Γcs
PW

) ∏
yk∈ΦL

1
GLWki /l(‖yk−xi‖)≤

Γed
PL

×
∏

xj∈(ΦW∩Bc(0,r0)+δxi )

(
1tWj ≥tW0 + 1tWj <tW0

1GWj0 /l(‖xj−x0‖)≤ Γcs
PW

) ∏
yk∈ΦL

1
GLWk0 /l(‖yk−x0‖)≤

Γed
PL

]

=

∫ 1

0

∫ 1

0

E
[ ∏
xj∈ΦW∩Bc(0,r0)

(1− 1tj<t1GWj0 /l(‖xj−x0‖)> Γcs
PW

)(1− 1tj<t′1GWji /l(‖xj−xi‖)> Γcs
PW

)

× 1 GW
0i

l(‖x0−xi‖)
≤ Γcs
PW

∏
yk∈ΦL

1
GLWk0 /l(‖yk−x0‖)≤

Γed
PL

1
GLWki /l(‖yk−xi‖)≤

Γed
PL

∣∣∣∣tW0 = t, tWi = t
′
]
dt
′
dt

= exp

(
−2NL + CL

2 (xi − x0)

)
V

(
xi − x0,

Γcs
PW

,
Γcs
PW

, NW
2 (r0), NW

0 (xi, r0,Γcs)

, CW
1 (xi, x0)

)
, (3.27)

where (a) follows from Slyvniak’s theorem.
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3.9.4 Proof of Lemma 3.4.4

The conditional SINR coverage of the typical STA is derived as follows:

P(SINRW
0 > T |x0 = (r0, 0), eW0 = 1)

(a)
=Px0

ΦW
(

FW
0,0/l(‖x0‖)∑

xj∈ΦW \{x0}

FWj,0e
W
j

l(‖xj‖) +
∑

ym∈ΦL

PL
PW

FLWm,0
l(‖ym‖) +

σ2
N

PW

> T |ΦW (Bo(0, r0)) = 0, eW0 = 1)

(b)
=P(

FW
0,0/l(‖x0‖)∑

xj∈ΦW∩Bc(0,r0)

FWj,0ê
W
j

l(‖xj‖) +
∑

ym∈ΦL

PL
PW

FLWm,0
l(‖ym‖) +

σ2
N

PW

> T |êW0 = 1)

(c)
≈ exp(−µT l(r0)

σ2
N

PW
)E
[
−µT l(r0)(

∑
xi∈ΦW∩Bc(0,r0)

PW
PL

FWL
i,0 êWi

l(‖xi‖)
)

∣∣∣∣êW0 = 1

]

× E
[
−µT l(r0)(

∑
ym∈ΦL

FL
m,0

l(‖ym‖)
)

]
,

where (a) follows from Baye’s rule by re-writing x0 = (r0, 0) as x0 ∈ ΦW

and ΦW (Bo(0, r0)) = 0. Here Bo(0, r0) is defined in Table 5.1. Step (b) is

derived from Slyvniak’s theorem and by de-conditioning on ΦW (Bo(0, r0)) = 0.

The modified medium access indicator for AP xi ∈ (ΦW ∩ Bc(0, r0) + δx0) is

given by (3.25). The conditional probability for the Wi-Fi AP xj ∈ ΦW ∩

Bc(0, r0) to transmit given x0 transmits, i.e., P(êWi = 1|êW0 = 1), is derived

in Corollary 3.4.3. Step (c) uses the assumption that the interference from

cellular BSs is independent of the Wi-Fi network.

Since the interfering AP process is a non-independent thinning of ΦW ,

the Laplace transform of Wi-Fi interference (i.e., the second term in step (c))

is not known in closed-from. Therefore, similar to [81, 90], we approximate
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the Wi-Fi interferers as a non-homogeneous PPP with intensity λWh1(r0, x),

which gives (3.9).

3.9.5 Proof of Lemma 3.4.5

According to Remark 3.3.1, given the tagged BS is located at y0 =

(r0, 0), denoting the conditional SINR coverage probability by pL0 (r0, T, λW , λL),

we have:

pL0 (r0, T, λW , λL)

(a)
=E
[
exp(−µT l(r0))(

σ2
N

PL
+

∑
ym∈ΦL\{y0}

FL
m,0

l(‖ym‖)

+
∑

xj∈ΦW

PW
PL

FWL
j,0 eWj

l(‖xj‖)
)

∣∣∣∣y0 ∈ ΦL,ΦL(B0(0, r0)) = 0

]
(b)
=E
[
exp(−µT l(r0))(

σ2
N

PL
+

∑
yLm∈ΦL∩Bc(0,r0)

FL
m,0

l(‖ym‖)
+
∑

xj∈ΦW

PW
PL

FWL
j,0 êWj

l(‖xj‖)
)

]
(c)
≈ exp(−µT l(r0)

σ2
N

PL
)E
[
exp

(
−µT l(r0)

∑
ym∈ΦL∩Bc(0,r0)

FL
m,0

l(‖ym‖)

)]

× E
[
exp

(
−µT l(r0)

∑
xj∈ΦW

PW
PL

FWL
j,0 êWj

l(‖xj‖)

)]
,

where (a) is because the channels have Rayleigh fading and yL0 is the closest

BS to the typical user. Step (b) is obtained by using Slyvniak’s theorem and

de-conditioning on ΦL(B0(0, r0)) = 0. The modified medium access indicator

for each AP in step (b) is given by:

êWj =
∏

yk∈ΦL∩Bc(0,r0)

(
1
GLWkj /l(‖yk−xj‖)≤

Γed
PL

1
GLW0j /l(‖y0−xj‖)≤

Γed
PL

)
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×
∏

xi∈ΦW \{xj}

(
1tWi ≥tWj + 1tWi <tWj

1GWij /l(‖xi−xj‖)≤
Γcs
PW

)
.

For each Wi-Fi AP xj ∈ ΦW , its modified MAP given the tagged BS is at

y0 = (r0, 0) is:

PxjΦW
(êWj = 1)

=
1− exp(−NW )

NW
exp(−NL

0 (xj, r0,Γed))(1− exp(−µΓed
PL

l(‖y0 − xj‖)), (3.28)

where NW and NL
0 (xj, r0,Γed) are defined in Table 3.2. In step (c), the corre-

lation between the interference from BSs and APs is neglected for simplicity.

Finally, the desired result is obtained by treating êWj as independent for each

AP xj, and applying the non-homogeneous PPP approximation to Wi-Fi in-

terferers.

3.9.6 Proof of Lemma 3.5.2

The time-averaged Wi-Fi rate coverage can be derived since the fraction

of Wi-Fi APs that can support data rate ρ is pW0 (2
ρ

Bp̂W
0,MAP

(λW ,λL) − 1, λW , λL)

and pW0 (2
ρ

Bp̂W
0,MAP

(λW ,0) − 1, λW , 0) during cellular “on” and “off” period re-

spectively. In addition, the time-averaged cellular rate coverage is derived by

noting that the typical cellular link is active for η fraction of time.

3.9.7 Proof of Corollary 3.6.3

For every AP xi, the quantity that needs to be computed is hW2 (r0, xi) =

PxiΦW
[eWi = 1|eW0 = 1, x0 = (r0, 0)]. Similar to (3.24), hW2 (r0, xi) can be rewrit-
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ten as
ExiΦW

(êWi êW0 )

ExiΦW
(êW0 )

, where:

êWi =
∏

xj∈(ΦW∩Bc(0,r0)+δx0 )\{xi}

(
1tWj ≥tWi + 1tWj <tWi

1GWji /l(‖xj−xi‖)≤
Γcs
PW

)

×
∏

ym∈ΦL

(
1tLm≥tWi + 1tLm<t

W
i
1
GLWmi /l(‖ym−xi‖)≤

Γed
PL

)
,

êW0 =
∏

xj∈ΦW∩Bc(0,r0)

(
1tWj ≥tW0 + 1tWj <tW0

1GWj0 /l(‖xj−x0‖)≤ Γcs
PW

)

×
∏

ym∈ΦL

(
1tLm≥tW0 + 1tLm<t

W
0
1
GLWm0 /l(‖ym−x0‖)≤

Γed
PL

)
.

Both ExiΦW
(êW0 ) and ExiΦW

(êWi ê
W
0 ) can be calculated using Slyvniak’s theorem

and the PGFL of PPP, which will give the result in (3.18).
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Chapter 4

Initial Access Analysis in Millimeter Wave

Cellular Networks with High Mobility1

In the current sub-6GHz cellular systems, the spectral efficiency per

link is already approaching theoretical limits [94]. Since mmWave bands cover

a wide frequency range from 30 GHz to 300 GHz, they have been considered as

the primary frequency bands to support the stringent data rate requirements

for future cellular systems [95]. Although mmWave bands offer vast spectrum

opportunities, they also pose significant challenges for cellular communications

due to the high isotropic pathloss and high sensitivity to blockage effects. In

order to combat these issues, one distinctive feature of mmWave communica-

tion is to use beamforming (BF) techniques to form narrow beams with high

antenna gain for data transmissions [95–98]. This is possible since the small

wavelength of mmWave allows large number of antenna arrays to be placed in

a compact form factor.

However, the requirement for narrow beam communication renders the

design of initial access (IA) a central and novel challenge for mmWave cellular

1This chapter has been published in [92, 93]. I am the primary author of these works.
Coauthors Dr. Thomas Novlan and Dr. Charlie Zhang have provided many valuable dis-
cussions and insights to this work, and Dr. Jeffrey G. Andrews and Dr. François Baccelli
are my supervisors.
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systems relative to existing cellular systems. Specifically, initial access refers

to the procedures that establish an initial connection between a mobile user

and the cellular network, which is the critical prerequisite for any subsequent

communication. In mmWave cellular networks, the mobile and the BS have no

idea what beam directions to use upon initial access, and so cannot communi-

cate at all. Thus, they must search over a potentially quite large beamforming

space to find each other, which is potentially time and resource consuming.

In addition, because mmWave links are fragile due to their vulnerability to

blocking and falling out of beam alignment, initial access will need to be done

much more frequently than in conventional systems. For this reason, it may be

necessary to constantly perform initial access to identify new candidate BSs,

even when connected to another BS.

Despite the importance of initial access design in mmWave cellular sys-

tems, fundamental system level analysis for the performance of initial access

protocols and the corresponding achievable user throughput is still largely

unexplored. In addition, since the mmWave user throughput is highly corre-

lated with the initial access protocol, such analysis is also challenging. In this

chapter, we develop an analytical framework and detailed performance analy-

sis for initial access in a mmWave cellular system using tools from stochastic

geometry [2, 43, 44,99].
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4.1 Related Works

Initial access for mmWave has been investigated by a few standard

organizations in recent years [100–102]. The IEEE 802.11ad standard adopted

a two level initial beamforming training protocol for the 60 GHz unlicensed

band, where a coarse-grained sector level sweep phase is followed by an optional

beam refinement phase [100, 101, 103]. However, IEEE 802.11ad is mainly

designed for indoor communications within an ad hoc type network without

significant mobility or range. The Verizon 5G forum [102] has created technical

specifications for early mmWave cellular systems, where beam sweeping is

applied by the BSs during cell search, and the beam reference signal (BRS)

is transmitted along with the synchronization signals to enable the users to

determine appropriate BS beamforming directions.

Despite the standardization of initial access for mmWave cellular net-

works is still in its early stages, several recent research efforts have investigated

this problem. An exhaustive procedure to sequentially search all the possible

transmit-receive beam pairs has been proposed in [104]. A hierarchical search

procedure is proposed in [105], where the BS first performs an exhaustive

search over wide beams, then refines to search narrow beams. The exhaustive

and hierarchical strategies are compared in [106], which shows that hierar-

chical search generally has smaller initial access delay, but exhaustive search

gives better coverage to cell-edge users. A context information based search,

wherein the users are informed about the mmWave BS locations through mi-

crowave links, is shown to achieve small initial access delay [107]. By adapting
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limited feedback-type directional codebooks, a low-complexity beamforming

approach for initial user discovery is proposed in [108]. Several initial access

options with different modifications to LTE initial access procedures are pro-

posed in [109], which has observed that the initial access delay can be reduced

by omni-directional transmission from the BSs during cell search, and digital

beamforming can even further reduce the delay. A two step cell search pro-

cedure, which leverages an omni-directional synchronization from the macro

BSs, followed by sequential spatial search from the mmWave BSs, is shown to

enhance the efficiency of initial access [110]. In addition to the initial access

design for mmWave cellular networks, the beam alignment problem for the

mmWave system has also been investigated in several literatures [111–116].

An efficient beam alignment technique using adaptive subspace sampling and

hierarchical beam codebooks is proposed in [111]. An auxiliary beam pair de-

sign for mmWave channel estimation is proposed in [112, 113], which can be

utilized to reduced the initial access delay. By exploiting the information from

the sub-6 GHz channels, [114] has proposed a beam alignment algorithm with

low training overhead for mmWave system. Probability of beam misalignment

due to thermal noise and antenna gain fluctuations is analyzed in [115] for the

IEEE 802.11ad and IEEE 802.15.3c mmWave systems. In [116], a bisection

search algorithm for beam alignment in mmWave system is shown to achieve

higher overall throughput than the exhaustive and iterative algorithms.

All the aforementioned works are either a point-to-point analysis or

only consider one user with a few nearby BSs and, a system-level analysis of
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initial access in mmWave networks in terms of not only initial access delay,

but also the subsequent coverage and throughput performance for data trans-

mission, has yet to be offered. Stochastic geometry has been recognized as a

powerful mathematical tool to analyze key performance metrics in large-scale

wireless networks, such as macro cellular networks [2], heterogeneous cellu-

lar networks [13], Wi-Fi networks [81], and ad hoc networks [117]. Coverage

and rate trends for mmWave cellular networks have also been studied recently

using stochastic geometry [118–124]. By incorporating directional beamform-

ing without capturing the blockage effects, [118] shows mmWave network can

achieve comparable coverage probability and much higher data rate than con-

ventional microwave networks. Similar performance gains of mmWave net-

works have been observed when statistical blockage models are used, such as

a line-of-sight (LOS) ball blockage model [119–121], an exponential decreasing

LOS probability function with respect to (w.r.t.) the link length [121–123],

or a blockage model which also incorporates an outage state [124]. In [123],

the impact of beam training/alignment on the effective rate for mmWave user

is investigated. Given the highly directional antennas used in mmWave net-

works, [125] has validated the theoretical feasibility of spectrum sharing among

mmWave cellular operators. However, [118–125] all assume the association be-

tween user and its serving BS has already been established, while in fact the

initial access is a key design challenge and performance limiting factor for

mmWave networks.
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4.2 Contributions

In this chapter, we focus on a high mobility scenario where the users

and random blockers are moving with relatively high speeds, such that the

initial access needs to performed very frequently (e.g., every 20 ms to 100 ms).

We consider three simple but representative initial access protocols that use

various combinations of directional beamforming and omnidirectional trans-

mission and reception at the mobile and the BS, during the two key phases

of cell search (BS transmits a beacon) and random access (mobile transmits

in the other direction). Specifically, the initial access protocols are compliant

with the basic initial access procedures of LTE, including a baseline exhaustive

search protocol wherein BS and user sweep through all transmit-receive beam

pairs during cell search, and two other protocols that require less initial access

overhead.

We consider both a single stage beamforming approach where BS beam

direction for data transmission is solely determined from the initial access

phase; and a two-stage beamforming approach wherein only a coarse beam

direction is obtained from initial access, while a beam refinement phase is

applied afterwards to refine the BS beams. We derive key metrics including the

initial access success probability (what is the chance the protocol succeeds?),

the average initial access delay (how long does it take?), and the user-perceived

downlink throughput (accounting for the initial access overhead). The main

contributions of this chapter are as follows:

Accurate analytical framework for mmWave system-level per-
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formance under various initial access protocols. In contrast to the

link-level analysis in [104–106,108,109], we derive several system-level perfor-

mance metrics in a large-scale mmWave cellular network for the first time,

including the expected initial access delay, and a new metric called average

user-perceived downlink throughput which quantifies the effect of the initial

access protocol on the user-perceived throughput performance. Our analytical

results are validated against detailed system level simulations.

Beam sweeping is shown to be essential for cell search. We

find that the mmWave system is subject to significant coverage issues if beam

sweeping is not applied during cell search. By contrast, a reasonable cell search

success probability can be achieved even with a small (e.g., 4 to 8) number of

beamforming directions to search at the BS or user.

Comparison of expected initial access delay and average user-

perceived downlink throughput under the single-stage BF approach.

The baseline exhaustive search protocol gives the best initial access delay per-

formance when blockage is severe, but it also has the worst user-perceived

downlink throughput, due to its high initial access overhead. By contrast,

the protocol wherein the BS (user) applies beam sweeping and the user (BS)

receives omni-directionally during cell search (random access), generally gives

the best user-perceived downlink throughput performance. However, due to a

high random access preamble collision probability, this protocol also has high

initial access delay. Of the three considered sample protocols, the best trade-off

between initial access delay and average user-perceived downlink throughput
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is achieved when the BS transmits using relatively wide beams and the user

applies beam sweeping during cell search.

Benefits of the two-stage beamforming approach: compares to

the single-stage beamforming approach, the two stage beamforming approach

significantly increases UPT for baseline protocol, and provides high flexibility

to achieve good initial access delay and user-perceived throughput simultane-

ously by adapting the beam refinement factor.

Initial access cycle T

CS period RA period

...

...

...

...

DL beam

DL beam

...

...

...

...

pair McsNcs

pair 1
UL beam
pair MraNra

UL beam
pair 1

τ τ

time

Data transmission periodBRP period

...

...

...

...

Refined BS

beam 1

τ Refined BS

beam M

(optional)

Figure 4.1: Illustration of two cycles for the timing structure.

4.3 System Model and Performance Metrics

In this chapter, a time-division duplex (TDD) mmWave system in

Fig. 4.1 is considered, where the system time is divided into different ini-

tial access cycles with period T , and τ denotes the duration of an OFDM

symbol. Each cycle begins with a cell search phase, followed by the random

access phase, an optional beam refinement phase, and finally the data trans-

mission phase. The mmWave cellular system has carrier frequency fc and
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total system bandwidth W . The transmit power of BSs and users are Pb and

Pu respectively, and the total thermal noise power is σ2. In the rest of this

section, we present the spatial location models, the propagation and blockage

assumptions, and the antenna and beamforming models.

4.3.1 Spatial Locations

Since the mmWave cellular networks are going to be densely deployed

with more random nature than the macro cellular network, and currently there

is no real mmWave BS location data available to extract a better model, thus

the locations for BSs and users are modeled as realizations of two independent

homogeneous PPPs. Specifically, the BS process Φ = {xi} has intensity λ,

and the user process Φu = {ui} has intensity λu. The PPP assumption for

BS locations could lead to many tractable and insightful results. In fact,

this assumption is also reasonable since [126] has proved that the SINR trend

under the PPP assumption only has a constant SINR gap compared to any

other stationary BS location model. In addition, [127] has proved that for

any arbitrary spatial BS location pattern with sufficiently large shadowing

variance, the statistics of the propagation losses of a user with respect to

all BSs will converge to that of a Poisson network. As a result, the PPP

assumption for BSs can also be treated by combining the shadowing effects

and the BS locations. Thus we do not consider shadowing separately in our

analysis, similar to [120–123,125,128].

Since the user locations form a realization of a PPP, we can analyze
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Table 4.1: Definitions and Values for System Parameters

Symbol Definition Simulation Value
Φ, λ MmWave BS PPP and intensity 100 BS/km2

Φu, λu User PPP and intensity 1000 user/km2

ΦL, ΦN LOS and NLOS BS tier to the typical user
fc,W Carrier frequency and system bandwidth 28 GHz, 100 MHz
Pb, Pu BS and user transmit power 30 dBm, 23 dBm
σ2 Total thermal noise power -94 dBm

G(θ), g(θ) Main lobe and side lobe gain at BS and user with beamwidth θ, defined in (4.2) C0 = 10 dB for user antennas
M,N Number of antennas/BF directions at each BS and user M = 4, 8, ..., 48, N = 4

Mcs, Ncs, Kcs Mcs/Ncs: number of BF directions to search at BS/user in cell search; Kcs =
min(Mcs, Ncs)

mcs Number of wide beams to sweep during cell search for fast CS protocol 4
Mra, Nra Number of BF directions to search at BS and user during RA
MIA, m Number of BS beams to search during IA (MIA = max(Mcs,Mra)); beam refinement

factor
Npa Number of random access preamble sequences 64

αL, αN Path loss exponent for LOS and NLOS links 2, 4
β Path loss at close-in reference distance (i.e., 1m) 61.4 dB

Γcs,Γra SINR threshold to detect synchronization signal and RA preamble -4 dB, -4 dB
τ OFDM symbol duration 14.3 µs
T Initial access cycle period 20 ms
h(r) Probability for a link with length r to be LOS
Rc, p Radius and LOS probability for the LOS region in the LOS ball model Rc = 100m, p = 1, 0.75, 0.5, 0.25
µ LOS region size for the exponential blockage model µ = 100m, 50m, 25m

B(x, r) (Bo(x, r)) Closed (open) ball with center x and radius r
S(u, θ1, θ2) Infinite sector domain {x ∈ R2, s.t., ∠(x− u) ∈ [θ1, θ2)}

Sj (1 ≤ j ≤ Kcs) The j-th BS locatoin location sector with Sj , S(o, 2π(j−1)
Kcs

, 2πj
Kcs

)

V (z, T, λ), U(z, T, λ) Two special functions defined in (4.3)
fZ1(z) The PDF for the minimum path loss from the typical user to BSs inside the typical

BS sector, which is given by (4.9)
PMcs,Ncs(Γcs) Probability to detect the BS providing the smallest path loss inside the typical BS

sector derived, which is given by (4.11)

P̃Mcs,Ncs(z,Γcs) P̃Mcs,Ncs(z,Γcs): Conditional detection probability when the minimum path loss inside
the typical BS sector is z, which is given by (4.12)

PMcs,Ncs(z0,Γcs) PMcs,Ncs(z0,Γcs) =
∫∞
z0
P̃Mcs,Ncs(z,Γcs)dz

Pco Probability of no RA preamble collision, given by (4.15)
Pra(Z0,Γra) Probability the RA preamble SINR at the tagged BS exceeds Γra, given by (4.16)

ηIA Overall success probability of initial access, given by (4.17)

the performance of a typical user located at the origin. This is guaranteed

by Slivnyak’s theorem, which states that the property observed by the typical

point of PPP Φ
′

is the same as that observed by the point at origin in Φ
′ ∪

{o} [43, 44].

4.3.2 Blockage and Propagation Models

The link between a BS and a user is either line-of-sight (LOS) or non-

line-of-sight (NLOS). We denote by h(r) the probability for a link of distance
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r to be LOS, which is only a function of r and independent of other links.

From the typical user’s perspective, the BS process Φ is divided into two tiers:

the LOS BS tier ΦL and the NLOS BS tier ΦN . Since the LOS probability

function h only depends on the link length, ΦL and ΦN are two independent

PPPs. For any x ∈ R2, the intensity function for ΦL is λL(x) = λh(‖x‖),

and the intensity function for ΦN is λN(x) = λ(1−h(‖x‖)). Incorporating the

blockage model to differentiate the LOS and NLOS links is the most distinctive

difference for analyzing the mmWave network performance, compared to the

analysis in traditional sub-6 GHz networks [2].

Two examples of LOS probability functions h(r) include: (1) the “gen-

eralized LOS ball model” [119, 121] with h(r) = p1r≤Rc , where Rc represents

the radius for the LOS region (Rc > 1m), and p represents the LOS proba-

bility within the LOS region; (2) the “exponential blockage model” [121] with

h(r) = exp(−r/µ), where µ represents the average LOS region length. Com-

pared to the 3GPP blockage model which has accurate fit to the empirical LOS

probability, [128,129] show that the LOS ball model and exponential blockage

model better estimate the SINR and are simpler.

The path loss for a link with distance r in dB is given by:

l(r) =

{
10 log(β) + 10αL log10(r) dB, if LOS,
10 log(β) + 10αN log10(r) dB, if NLOS,

(4.1)

where αL and αN represent the path loss exponent for LOS and NLOS links

respectively, and β is the path loss at a close-in reference distance (i.e., 1

meter). For the rest of the chapter, the path loss function for LOS link and
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NLOS link are denoted by lL(r) and lN(r) respectively.

The small scale fading effect is assumed to be Rayleigh fading, where

each link is subject to an i.i.d. exponentially distributed fading power with

unit mean. Compared to more realistic small-scale fading models such as

Nakagami-m fading, Rayleigh fading leads to much more tractable results

with very similar design insights [120,125,128].

4.3.3 Antenna Model and Beamforming Gains

BSs and users are equipped with an antenna array ofM andN antennas

respectively to support directional communications, where M/N ∈ N+. Both

mmWave BSs and users have 1 RF chain, such that only one analog beam can

be transmitted or received at a time2. For analytical tractability, we assume

the actual antenna pattern is approximated by a sectorized beam pattern [110,

118,119,121–125,128,129], where the antenna has constant main-lobe gain over

its half power beamwidth, and also a constant side-lobe gain otherwise. We

adopt the beamforming gain model for sectorized beam pattern as [110, 123],

whose accuracy has been validated in Fig. 8 of [123]. Specifically, if we denote

by Gu(θu) the beamforming gain at user with beamwidth θu, then Gu(θu) is

given by:

Gu(θu) =

{
G(θu) = 2π

θu

γ
γ+1

, in the main lobe,

g(θu) = 2π
2π−θu

1
γ+1

, in the side lobe,
(4.2)

2Our analysis in the rest of the chapter based on analog beamforming directly applies
to the scenario where cell sectorization with frequency reuse across sectors within the same
cell is used. Hybrid beamforming is left to future work.
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where γ mimics the front-back power ratio, which is given by γ = 2π
C0(2π−θu)

for some constant C0. A similar beamforming gain model is used at BS,

but we assume 0 side lobe gain for BS (i.e. γ in (4.2) is extremely large),

and thus the main lobe gain for BS with beamwidth θb is G(θb) = 2π
θb

. This

assumption is important to ensure the analytical tractability in Section 4.5,

which is also reasonable since mmWave BSs use large dimensional antenna

array, and modern antenna design could enable a front-to-back ratio larger

than 30 dB for mmWave BSs [130].

Similar to [109,123], we assume each BS has a codebook of M possible

beamforming vectors, which will correspond to M sectorized beam patterns

that have non-overlapping main lobes with beamwidth 2π
M

. Specifically, the m-

th BS beam (1 ≤ m ≤M) covers a sector area centered at the BS, whose angle

is within [2πm−1
M
, 2π m

M
). The spatial signature of any plane wave of the BS is

given by the superposition of these M non-overlapping beam directions [109].

Similarly, each user has N possible sectorized-pattern beamforming vectors

that correspond to N non-overlapping main lobes with beamwidth 2π
N

. Fig. 4.2

shows the first beam direction of the user and the fifth beam direction of the

BSs with M = 8 and N = 4. For any BS and its associated users, their aligned

beamforming vectors need to be learned through the initial access, which will

be used for subsequent data transmissions.

Finally, Table 4.1 summarizes the definitions and simulation values of

the important notation and system parameters that will be used in the rest of
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this chapter. In particular, three special functions are defined as:

V (z,Γ, λ) = exp

{
−2πλ

(∫ +∞

l−1
L (z)

Γzh(r)rdr

Γz + lL(r)
+

∫ +∞

l−1
N (z)

Γz(1− h(r))rdr

Γz + lN(r)

)}
,

U(z,Γ, λ) = exp

{
−2πλ

(∫ +∞

0

Γzh(r)rdr

Γz + lL(r)
+

∫ +∞

0

Γz(1− h(r))rdr

Γz + lN(r)

)}
,

W (z,Γ1,Γ2, λ,M) = exp

{
−2πλ

(∫ +∞

l−1
L (z)

[
1− (1− 1

M

Γ1z

Γ1z + lL(r)
)

1

1 + Γ2z/lL(r)

]
× rh(r)dr +

∫ +∞

l−1
N (z)

[
1− (1− 1

M

Γ1z

Γ1z + lN(r)
)

1

1 + Γ2z/lN(r)

]
r(1− h(r))dr

)}
.

(4.3)

It will be shown in the next section that V and U give the SIR coverage

probability of the typical user with minimum path loss association rule and no

specific association rule respectively, where z denotes the path loss from the

typical user to its associated BS, T denotes the SIR threshold, and λ denotes

the BS intensity.

4.4 Initial Access Design for MmWave Networks

In this section, we will briefly review initial access in LTE, then propose

the beamforming structure and several initial access protocols for mmWave

networks.

4.4.1 Initial Access in LTE

The main steps for initial access in LTE include cell search, reception of

system information, and random access [8, 131]. Specifically, by detecting the

synchronization signals broadcast by BSs during cell search, user can determine
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the existence of its neighboring BSs, and it tries to camp on the BS that

provides the strongest reference signal received power (RSRP). Then the user

can extract some important system information from this BS such as system

bandwidth and scheduling information. Finally, the user initiates the random

access process to its desired serving BS by transmitting a RA preamble through

the shared random access channel, and it is successfully connected to the

network if the BS can decode the RA preamble without any collision. However,

the initial access of LTE is performed omni-directionally, which cannot be

directly applied by mmWave networks due to the high isotropic path loss in

mmWave frequencies.

4.4.2 Cell Search and Random Access Procedure

Similar to [109], we investigate mmWave initial access protocols that

are compliant with the basic procedures of LTE. We assume the BS and user

will follow the beam patterns described in Section 4.3.3. The two main design

objectives for initial access in mmWave cellular networks include: (1) connect

the users to the network, and (2) enable both BS and its associated user

to learn their aligned beamforming directions with beamwidth 2π
MIA

and 2π
N

respectively. These objectives are achieved through the following directional

cell search and random access procedures.

During CS phase, BSs sweep through Mcs transmit beamforming direc-

tions to broadcast the synchronization signals, while users sweep through Ncs

receive beamforming directions to detect the synchronization signals. A syn-
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BS

Typical User

Figure 4.2: Illustration of the BF structure for BS and user beam pair (5, 1)
with M = 8, N = 4. Only the typical user is shown, where the shaded area
represents its corresponding BS sector.

chronous beam sweeping pattern is used, such that during any synchronization

signal period, all BSs/users will transmit/receive in the same direction, and

one particular downlink beam pair is searched. We assume each user is able to

detect a BS with sufficiently small miss detection probability (e.g., less than

1%), if the signal-to-interference-plus-noise ratio (SINR) of the synchroniza-

tion signal from that BS exceeds Γcs. The beam reference signal is assumed

to be transmitted along with the synchronization signal, such that the user is

able to acquire BS beam direction upon successful cell search [102]. Among

all the BSs that are detected during CS, the user selects the BS that provides

the smallest path loss as its serving BS. If cell search fails, the user will not

transmit in the random access phase, and it needs to repeat the initial access

procedure in the next cycle. Therefore, the cell search phase leads to a total

delay of Tcs = McsNcsτ , as shown in Fig. 4.1.

In the random access phase, the user initiates the connection to its de-
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sired serving BS by transmitting a RA preamble sequence, which is uniformly

selected from Npa orthogonal preamble sequences. Users sweep through Nra

transmit beamforming directions synchronously, and BSs sweep through Mra

receive beamforming directions synchronously during random access. The user

can be discovered by its serving BS if: 1) there is no RA preamble collision

with other users transmitting simultaneously to the same BS; and 2) the SINR

of the preamble sequence exceeds Γra. Similar to cell search, we assume the

probability of miss detection is sufficiently small (e.g., less than 1%) if the

SINR of RA preamble exceeds Γra. The user is connected to its serving BS

upon successful random access, and both the user and BS are aware of their

beamforming directions for data transmission. According to Fig. 4.1, the total

random access delay is Tra = MraNraτ .

An optional beam refinement phase, or BRP, is initiated by BS to re-

fine its beam direction to associated users after the initial access. Specifically,

BSs sweep through M = m×MIA refined beams to transmit the beam refine-

ment reference signal (BRRS), where MIA = max(Mcs,Mra) is the number BS

beams searched during IA, and m ≥ 1 is called the beam refinement factor.

Each user tries to decode the beam refinement reference signal (BRRS) of its

serving BS using the beam found in IA. The BRP is successful if when this

user and its serving BS are beam aligned, the SINR of the BRRS exceeds ΓB.
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4.4.3 Initial Access Protocols

Different initial access protocols can be designed to enable the user

and its serving BS to determine their aligned beamforming directions with

beamwidth 2π
N

and 2π
MIA

respectively. The protocols that are investigated in

this chapter are as follows:

1) Baseline: BSs and users sweep through all possible beamforming

directions during cell search (i.e., Mcs = MIA, Ncs = N), so that the user

can determine its beamforming direction after successful cell search. During

random access, the user transmits in the beamforming direction it found during

CS (i.e., Nra = 1), while the BS sweeps through all its beamforming directions

(i.e., Mra = MIA) to receive the RA preamble sequences from the users. BS

beamforming direction to the user is determined as the receive direction of the

RA preamble.

2) Fast CS : in order reduce the cell search overhead while maintaining

reasonable synchronization signal strength, the BS applies a coarse beam-

sweeping using relatively wide beams during CS (i.e., Mcs = mcs with N ≤

mcs ≤MIA) [93]. Other procedures are the same as baseline.

3) Omni RX : Now Mcs = MIA, Ncs = 1 (omni), Mra = 1 (omni),

Nra = N , i.e., the user receives omni-directionally during cell search, and the

BS receives omni-directionally during random access. The user determines the

BS beamforming direction by decoding the beam reference signal during cell

search, and it encodes that information into the RA preamble. The BS obtains
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Table 4.2: Initial access protocols

Protocol BS during CS User during CS BS during RA User during RA
Baseline Beam-sweeping

(Mcs = MIA)
Beam-sweeping
(Ncs = N)

Beam-sweeping
(Mra = MIA)

Fixed direction (Nra = 1)

Fast CS Omni-directional
(Mcs = mcs)

Beam-sweeping
(Ncs = N)

Beam-sweeping
(Mra = MIA)

Fixed direction (Nra = 1)

Omni RX Beam-sweeping
(Mcs = MIA)

Omni-directional
(Ncs = 1)

Omni-directional
(Mra = 1)

Beam-sweeping (Nra = N)

its beamforming direction by decoding the RA preamble. In addition, the user

determines its beamforming direction by beam sweeping during random access.

A summary of these protocols is provided in Table 4.2.

4.4.4 Performance Metrics

The metrics that we use to evaluate the performance of the initial access

protocols are defined as follows.

4.4.4.1 Success Probability of Initial Access

Initial access is successful if both cell search and random access are

successful. For the typical user, we use e0 and δ0 to denote its success indicator

for cell search and random access in a typical initial access cycle. Therefore,

the initial access success probability is given by: ηIA = E(e0 × δ0).

4.4.4.2 Expected Initial Access Delay

If the user fails the initial access procedure in one initial access cycle, it

will try to re-connect to the network in the next cycle. According to Fig. 4.1,
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the total initial access delay for typical user to be connected is given by:

D0 = (L0 − 1)T + (McsNcsτ +MraNraτ), (4.4)

where L0 ∈ N+ represents the number of cycles to discover the typical user,

T represents the period of an initial access cycle, and McsNcsτ + MraNraτ

represents the duration for initial access in each cycle. In this chapter, we

focus on a high mobility scenario where the users or blockers (e.g., pedestrians

and cars) are moving with a relatively high speed, such that the user and

BS PPPs are independent across different initial access cycles. Therefore,

the probability for the typical user to succeed the initial access procedure

in different cycles becomes independent. Given the very high Doppler and

sensitivity to blocking (such as human blocking) at mmWave, this may be

reasonable. As a result, L0 follows a geometric distribution with parameter

ηIA, which means:

E(D0) = (
1

ηIA
− 1)T + (McsNcsτ +MraNraτ). (4.5)

4.4.4.3 Average User-Perceived Downlink Throughput

Although a TDD system is assumed, we will only focus on downlink

and assume the entire data transmission period is occupied by the downlink.

If the user succeeds the initial access, it is able to be scheduled by its serving

BS for downlink transmission; otherwise, its data rate in the current cycle is 0

almost surely. In the data transmission phase, each BS randomly schedules one

of its associated users to transmit downlink data. When the beam refinement
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phase is used, the BS uses the refined beam with beamwidth 2π
M

if BRP of

its scheduled user is successful, otherwise the wide beam from IA phase with

beamwidth 2π
MIA

is used.

Since the high mobility scenario is considered, the user needs to per-

form initial access every cycle. Therefore, the average user-perceived downlink

throughput, or average UPT, which represents the expected downlink data rate

a typical user achieves within one initial access cycle, is given by:

R̄ = (1− ηTO)× ηIA × E[ηsW log2(1 + SINRDL)|e0δ0 = 1], (4.6)

where ηTO represents the IA overhead, and ηTO = min(McsNcsτ+MraNraτ
T

, 1) if

BRP is not used, otherwise ηTO = min( (McsNcs+MraNra+M)τ
T

, 1). In addition, ηs

denotes the average schedule probability of typical user; and SINRDL denotes

the downlink data SINR.

4.5 Success Probability for Cell Search and Random
Access

In this section, the success probability for the initial access protocols

are derived. Note for the same parameters of the initial access protocols in

Table 4.2 (i.e., Mcs, Ncs,Mra, Nra), the initial access performance is the same

for the single-stage beamforming approach and the two-stage beamforming

approach.
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4.5.1 Success Probability for Cell Search

4.5.1.1 Analytical Model for Cell Search

According to Section 4.4.2, BSs and users sweep through Mcs × Ncs

transmit-receive beam pairs synchronously over the downlink during cell search.

Since side lobe gains for BSs are assumed to be 0, the user can potentially de-

tect a BS only when BS and user beams are aligned. For example, the typical

user in Fig. 4.2 is only able to receive the synchronization signals from the

BSs inside the shaded area, which is referred to as a “BS sector”. Formally,

we define an infinite sector area centered at u ∈ R2 as:

S(u, θ1, θ2) = {x ∈ R2, s.t., ∠(x− u) ∈ [θ1, θ2)}. (4.7)

If BS and user beam pair (m,n) (1 ≤ m ≤ Mcs, 1 ≤ n ≤ Ncs) is aligned,

the typical user can receive from the BSs inside the following area due to the

synchronous beam sweeping pattern:

S(o,
2π(n− 1)

Ncs

,
2πn

Ncs

) ∩ S(o,
2π(m− 1)

Mcs

+ π,
2πm

Mcs

+ π). (4.8)

From the typical user’s perspective, there are Kcs , max(Mcs, Ncs) such non-

overlapping BS sectors during cell search, with the j-th (1 ≤ j ≤ Kcs) BS

sector being S(o, 2π(j−1)
Kcs

, 2πj
Kcs

).

For the rest of this chapter, when analyzing the typical user perfor-

mance inside a BS sector, we implicitly assume the BS and user beams are

aligned. In addition, we say a BS sector is detected during cell search if the

typical user is able to detect the BS that provides the smallest path loss in this
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sector, where path loss can be estimated from beam reference signals [102]. For

simplicity, we neglect the scenario that the BS providing the smallest path loss

inside a BS sector is in deep fade and unable to be detected, while some other

BSs can be detected in the same sector. Such a scenario only provides marginal

gains to the system, and we will incorporate that in our future work. After

cell search, the typical user selects the BS with the smallest path loss across all

the detected BS sectors as its desired serving BS, and initiates random access

to this BS.

4.5.1.2 Success Probability of Cell Search

Since BSs are PPP and different BS sectors are non-overlapping, the

event for BS sectors to be detected are i.i.d.. Without loss of generality, we

consider the first BS sector as a “typical” BS sector, which is denoted by

S1 , S(o, 0, 2π
Kcs

). The minimum path loss distribution inside the typical BS

sector is given by the following lemma.

Lemma 4.5.1. Denote the minimum path loss from the typical user to BSs

inside the typical BS sector by Z1, then the probability density function (PDF)

of Z1 is given by:

fZ1(z) =

{
2πλ

Kcs

1

αL
(
1

β
)

2
αL z

2
αL
−1
h((

z

β
)

1
αL ) exp

(
−2πλ

Kcs

∫ ( z
β

)
1
αL

0

h(r)rdr

)}

exp

(
−2πλ

Kcs

∫ ( z
β

)
1
αN

0

(1− h(r))rdr

)
+

{
2πλ

Kcs

1

αN
(
1

β
)

2
αN z

2
αN
−1

(1− h((
z

β
)

1
αN ))
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× exp

(
−2πλ

Kcs

∫ ( z
β

)
1
αN

0

(1− h(r))rdr

)}
exp

(
−2πλ

Kcs

∫ ( z
β

)
1
αL

0

h(r)rdr

)
,

(4.9)

where Kcs = min(Mcs, Ncs).

Proof. The proof is provided in Appendix 4.10.1.

The first term and second term in (4.9) refer to the PDF of Z1 when

the BS providing the minimum path loss is LOS and NLOS respectively.

Remark 4.5.1. The result in (4.9) is in integral form since it provides the

path loss distribution under a general blockage model. It can be simplified for

specific blockage models such as the LOS ball model and exponential blockage

model. For example, for the LOS ball model with p = 1, Lemma 4.9 simply

becomes:

fZ1(z) =
2πλ

Kcs

1

αL
(
1

β
)

2
αL z

2
αL
−1

exp

(
− πλ

Kcs

(
z

β
)

1
αL

)
1

( z
β

)
1
αL ≤Rc

+
2πλ

Kcs

1

αN
(
1

β
)

2
αN z

2
αN
−1

exp

(
− πλ

Kcs

(
z

β
)

1
αN

)
1

( z
β

)
1
αN ≥Rc

.

Similarly, all the analytical results afterwards can be simplified under specific

blockage models.

Conditionally on the minimum path loss inside the typical BS sector Z1,

the SINR of the synchronization signal from the BS providing the minimum

path loss is given by:

SINRSS(Z1)
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=
F0/Z1∑

xLi ∈ΦL∩S1∩Bc(o,l−1
L (Z1))

FL
i /lL(‖xLi ‖) +

∑
xNj ∈ΦN∩S1∩Bc(o,l−1

N (Z1))

FN
j /lN(‖xNj ‖) + σ2

PbMcsG(2π/Ncs)

,

(4.10)

where F0, FL
i and FN

j represent the Rayleigh fading channel from the typ-

ical user to the BS proving the minimum path loss, interfering LOS BS xLi

and interfering NLOS BS xNj respectively. The last term in the denomina-

tor of (4.10) represents the “effective noise” at the typical user, which is the

total noise power normalized by the transmit power and antenna gains. In

particular, the user antenna gain is G( 2π
Ncs

), and the BS antenna gain is Mcs

since it has 0 side lobe gain. We have applied the strong Markov property of

PPPs [43, Proposition 1.5.3] for obtaining (4.10): conditionally on the mini-

mum path loss Z1, the interference only depends on the interfering LOS and

NLOS BSs located inside S1 ∩ Bc(0, l−1
L (Z1)) and S1 ∩ Bc(0, l−1

N (Z1)) respec-

tively. Since the typical user will detect a BS if the received SINR of the

synchronization signal from that BS exceeds Γcs, the detection probability of

the typical BS sector is as follows:

Lemma 4.5.2. The probability for the typical user to detect the BS providing

the smallest path loss inside the typical BS sector is given by:

PMcs,Ncs(Γcs) =

∫ ∞
0

P̃Mcs,Ncs(z,Γcs)fZ1(z)dz, (4.11)

where P̃Mcs,Ncs(z,Γcs) denotes the conditional detection probability when the

minimum path loss inside the typical BS sector is z, which is given by:

P̃Mcs,Ncs(z,Γcs) = exp

(
− Γcszσ

2

PbMcsG(2π/Ncs)

)
V

(
z,Γcs,

λ

Kcs

)
, (4.12)
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where function V is defined in (4.3), and other parameters are defined in

Table 5.1.

Proof. The proof is provided in Appendix 4.10.2.

Since the events for the typical user to detect the various BS sectors

are i.i.d., we can easily derive the overall cell search success probability, i.e.,

the probability that the typical user is able to detect at least one BS sector,

in the following theorem:

Theorem 4.5.3. The probability for the typical user to succeed the cell search

is given by:

P̂Mcs,Ncs(Γcs) = 1− (1− PMcs,Ncs(Γcs))
Kcs , (4.13)

where PMcs,Ncs(Γcs) is derived in Lemma 4.5.2.

Remark 4.5.2. Intuitively, by increasing the number of beamforming directions

to search (i.e., Kcs), the synchronization signal received at the typical user

is subject to less effective noise as well as less interference on average, and

therefore a higher cell search success probability is expected. This observation

will be validated more rigorously in Section 4.8.

4.5.1.3 Serving Path Loss Distribution

Since the main objective of cell search is for the typical user to detect

its neighboring BSs and make cell association decision, it is important to de-

termine the path loss distribution from the typical user to its potential serving
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BS. For the rest of this chapter, we call the potential serving BS of the typical

user the “tagged BS”.

Denote by Z0 the path loss from the typical user to the tagged BS; it is

the minimum path loss from the typical user to the BSs inside the detected BS

sectors. If cell search fails, we assume the potential serving BS to the typical

user is infinitely far away and therefore Z0 is infinity. Based on Lemma 4.5.2,

we are able to derive the distribution of Z0 as follows:

Lemma 4.5.4. The CCDF of the path loss from the typical user to the tagged

BS is given by:

P(Z0 ≥ z0) =

(
PMcs,Ncs(z0,Γcs) + 1− PMcs,Ncs(Γcs)

)Kcs
, (4.14)

where PMcs,Ncs(z0,Γcs) ,
∫∞
z0
P̃Mcs,Ncs(z,Γcs)fZ1(z)dz. In addition, the PDF of

Z0 is given by:

fZ0(z0) = Kcs

(
PMcs,Ncs(z0,Γcs) + 1− PMcs,Ncs(Γcs)

)Kcs−1

P̃Mcs,Ncs(z0,Γcs)fZ1(z0),

where the notation and functions are defined in Table 5.1.

Proof. The proof is provided in Appendix 4.10.3.

Remark 4.5.3. It is straightforward that lim
z0→∞

P(Z0 ≥ z0) = 1− P̂Mcs,Ncs(Γcs),

which means the tail distribution of Z0 will approach the probability that the

typical user fails cell search. Since P̂Mcs,Ncs(Γcs) is non-decreasing with respect

to Kcs, Z0 will have a lighter tail as Kcs increases.
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4.5.2 Success Probability for Random Access

According to Section 4.4.2, users that succeed cell search will initiate

the random access procedure, where BSs and users sweep through Mra ×Nra

transmit-receive beam pairs over the uplink synchronously. Since each user

can initiate random access only upon successful cell search, the users that are

involved in the random access process has intensity λuP̂Mcs,Ncs(Γcs). For ana-

lytical tractability, we assume the user process during RA is approximated by

a homogeneous PPP with intensity λuP̂Mcs,Ncs(Γcs), and we will show in Re-

mark 4.5.4 that this is a reasonable approximation. Note Φ
′
u does not include

the typical user, which is assumed to be fixed at the origin by Slivnyak’s theo-

rem. Since random access is successful if the RA preamble of the typical user

can be decoded by the tagged BS without any collision, the success probability

for random access is derived in the following two parts.

4.5.2.1 No RA Preamble Collision Probability

The RA preamble collision happens at the typical user when there

exists another user such that: (1) it tries to associate with the tagged BS; (2)

it chooses the same RA preamble sequence as the typical user, and (3) the

tagged BS receives the RA preamble from this user under the same receive

beam as the typical user. Therefore, the probability that the typical user has

no RA premable collision is as follows:

Lemma 4.5.5. The probability that the typical user is not subject to RA
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preamble collision is approximated by:

Pco ≈ exp(−1.28λuP̂Mcs,Ncs(Γcs)

λNPAMra

). (4.15)

Proof. The proof is provided in Appendix 4.10.4.

4.5.2.2 Successful Reception Probability of RA Preamble

The RA preamble sequence of the typical user is successfully decoded

if its received SINR at the tagged BS is greater than or equal to Γra. For

simplicity, we assume perfect RA preamble sequences are used, such that they

have delta function as their auto-correlation functions and zero as their cross-

correlation functions. Thus, only the users choosing the same RA preamble

sequence as the typical user can potentially interferer with it. Conditionally on

the path loss from the typical user to the tagged BS, the successful reception

probability of the RA preamble is as follows:

Lemma 4.5.6. Denote by Z0 the path loss from the typical user to the tagged

BS, the probability that the RA preamble of the typical user can be successfully

received by the tagged BS is:

Pra(Z0,Γra) = exp

(
− ΓraZ0σ

2

PuMraG(2π/N)

)
U

(
Z0,Γra,

λuP̂Mcs,Ncs(Γcs)

NMraNPA

)
× U

(
Z0,

g(2π/N)

G(2π/N)
Γra, (1−

1

N
)
λuP̂Mcs,Ncs(Γcs)

MraNPA

)
, (4.16)

where N = max(Ncs, Nra), and U is defined in (4.3).

Proof. The proof is provided in Appendix 4.10.5.
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Since Pra(Z0,Γra) = 0 when Z0 = ∞, the overall success probability

of the initial access procedure can be obtained by combining Lemma 4.5.4,

Lemma 4.5.5 and Lemma 4.5.6, which gives:

Theorem 4.5.7. The initial access success probability for the typical user is

given by:

ηIA =

∫ ∞
0

Kcs

(
PMcs,Ncs(z0,Γcs) + 1− PMcs,Ncs(Γcs)

)Kcs−1

× P̃Mcs,Ncs(z0,Γcs)× Pco × Pra(z0,Γra)fZ1(z0)dz0, (4.17)

where the notation and functions are defined in Table 5.1.

Remark 4.5.4. Denote by Φ
′′
u the users that succeed initial access, Theo-

rem 4.5.7 shows the intensity of Φ
′′
u is λuηIA. Intuitively, Φ

′′
u is expected to

exhibit spatial clustering since the users in Φ
′′
u should be centered around BSs

and sparse at cell edges. In Fig. 4.3, we plot the empty space function (ESF) of

Φ
′′
u which is defined as F (r) , P0

Φ

(
min{‖u‖ : u ∈ Φ

′′
u} ≤ r

)
, where P0

Φ denotes

the Palm distribution of BS process Φ. Fig. 4.3 shows that Φ
′′
u has a smaller

ESF than its fitted PPP, which means Φ
′′
u exhibits clustered pattern [10]. In

fact, Fig. 4.3 also shows that for most range of r, the ESF of Φ
′′
u falls within the

95% confidence interval created by its fitted PPP. Therefore, we still assume

Φ
′′
u is modeled by a PPP with intensity λuηIA for analytical simplicity. The

accuracy of this assumption will be validated in Section 4.8.

Based on Theorem 4.5.7, the expected initial access delay defined in (4.5)

can be easily evaluated, which will be discussed in more detail in Section 4.8.
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Figure 4.3: Empty space function comparison of Φ
′′
u and its fitted PPP (M = 8,

N = 4).

4.6 Downlink SINR Distribution and UPT in Single-
Stage BF Approach

In this section, we will focus on the performance of the data trans-

mission phase for the single-stage beamforming approach, wherein the beam

refinement phase is not utilized. As a result, each BS will determine the

beam directions to its associated users only from the initial access phase,

which will be used during the data transmission phase. Therefore, we assume

max (Mcs,Mra) = MIA = M in this section.

During the data transmission phase in Fig. 4.1, each BS randomly

schedules one of its associated users, and the beam directions of the BS and

its scheduled user are aligned. In particular, the BS beamwidth and user

beamwidth are 2π
M

and 2π
N

respectively. We assume the typical user has suc-

ceeded initial access and is scheduled by the tagged BS, such that the CCDF
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of its conditional downlink data SINR is given by:

PDL(Γ) = P(SINRDL ≥ Γ|e0δ0 = 1), (4.18)

where SINRDL represents the SINR of the typical user, while e0 and δ0 repre-

sent the success indicator for cell search and random access respectively.

Since a random scheduler is used, the beam direction of all the inter-

fering BSs to the typical user are assumed to be independent and uniformly

distributed. Despite every interfering BS has positive probability to have zero

associated users, we assume it is actively transmitting for analytical simplicity.

Although this overestimates the interference at the typical user, we will show

in Section 4.8 that the effect is negligible. Based on the assumptions above,

the expression of PDL(Γ) is derived in the following lemma:

Lemma 4.6.1. The CCDF of the SINR of the typical user given it succeeds

the initial access is approximated by:

PDL(Γ)

=
1

ηIA

∫ ∞
0

exp

(
− Γzσ2

PbMN

)
Kcs

[
V (z,Γ,

λ

MKcs

)PMcs,Ncs(z,Γcs) + U(z,Γ,
λ

MKcs

)

× (1− PMcs,Ncs(Γcs))

]q−1[
PMcs,Ncs(z,Γcs)V (z,

g(2π/N)

G(2π/N)
Γ,

λ

MKcs

)

+ (1− PMcs,Ncs(Γcs))U(z,
g(2π/N)

G(2π/N)
Γ,

λ

MKcs

)

]Kcs−q
V (z,Γ,

λ

MKcs

)

× P̃Mcs,Ncs(z,Γcs)Pra(z,Γra)PcofZ1(z)dz,

where q = Kcs
N

, and other notation and functions are all defined in Table 5.1.

Proof. The proof is provided in Appendix 4.10.6.
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Given the data SINR distribution, we are able to derive the aver-

age user-perceived downlink throughput defined in (4.6). According to Re-

mark 4.5.4, the users that succeed initial access are assumed to form a ho-

mogeneous PPP with intensity λuηIA. As a result, the average number of

users that are associated to the tagged BS is 1 + 1.28λuηIA
λ

, which means the

average scheduling probability for the typical user is ηs = 1
1+1.28λuηIA/λ

. By

substituting ηs into (4.6), we can derive the average user-perceived downlink

throughput as follows:

Theorem 4.6.2. When the beam refinement phase is not used, the average

user-perceived downlink throughput is given by:

R̄ = max(0, 1− McsNcsτ +MraNraτ

T
)× ηIA

1 + 1.28λuηIA/λ
×
∫ ∞

0

W

ln 2

PDL(Γ)dΓ

1 + Γ
,

(4.19)

where PDL(Γ) is derived in Lemma 4.6.1, and other notations are defined in

Table 4.1.

4.7 Beam Refinement Phase Success Probability and
UPT in Two-Stage BF Approach

In this section, we will investigate the performance of the two-stage

beamforming phase. During the BRP, each BS transmits the BRRS to its

associated users by sweeping through M refined beams with beamwidth 2π
M

.

Denote by x0 the location of the tagged BS, we assume x0 satisfies that x0 ∈

S1 , S(o, 0, 2π
Kcs

) and x0 ∈ S̃1 , S(o, 2(q−1)π
M

, 2qπ
M

) for some q ∈ N+, wherein S1

and S̃1 denote the area of potential BSs the typical user can receive, when it
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is beam aligned with the tagged BS during cell search and BRP respectively.

For analytical simplicity, the side lobe gain for user beam is assumed to be 0

in this section. The BRP success probability given the typical user succeeds

IA is derived in the following theorem.

Lemma 4.7.1. Denote by H(ΓB) probability that the typical user can detect

BRRS from the tagged BS given it succeeds IA, then H(ΓB) is given by:

H(ΓB) =
1

ηIA

∫ ∞
0

Kcs exp(−ΓBz0σ
2

PbMN
)
W (z0,ΓB,Γcs,

λ
M
, 1)

V (z0,Γcs,
λ
M

)
GMcs,Ncs(z0,Γcs)

× P̄Mcs,Ncs(z0,Γcs)
Kcs−1PcoPra(z0,Γra)fZ1(z0)dz0, (4.20)

where P̄Mcs,Ncs(z0,Γcs) = 1 −
∫ z0

0
GMcs,Ncs(z,Γcs)fZ1(z)dz, other special func-

tions are defined in (4.3) and Theorem 4.5.7.

Proof. Please see Appendix 4.10.7.

During the data transmission phase in Fig. 4.1, each BS randomly

schedules one of its associated users. In particular, given the typical user suc-

ceeds the IA and is scheduled by the tagged BS, the tagged BS will transmit

downlink data using a narrow beam of beam-width 2π
M

if typical user succeeds

the BRP, otherwise a wide beam of beam-width 2π
MIA

is used. For analytical

simplicity, we assume every interfering BS is actively transmitting during the

data transmission phase with beam-width 2π
M

. In addition, since a random

scheduler is used, the beam direction of the interfering BS to the typical user

is assumed to be independent and uniformly distributed. Based on the above

assumptions, we can derive the following result:
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Lemma 4.7.2. Given the typical user succeeds IA and is scheduled by the

tagged BS, the data SINR coverage probability when BRP is used, i.e., P̃DL(Γ) ,

P(SINRDL ≥ Γ|IA), is approximated by:

P̃DL(Γ) =
1

ηIA

∫ ∞
0

KcsGMcs,Ncs(z,Γcs)(P̄Mcs,Ncs(z,Γcs))
Kcs−q

× PcoPra(z,Γra)
{

exp

(
−(Γ + ΓB)zσ2

PbMN

)
V (z,Γ,

λ(M −Kcs)

M2Kcs

)

×W (z,Γ,ΓB,
λ

M
,M)(P̂Mcs,Ncs,M(z,Γ,Γcs))

q−1 + exp(− Γzσ2

PbMIAN
)

× V (z,mΓ,
λ(M −Kcs)

M2Kcs

)×
(
V (z,mΓ,

λ

M2
)− exp(− ΓBzσ

2

PbMN
)

×W (z,mΓ,ΓB,
λ

M
,M)

)
(P̂Mcs,Ncs,M(z,mΓ,Γcs))

q−1

}
fZ1(z)dz,

where:

P̂Mcs,Ncs,M(z,Γ,Γcs) =

[
V (z,Γ,

λ

MKcs

)

∫ ∞
z

GMcs,Ncs(z,Γcs)

× fZ1(z)dz + U(z,Γ,
λ

MKcs

)(1−
∫ ∞

0

GMcs,Ncs(z,Γcs)fZ1(z)dz)

]
,

q = max(Mcs,Ncs)
N

, and other special functions are defined in (4.3) and Theo-

rem 4.5.7.

Lemma 4.7.2 can be proved by following similar steps to the proof of

Lemma 4.6.1. In particular, given Z1 = z and the typical user succeeds IA,

the downlink coverage probability can be derived by adding up the coverage

probability when the typical user succeeds BRP and when it fails the BRP.

We omit the detailed proof here.
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Given the data SINR distribution, we are able to derive the average

UPT defined in (4.6). As shown earlier, the users involved in the data trans-

mission phase can be accurately modeled by a homogeneous PPP with inten-

sity λuηIA, such that the average scheduling probability for the typical user is

ηs = 1
1+1.28λuηIA/λ

. By substituting ηs into (4.6), the average UPT is derived

as follows:

Theorem 4.7.3. When the beam refinement phase is used, the average user-

perceived throughput is approximated by:

R̄ = max

(
0, 1− (McsNcs +MraNra +M)τ

T

)
ηIA

1 + 1.28λuηIA
λ

∫ ∞
0

W

ln 2

P̃DL(Γ)dΓ

1 + Γ
,

(4.21)

where P̃DL(Γ) is obtained in Lemma 4.7.2.

4.8 Numerical Evaluation

In this section, the initial access delay and user-perceived throughput

performance are numerically evaluated for the proposed initial access proto-

cols. Specifically, we first investigate the performance of the single-stage BF

approach, then the performance of the two-stage BF approach.

We consider a mmWave cellular system with the same frame structure

and synchronization signal configuration as the one specified in [102]. Specif-

ically, the system operates at the 28 GHz carrier frequency with 100 MHz

bandwidth, the sub-carrier spacing is 75 kHz, and the corresponding OFDM

symbol length (including cyclic prefix) is 14.3 µs. Each synchronization sig-
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nal/RA preamble sequence occupies only one OFDM symbol (i.e., τ = 14.3

µs), and the beam reference signal is also transmitted in the same symbol to

uniquely identify the beam index. The synchronization signal/beam reference

signal transmission period is 20 ms, which means T = 20 ms. The default

system parameter values are summarized in Table 4.1.

In order to simulate the initial access and data transmission procedures,

we have generated 50 realizations of the BS PPP, and 50 realizations of the user

PPP given every BS PPP, inside a 1.5 km × 1.5 km network area. For each

pair of the BS and user PPPs, we first simulate the initial access procedure

according to Section 4.4. Then the downlink data transmission phase (also

the beam refinement phase if it is used) is simulated, where each BS either

randomly schedules one of its associated users, or keeps silent if it has no user

to serve. By averaging over all the 2500 combinations of BS and user PPPs,

different performance metrics of this mmWave system are recorded. BS and

user locations are simulated by PPPs since currently there is no location data

for mmWave system, and PPPs have already been shown to be an accurate

model for mmWave system design [118–121,123,124].

4.8.1 Performance of the Single-stage BF Approach

4.8.1.1 Baseline IA Protocol Performance

The cell search success probability is plotted in Fig. 4.4 for the general-

ized LOS ball model and the exponential blockage model. It can be observed

from Fig. 4.4 that the analytical result in Theorem 4.5.3 is accurate. In ad-
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dition, Fig. 4.4 shows that when BSs transmit omni-directionally and users

receive omni-directionally, the cell search success probability is relatively low

for various Γcs, which means the system is subject to significant coverage is-

sues when cell search is performed omni-directionally as LTE. By contrast,

when beam sweeping is applied, the cell search success probability can be sig-

nificantly improved even with a small value of max(Mcs, Ncs) such as 4. As

Mcs or Ncs is increased, the cell search probability can be further improved,

so beam sweeping needs to be applied to guarantee a reasonable cell search

performance. In the remaining simulations, we use Γcs = −4 dB as the SINR

threshold to detect the synchronization signals, above which a sufficiently small

miss detection probability (e.g., 1%) can be achieved [109].
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Figure 4.4: Cell search success probability.

Fig. 4.5 shows the CCDF of the path loss from the typical user to the

tagged BS, which is derived in Lemma 4.5.4. As we increase Mcs or Ncs, the

CCDF of the path loss decreases, especially at the tail of the distribution.

Note when Mcs = Ncs = 1, the tagged BS is the BS providing the minimum
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path loss to the typical user, which coincides with the conventional minimum

path loss association rule [2,118,119,121,123]. By contrast, if beam sweeping

is implemented for cell search, the typical user can connect to other BSs even

if the BS providing the minimum path loss is unable to be detected. As a

result, the typical user will have a smaller path loss to the tagged BS almost

surely as Mcs or Ncs increases. This fact further demonstrates the benefit of

beam sweeping for cell search.
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Figure 4.5: Path loss distribution from the typical user to tagged BS.

Fig. 4.5 shows the CCDF of the path loss from the typical user to the

tagged BS, which is derived in Lemma 4.5.4. As we increase Mcs or Ncs, the

CCDF of the path loss decreases, especially at the tail of the distribution.

Note when Mcs = Ncs = 1, the tagged BS is the BS providing the minimum

path loss to the typical user, which coincides with the conventional minimum

path loss association rule [2,118,119,121,123]. By contrast, if beam sweeping

is implemented for cell search, the typical user can connect to other BSs even if

the BS providing the minimum path loss is unable to be detected. As a result,
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Figure 4.6: Probability of no RA preamble collision.

the typical user will have a smaller path loss to the tagged BS almost surely

as Mcs or Ncs increases. This fact further demonstrates the benefit of beam

sweeping for cell search. Actually, all the CCDF curves in Fig. 4.5a have an

inflection point at 101.4 dB. This is because for the LOS ball blockage model,

the serving BS could be either LOS or NLOS when the path loss is smaller

than 101.4 dB, while it is NLOS almost surely when the path loss is higher

than 101.4 dB.

Fig. 4.6 plots the probability that the typical user is not subject to RA

preamble collisions versus the number of BS beams M = max(Mcs,Mra). Dif-

ferent parameters for the two blockage models are considered, where blockage

becomes more severe as p decreases in the generalized LOS ball model, or µ

decreases in the exponential blockage model. It can be observed from Fig. 4.6

that Lemma 4.5.5 is an accurate approximation to the actual simulation re-

sults, which shows that it is accurate to approximate the users that succeed

cell search by PPP. In addition, Fig. 4.6 shows that the probability of no RA
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preamble collision Pco is relatively insensitive to the underlying blockage con-

ditions, and Pco increases as the number of BS beams increases. Since Pco

remains consistently high (greater than 95%) for different blockage conditions

and various M values, RA preamble collision is therefore not the performance

bottleneck for the baseline protocol. It is clear from Lemma 4.5.5 that this is a

result of the 64 RA preamble sequences and beam sweeping at the BS during

random access.

The initial access delay, which can be derived from Theorem 4.5.7,

is plotted in Fig. 4.7 for both blockage models. Despite some approximations

used in deriving Theorem 4.5.7, Fig. 4.7 validates the accuracy of the analytical

results. In addition, Fig. 4.7 shows that as blockage becomes less severe, the

expected initial access delay decreases as a result of the improved initial access

success probability. Depending on the propagation environment, the optimal

expected initial access delay in our simulations ranges from 2.2 ms to 4.1 ms

for the generalized LOS ball model, and 1.2 ms to 5.0 ms for the exponential

blockage model.

According to Fig. 4.7, the expected initial access delay is relatively high

when the number of BS beams is small, which is because the typical user needs

more initial access cycles until it can connect to the network. By increasing

the number of BS beams, despite the typical user has higher probability to

succeed within one initial access cycle, the overhead for initial access starts to

become more dominant. As a result, there exists an optimal BS beam number

(or BS beamwidth) in terms of the expected initial access delay. For example,
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Figure 4.7: Expected initial access delay performance.

given Rc = 100 m for the generalized LOS ball model, this optimal beamwidth

is 45◦, 22.5◦ and 15◦ when p is equal to 1, 0.5 and 0.25 respectively. In fact,

as blockage becomes more severe, the optimal BS beamwidth is decreasing for

both blockage models, which means a more robust link with higher antenna

gain is needed in order to quickly establish the connection. In addition, we

have also verified that the optimal BS beamwidth in terms of initial access

delay is non-decreasing as user density increases, which is mainly because a

narrower beam at the BS will reduce the collision of RA preambles among

different users.

Fig. 4.8 plots the downlink data SINR coverage probability given the

typical user succeeds the initial access, where the BS and user beamwidth

are 30◦ and 90◦ respectively. Although all interfering BSs are assumed to be

active in deriving Lemma 4.6.1, the difference between the analytical results

and simulation results in Fig. 4.8 is negligible. The same trend has been

observed for other BS and user beamwidth values as well, which validates the
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Figure 4.8: CCDF of data SINR given successful initial access.

accuracy of Lemma 4.6.1. In addition, we can observe that the conditional

downlink coverage probability improves as blockage becomes less severe. In

fact, the conditional SINR CCDF in Fig. 4.8 is relatively high for most SINR

thresholds, which is mainly because the typical user should reside in a location

with favorable propagation conditions to succeed the initial access. Another

reason for the improved CCDF is that unlike previous works that require the

tagged BS to be the BS providing the minimum path loss, the typical user is

actually able to connect to other BSs if the BS providing the minimum path

loss is blocked or in deep fade.

The average user-perceived downlink throughput versus the number of

BS beams is plotted in Fig. 4.9 for both blockage models. Fig. 4.9 shows the

average UPT has a steep increase when the number of BS beams increases from

a very small value to a medium value. This is mainly due to a much improved

link quality and relatively low initial access overhead in this range. However,

as the number of BS beams further increases, the initial access overhead starts
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to become more dominant, which leads to a steady decrease of the average

UPT. In terms of the average UPT, Fig. 4.9 shows the optimal BS beamwidth

does not vary too much for different blockage conditions, which is typically

between 10◦ to 18◦. This is because the average UPT is affected by multiple

counterbalancing factors such as the initial access overhead, success probability

of initial access, and scheduling factors. For example, a high initial access

success probability will lead to a heavily-loaded cell for the tagged BS, such

that the typical user has smaller probability to be scheduled.

Therefore, for the baseline protocol, depending on the blockage condi-

tion and which metric is more important, the optimal BS beamwidth could

vary. When blockage is not very significant, a wide BS beamwidth (e.g. 45◦)

is preferred to reduce the initial access delay, while a narrow BS beamwidth

(e.g. 15◦) is preferred to achieve higher UPT performance. By contrast, when

blockage is severe, a narrow BS beamwidth (e.g. 15◦) could achieve good

performance for both initial access delay and average UPT.

4.8.1.2 Performance Comparison for Different IA Protocols

In this part, based on Theorem 4.5.7 and Theorem 4.6.2, we com-

pare the expected initial access delay and average user-perceived downlink

throughput3 for the four initial access protocols in Table 4.2. In making the

comparisons, we consider both a severely blocked condition (e.g., Rc = 100 m,

3The accuracy of the analytical results for the other three protocols can be validated
similar to the baseline protocol, so only analytical results are shown in this section.
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Figure 4.9: Average user-perceived downlink throughput performance, where
the rectangle area denotes the range for quasi-optimal BS beam number.

p = 0.25 for generalized LOS ball model; µ = 25 m for exponential blockage

model), and also a lightly blocked condition (e.g., Rc = 100 m, p = 1 for

generalized LOS ball model; µ = 100 m for exponential blockage model) for

both blockage models. All the other system parameters remain the same as

in Table 5.1. The expected initial access delay and average UPT comparisons

for the three protocols are plotted in Fig. 4.10 and Fig. 4.11 respectively.

Comparison of Expected Initial Access Delay: Baseline and fast

CS outperform omni RX in terms of the expected initial access delay. The

expected initial access delay is plotted in Fig. 4.10, which shows that the

omni RX protocols always have higher initial access delay than the baseline

and fast CS protocols. The main reason is that omni RX protocol requires

the BS to receive omni-directionally during random access, which leads to a

high RA preamble collision probability according to Lemma 4.5.5. Specifically,

in contrast to the baseline and fast CS protocols wherein Pco is consistently
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higher than 0.95, Pco for the omni RX protocol is around 0.82 for all blockage

conditions and various BS beamwidth values. In addition, the RA pream-

ble decoding probability for the omni RX protocol is also lower (around 5%)

compared to the other two protocols, which can be analytically shown from

Lemma 4.5.6. Both factors make the expected initial access delay under omni

RX protocol significantly higher than the other two protocols.

In terms of the expected initial access delay, Fig. 4.10 also shows

whether or not the baseline protocol outperforms the fast CS protocol depends

on the severity of blockage. Specifically, under a severely blocked condition,

the baseline protocol has smaller initial access delay than the fast CS protocol.

This is mainly because the baseline protocol has better link quality under both

cell search and random access phases, which leads to significantly higher initial

access success probability than the fast CS protocol. By contrast, under light

blockage, the fast CS protocol is also able to achieve a sufficiently high initial

access success probability. As a result, the fast CS protocol will outperform

the baseline protocol due to a much lower initial access overhead.

Comparison of the Average User-perceived Downlink Through-

put: In terms of the average UPT, the omni RX protocol and fast CS protocol

generally outperform the baseline protocol. Despite having smaller initial ac-

cess success probability than the baseline, the following reasons contribute to

the high UPT for omni RX and fast CS protocols. First, both protocols have

the lowest initial access overhead, which is significantly lower than the other

two protocols, especially when the number of BS beams M is high. Second,
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Figure 4.10: Comparison of expected initial access delay.

despite both protocols having lower initial access success probability than the

baseline, the typical user actually has higher scheduling probability since it

will observe a lightly loaded cell once it succeeds at initial access. Third,

under the omni RX and fast CS protocols, the typical user will have higher

conditional downlink data SINR than the baseline, because it needs more fa-

vorable propagation in order to succeed at initial access. Despite the baseline

protocol having the highest initial access success probability, the above factors

render it inferior in terms of UPT versus the other protocols. Compares to

the omni RX protocol, Fig. 4.11 shows that the fast CS protocol achieves a

similar UPT performance under a lightly blocked condition, while it provides

a much smaller UPT under a severely blocked condition. Another observation

from Fig. 4.11 is that for omni RX and fast CS protocols, the average UPT

increases as the number of BS beams increases, which means a narrow beam

(e.g., 7.5◦) is preferred. In fact, an optimal BS beamwidth still exists as we
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Figure 4.11: Comparison of average user-perceived downlink throughput.

continue to increase the number of BS beams, but such an optimal beamwidth

could be too narrow to implement in a real system.

In summary, when the beam refinement phase is not adopted, the base-

line protocol is mainly beneficial for delay-sensitive applications since it pro-

vides a small initial access delay, especially when blockage is severe. However,

due to the high initial access overhead, the baseline protocol also has a poor

user-perceived downlink throughput performance. The omni RX protocol pro-

vides the best user-perceived downlink throughput performance, but it is un-

likely to be adopted unless the network is delay-tolerant. By contrast, the fast

CS protocol wherein BS transmits omni-directionally and user applies beam

sweeping during cell search, generally gives a good trade-off between the initial

access delay and user-perceived throughput performance, especially under a

lightly blocked condition.
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4.8.2 Performance of the Two-stage BF Approach

In this part, the performance of the two-stage beamforming approach

is investigated under the exponential blockage model.

4.8.2.1 Beam Refinement Phase Success Probability

Fig. 4.12 plots the BRP success probability of the typical user given it

succeeds the IA under the baseline protocol. Different beam refinement factor

m and blockage conditions are considered. For all these scenarios, Fig. 4.12

shows the probability for the typical user to succeed the BRP is over 95%.

Same observation also applies to the other IA protocols as well. This high

conditional BRP success probability is because compared to the IA phase, the

BSs have higher antenna gain and will observe fewer interferers in the BRP.

As a result, given the typical user succeeds the IA, it should also succeed the

BRP unless it is subject to a very deep fade.
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4.8.2.2 Performance of Data Transmission Phase

Fig. 4.13 plots the downlink SINR coverage probability given the typi-

cal user succeeds initial access and is scheduled by the tagged BS. The BS

beamwidth during the initial access is 45◦, and the beam refinement fac-

tor m = 4 in Fig. 4.13. The difference between the analytical results and

simulation results in Fig. 4.13 is negligible, which validates the accuracy of

Lemma 4.6.1.

Given the accuracy of Theorem 4.5.7, Lemma 4.7.1 and Lemma 4.7.2,

Fig. 4.14 shows the average UPT of the three IA protocols. It can be observed

that given the total number of BS beams to search in BRP (i.e. M), the

average UPT increases with beam refinement factor m for all three protocols.

This is due to the fact that for a fixed M , there is less IA overhead (i.e.,

MIA = M/m) as m increases. By considering both Fig. 4.7 and Fig. 4.14, we

can find that the fast CS protocol generally gives the best trade-off between

the IA delay and UPT.
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Figure 4.14: Comparison of average UPT with BRP.

4.8.3 Two-stage BF Approach v.s. Single-stage BF Approach

Fig. 4.15 plots the analytical average UPT under the proposed two-

stage BF approach versus the single stage approach4. For the single-stage

approach, BS will search all M beams during IA; for the two stage approach,

the BS will search MIA wide beams in IA, then apply the BRP to search

M = mMIA refined beams. Fig. 4.15 shows that the baseline protocol has

significant UPT gain under the two-stage approach. This is mainly because

when m > 1, the total overhead for beam searching under the two stage

approach, which is NMIA + MIA + M symbols, is much smaller than that

under the single stage approach, which is MN + M symbols. However, the

fast CS and the omni RX protocols have similar UPT as the single stage

approach since the beam searching overhead under the two stage approach,

which is MIA + N + M symbols, is larger than that under the single stage

approach, which is M + N symbols. Despite having slightly smaller average

4The side lobe gain for user is assumed to be 0 for both approaches in this comparison.
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UPT, the main benefit of the two stage approach for fast CS and omni RX is

that we can adapt the beam refinement factor m to achieve good IA delay and

UPT simultaneously. For example, when the LOS region size µ = 100m and

m = 4, the fast CS has near optimal expected IA delay when MIA ∈ [20, 24],

and it also has optimal average UPT when M ∈ [80, 96].

4.9 Summary

This chapter is the first work to propose a stochastic geometry based

analytical framework to investigate the effects of initial access protocol design

on the system level performance of mmWave cellular networks. We consider

a high mobility scenario where the BS PPP and user PPP are independently

re-shuffled across initial access cycles, which leads to i.i.d. performance for

the typical user in different cycles. The proposed framework can derive the

joint performance of the initial access phase, beam refinement phase, and data

transmission phase, in a typical initial access cycle. In particular, the main
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technical challenge is that temporal correlations exist for different phases in

the same cycle due to common BS and user locations. Such correlations can

be handled by equally dividing the plane into non-overlapping BS sectors, and

deriving the typical user’s performance under each sector in different phases.

Several important metrics including the expected initial access delay and av-

erage user-perceived throughput can be analytically derived through the pro-

posed methodology, which are given by unified expressions for various initial

access protocols. We have shown through these expressions that the baseline

exhaustive search protocol is able to achieve the smallest initial access delay

when blockage is severe, while the best trade-off between the initial access

delay and user-perceived downlink throughput can be achieved by a fast cell

search protocol.

4.10 Appendix

4.10.1 Proof of Lemma 4.5.1

Inside the typical BS sector, since the minimum path loss to the typical

user is either from the nearest LOS BS or the nearest NLOS BS, we have:

P(Z1 ≥ z)
(a)
= P

(
min

x∈ΦL∩S1

‖x‖ ≥ l−1
L (z)

)
×P
(

min
x∈ΦN∩S1

‖x‖ ≥ l−1
N (z)

)
(b)
= exp

(
−2πλ

Kcs

∫ ( z
βL

)
1
αL

0

h(r)rdr

)
exp

(
−2πλ

Kcs

∫ ( z
βN

)
1
αN

0

(
1− h(r)

)
rdr

)
,

where (a) is because ΦL and ΦN are independent, and (b) is from void proba-

bility of PPP. The proof can be concluded by taking the derivative of P(Z1 < z)

with respect to z.
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4.10.2 Proof of Lemma 4.5.2

Given the minimum path loss inside the typical BS sector is Z1 = z,

the conditional success probability to detect the BS providing the minimum

path loss is:

P(SINRSS(z) > Γcs)

(a)
= exp

(
− Γcszσ

2

PMcsG(2π/Ncs)

)
E
[
exp(−Γcsz

∑
xLi ∈ΦL∩S1∩Bc(o,l−1

L (z))

FL
i /lL(xLi ))

]

× E
[
exp(−Γcsz

∑
xNj ∈ΦN∩S1∩Bc(o,l−1

N (z))

FN
j /lN(xNj ))

]
(b)
= exp

(
− Γcszσ

2

PMcsG(2π/Ncs)

)
E
[ ∏

xLi ∈ΦL∩S1∩Bc(o,l−1
L (z))

lL(xLi )

lL(xLi ) + Γcsz

]

× E
[ ∏
xNj ∈ΦN∩S1∩Bc(o,l−1

N (z))

lN(xNj )

lN(xNj ) + Γcsz

]
,

where (a) is from the expression of SINRSS(z) in (4.10), and (b) is because

all the fadings variables are i.i.d. exponentially distributed with parameter

1. Therefore, P̃Mcs,Ncs(z,Γcs) can be obtained by applying the probability

generating functional of the PPP [44]. Finally, the overall detection probability

of the typical BS sector is obtained by de-conditioning on z.

4.10.3 Proof of Lemma 4.5.4

Note that if the typical user is unable to detect a certain BS sector, the

BSs inside this sector can be seen as infinitely far away from the typical user,

or equivalently having an infinite path loss. Therefore, Z0 ≥ z0 is equivalent

to the fact that for any BS sector, either this sector cannot be detected, or
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this sector is detected and the minimum path loss from the typical user to BSs

inside this sector is greater than or equal to z0. For the typical BS sector, the

above events happen with the following probability:

P(Z1 ≥ z0|SINRSS(Z1) ≥ Γcs)× P(SINRSS(Z1) ≥ Γcs) + P(SINRSS(Z1) < Γcs)

=P(Z1 ≥ z0 ∩ SINRSS(Z1) ≥ Γcs) + 1− P(SINRSS(Z1) ≥ Γcs)]

=

∫ ∞
0

1z1≥z0P(SINRSS(z1) ≥ Γcs)fZ1(z1)dz1 + 1− PMcs,Ncs(Γcs)

=PMcs,Ncs(z0,Γcs) + 1− PMcs,Ncs(Γcs), (4.22)

where Z1 denotes the minimum path loss from typical user to BSs inside the

typical BS sector. Finally, we can obtain (4.14) since the detection events for

the BS sectors are independent from each other, and Z0 ≥ z0 is equivalent

to (4.22) is satisfied by all BS sectors.

4.10.4 Proof of Lemma 4.5.5

Since the association from the typical user to the tagged BS is station-

ary [132], the mean associated cell size of the tagged BS is given by: 1.28
λ

. In

particular, the factor of “1.28” is due to the fact that the association cell of

the tagged BS is an area-biased version to that of a typical BS [132], whose

accuracy has been verified in [133]. Since each user randomly chooses its RA

preamble sequence out of NPA total sequences, and the receive beamwidth of

the tagged BS is 2π
Mra

, the probability that a user associated with the tagged

BS collides with the typical user for random access is 1
NPAMra

. As will be

demonstrated in Remark 4.5.4, the user process during random access can be
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accurately modeled by a stationary PPP with intensity λuP̂Mcs,Ncs(Γcs). There-

fore, the proof can be concluded from the void probability of the PPP [44].

4.10.5 Proof of Lemma 4.5.6

Without loss of generality, denote the location of the tagged BS by x0,

and assume the first transmit beam of the typical user and the m-th (1 ≤

m ≤ Mra) receive beam of the tagged BS are aligned. Since RA preamble

sequences are randomly chosen, the users with the same RA preamble as the

typical user form a PPP with intensity λu
P̂Mcs,Ncs (Γcs)

NPA
, which is denoted by Φ

′
u.

Depending on whether the link to the tagged BS with distance r is LOS or not,

the users in Φ
′
u are further divided into two non-homogeneous PPPs Φ

′
u,L and

Φ
′
u,N , with the intensities being λu

P̂Mcs,Ncs (Γcs)

NPA
h(r) and λu

P̂Mcs,Ncs (Γcs)

NPA
(1−h(r))

respectively.

When the typical user and the tagged BS are beam aligned, the SINR

of the typical user’s RA preamble sequence at the tagged BS is given by:

SINRPA(Z0)

=
F0MraG(2π

N
)/Z0∑

uLi ∈Φ
′
u,L∩S(x0,

2(m−1)π
Mra

, 2mπ
Mra

)

FLi (G( 2π
N

)δLi +g( 2π
N

)(1−δLi ))

lL(‖uLi −x0‖)
+

∑
uNj ∈Φ

′
u,N∩S(x0,

2(m−1)π
Mra

, 2mπ
Mra

)

FNj (G( 2π
N

)δNj +g( 2π
N

)(1−δNj ))

lN (‖uNj −x0‖)
+ σ2

Pu

,

(4.23)

where F0, FL
i and FN

j represent the Rayleigh fading channels from the users

to the tagged BS. In addition, δLi (δNj ) is equal to 1 if the main lobe of uLi

(uNj ) covers the tagged BS and 0 otherwise. For the first three initial access

protocols in Table 4.2, the transmit beam directions for the users in Φ
′
u are
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decided from the cell search phase, which are assumed to be independent and

uniformly distributed with E[δLi ] = E[δNj ] = 1
N

for ∀i, j. For the omni RX

protocol, δLi (δNj ) is 1 if the beam direction of uLi (uNj ) is the same as the

typical user, which has beamwidth 2π
N

. Since all the fading variables are i.i.d.

exponentially distributed, the PGFL of PPP can be applied to (4.23) similar

to Lemma 4.5.2, which completes the proof.

4.10.6 Proof of Lemma 4.6.1

Since P(SINRDL ≥ T |e0δ0 = 1) = P(SINRDL≥T∩e0δ0=1)
ηIA

, we will focus on

the derivation of P(SINRDL ≥ T ∩ e0δ0 = 1). Without loss of generality,

we assume the n-th receive beam of the typical user and the m-th transmit

beam of the tagged BS are aligned during data transmission. We denote

by Si , S(o, 2π(i−1)
Kcs

, 2πi
Kcs

) the i-th BS sector for 1 ≤ i ≤ Kcs. Note that

during data transmission, the typical user is able to receive from the BSs

inside S(o, 2π(n−1)
N

, 2πn
N

) under its main lobe. Therefore, there are q = Kcs
N

BS sectors within S(o, 2π(n−1)
N

, 2πn
N

), which are denoted by S̃1, S̃2, ..., S̃q, with

S̃i = S(o, 2π(n−1)
N

+ 2π(i−1)
Kcs

, 2π(n−1)
N

+ 2πi
Kcs

) for 1 ≤ i ≤ q.

Among all the BS sectors, we denote by Si1 , Si2 , ..., Sik the sectors that

are detected during cell search, where 1 ≤ k ≤ Kcs. In addition, we as-

sume Si1 , Si2 , ..., Sis are among S̃1, S̃2, ..., S̃q, where max(1, k−Kcs + q) ≤ s ≤

min(q, k). Given k and s, we can obtain that there are: (1)
(
N
1

)
choices for

receive beam direction of typical user; (2)
(
q
1

)
choices for the BS sector con-

taining the tagged BS among S̃1 to S̃q; (3)
(
q−1
s−1

)
number of combinations for
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the other s−1 detected BS sectors among S̃1 to S̃q; and (4)
(
Kcs−q
k−s

)
number of

combinations for the detected BS sectors that are not among S̃1 to S̃q. Thus

we have the following relation:

P(SINRDL ≥ Γ ∩ e0δ0 = 1)

=

∫ ∞
0

Kcs∑
k=1

min(q,k)∑
s=max(1,k−Kcs+q)

(
N

1

)(
Kcs − q
k − s

)(
q

1

)(
q − 1

s− 1

)
P(SINRDL ≥ Γ ∩ A)

× P k−s
Mcs,Ncs

(z,Γcs)(1− PMcs,Ncs(Γcs))
Kcs−q−k+sfZ1(z)dz, (4.24)

where z in the integration represents the path loss from the typical user to

the tagged BS. In addition, A denotes the event that among S̃1 to S̃q, Si1

contains the tagged BS which the typical user is successfully connected to, Si2

to Sis are detected during cell search, while the rest are not detected. From

the definition of A, it is easy to obtain that:

P(A) =P̃Mcs,Ncs(z,Γcs)× Pco × Pra(z,Γra)× P s−1
Mcs,Ncs

(z,Γcs)

× (1− PMcs,Ncs(Γcs))
q−s. (4.25)

Since random access is an uplink procedure which does not dependent on the

BS process given z, SINRDL can be expressed as follows given event A happens:

SINRDL =
PbMG(2π

N
)F0/z

I1 + I2 + I3 + I4 + σ2
, (4.26)

where:

I1 =
∑

xLi ∈ΦL∩(∪sj=1Sij )∩Bc(o,l−1
L (z))

PbMG(
2π

N
)FL

i δ
L
i /lL(‖xLi ‖) +

∑
xNi ∈ΦN∩(∪sj=1Sij )∩Bc(o,l−1

N (z))

PbMG(
2π

N
)FN

i δ
N
i /lN(‖xNi ‖),
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I2 =
∑

xLi ∈ΦL∩(S(o,
2π(i−1)
Kcs

, 2πi
Kcs

)\(∪sj=1Sij ))

PbMG(
2π

N
)FL

i δ
L
i /lL(‖xLi ‖) +

∑
xNi ∈ΦN∩(S(o,

2π(i−1)
Kcs

, 2πi
Kcs

)\(∪sj=1Sij ))

PbMG(
2π

N
)FN

i δ
N
i /lN(‖xNi ‖),

I3 =
∑

xLi ∈ΦL∩(∪kj=s+1Sij )∩Bc(o,l−1
L (z))

PbMg(
2π

N
)FL

i δ
L
i /lL(‖xLi ‖) +

∑
xNi ∈ΦN∩(∪kj=s+1Sij )∩Bc(o,l−1

N (z))

PbMg(
2π

N
)FN

i δ
N
i /lN(‖xNi ‖),

I4 =
∑

xLi ∈ΦL\(S(o,
2π(i−1)
Kcs

, 2πi
Kcs

)∪(∪kj=s+1Sij ))

PbMg(
2π

N
)FL

i δ
L
i /lL(‖xLi ‖) +

∑
xNi ∈ΦN\(S(o,

2π(i−1)
Kcs

, 2πi
Kcs

)∪(∪kj=s+1Sij ))

PbMg(
2π

N
)FN

i δ
N
i /lN(‖xNi ‖).

(4.27)

I1 and I2 (I3 and I4) represent the interference from BSs that user receives

under its main lobe (side lobe), which come from the BS sectors that are

detected and not detected during cell search respectively. In (4.27), F0, FL
i ,

and FN
i represent the exponential fading variables. The indicators δLi and δNi

in (4.27) represent whether the transmit beam direction of the interfering BS

covers the typical user or not, which happens with probability 1
M

. Therefore,

based on (4.26) and (4.27), as well as the PGFL of PPPs, we can derive the

following result:

P(SINRDL > Γ|A)

= exp

(
− Γzσ2

PbMG(2π
N

)

)(
V (z,Γ,

λ

MKcs

)

)s(
U(z,Γ,

λ

MKcs

)

)q−s
×
(
V (z,

g(2π/N)

G(2π/N)
Γ,

λ

MKcs

)

)k−s(
U(z,

g(2π/N)

G(2π/N)
Γ,

λ

MKcs

)

)Kcs−q−k+s

.

(4.28)

For ∀a, b, c, d ∈ R, we have:

(a+ b)q−1(c+ d)Kcs−q

=

Kcs−q∑
m=0

q−1∑
l=0

(
Kcs − q
m

)(
q − 1

l

)
albq−1−lcmdKcs−q−m
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(a)
=

Kcs∑
k=1

min(q,k)∑
s=max(1,k−Kcs+q)

(
Kcs − q
k − s

)(
q − 1

s− 1

)
as−1bq−sck−sdKcs−k−q+s, (4.29)

where (a) is obtained by letting k = m+ l+ 1 and s = l+ 1. Finally, the proof

is concluded by substituting (4.25), (4.28) and (4.29) into (4.24).

4.10.7 Proof of Lemma 4.7.1

In order to succeed the BRP, the typical user needs to succeed IA and

detect the BRRS from the tagged BS. Denote by Z1 the path loss from the

typical user to tagged BS, and A the event that for every BS sector other

than S1, it is either not detected during cell search, or the path loss from BSs

inside this sector to the typical user is larger than Z1. Given the path loss

from the typical user to the tagged BS, BRP is independent of event A. Since

ηIA = P(e0δ0 = 1), we only need to derive the joint success probability of IA

and BRP. When the typical user and tagged BS are beam aligned, the SINR

of synchronization signal and BRRS are:

SINRSS =
F0/Z1∑

xLi ∈ΦL∩S1

FLi 1‖xL
i
‖≥l−1

L
(Z1)

lL(‖xLi ‖)
+
∑

xNj ∈ΦN∩S1

FNj 1‖xN
j
‖≥l−1

N
(Z1)

lN (‖xNj ‖)
+ σ2

PbMcsNcs

,

SINRBRRS =
F̃0/Z1∑

xLi ∈ΦL∩S̃1

F̃Li 1‖xL
i
‖≥l−1

L
(Z1)

lL(‖xLi ‖)
+
∑

xNj ∈ΦN∩S̃1

F̃Nj 1‖xN
j
‖≥l−1

N
(Z1)

lN (‖xNj ‖)
+ σ2

PbMN

,

where F0, FL
i , FN

j , F̃0, F̃L
i , and F̃N

j represent the independent Rayleigh fading

channels. By applying the probability generating functional of PPP [2], we
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can derive that the conditional BRP success probability is:

H(z0,ΓB) ,P(SINRBRRS > ΓB|SINRSS > Γcs, Z1 = z0)

= exp(−ΓBz0σ
2

PbMN
)×

W (z0,ΓB,Γcs,
λ
M
, 1)

V (z0,Γcs,
λ
M

)
. (4.30)

We know from Theorem 4.5.7 that P(SINRSS > Γcs|Z1 = z0) = GMcs,Ncs(z,Γcs),

P(A|Z1 = z0) = P̃Mcs,Ncs(z0,Γcs)
Kcs−1, and RA is successful with probability

P̃ra(z0,Γra). Since BRP is independent of A and RA given Z1, this proof can

be concluded by de-conditioning on the distribution of Z1.
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Chapter 5

Directional Cell Search Delay in Cellular

Networks with Slow Mobility

The initial access performance for mmWave cellular networks has been

investigated under a high mobility scenario in Chapter 4. In contrast to high

mobility, a slow mobile network where the BS and user locations are rela-

tively fixed through very long period of time, is also a common and important

application scenario for cellular networks. The fixed BS and user locations

under the slow mobility scenario will introduce strong temporal correlations

for the SINR experienced by a user or BS at different time, as opposed to the

high mobility scenario where SINR at user or BS is independent across time.

This renders the performance of slow mobility networks fundamentally differ-

ent from its high mobility counterpart. In this chapter, we will analyze the

cell search delay performance for cellular network with slow mobility, where a

directional initial access protocol similar to Chapter 4 is adopted.

5.1 Related Works

In the traditional LTE system, the transmissions and receptions during

initial access are performed omni-directionally [8]. However, such conven-
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tional omni-directional initial access scheme is not suitable for the emerging

5G cellular networks, including the the mmWave cellular networks [95–98,134],

as well as the massive MIMO networks [135–139] or full-dimensional (FD)

MIMO networks [140–142] that operates in the sub-6 GHz bands. By con-

trast, the directional initial access scheme which leverages beam-sweeping to

achieve extra directive gain, has been recognized as a useful method to en-

sure reasonable initial access performance for these emerging network scenar-

ios [4,128,139,143–145]. Specifically, the necessity for directional initial access

in mmWave cellular networks has been well motivated in Section 4. For the

massive MIMO system with M antennas at the BS, an effective array gain of

M can be achieved when the channel state information (CSI) has been cor-

rectly estimated and is available at the BS [139]. However, since the CSI is

unavailable when a new user initiates cell search and random access to the net-

work, there is no such array gain for initial access operations [145]. As a result,

the traditional omnidirectional transmissions/receptions for initial access will

significantly shorten the coverage range of the BSs as opposed to when CSI

is available, and the new users may be unable to join the system due to the

lack of the array gain [139,144,145]. In order to overcome this issue, [145] has

proposed to use beamsweeping for control channel operations including cell

search, where M non-overlapping beams with an array gain of M are sweeped

through to provide the complete spatial coverage. This design has been im-

plemented and verified on a sub-6 GHz massive MIMO prototype [145], but

the analytical directional cell search performance has not been investigated for
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the slow mobility networks from a system level perspective.

The performance for slow mobile Poisson networks has typically been

studied through the local delay metric [90, 146–149]. Specifically, local delay

characterizes the number of time slots for the SINR of the typical user’s packet

to exceed certain SINR level. In [90,146], the local delay for ad-hoc networks

with slow mobility is found to have infinite mean delay under several standard

scenarios such as Rayleigh fading with constant noise. A phase transition is

identified for the interference limited case in terms of the mean local delay, such

that it is finite when certain parameters are above a threshold, and infinite

otherwise. The local delay for noise-limited and interference-limited Poisson

networks is also investigated in [147], which shows power control is essential to

keep the mean local delay finite. Several power control policies are proposed

in [148] to minimize local delay in a static noise limited network. By adopting a

nearest neighbor distance based power control policy, the expected local delay

is also shown to be finite [149]. Despite local delay performance for slow mobile

networks has been well understood, the previous works mainly focused on the

omni-directional communications which cannot be applied to the directional

cell search method for emerging 5G cellular networks.

5.2 Contributions

In this chapter, we will analyze the cell search delay performance in

a slow mobile cellular networks where a synchronous beam sweeping pattern

is applied at the BSs during cell search. Since the BS and user locations are
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fixed over a relative long period of time, there exists a strong correlation of

the SINR experienced by the user/BS across time, which is fundamentally

different from the high mobility scenario considered in Chapter 4. The main

contributions in this chapter are summarized as follows:

• For any arbitrary BS locations and fading distribution, the expected number

of initial access cycles required to succeed in cell search is proved to be de-

creasing almost surely when the number of BS antennas/beams is multiplied

by a factor of m > 1.

• For PPP distributed BSs and Rayleigh fading channels, a closed-form ex-

pression is derived for the expected number of initial access cycles required

to succeed in cell search, and the corresponding expected cell search delay.

Based on this result, the following observations are obtained:

1. Under the noise limited scenario, we have proved that as long as the path

loss exponent for NLOS path is larger than 2, the mean cell search delay

is infinity, irrespective of the BS transmit power and BS antenna number.

2. Under the interference limited scenario, there exists a phase transition for

cell search delay in terms of the BS antenna number M . Specifically, the

mean cell search delay is infinite when M is smaller than a critical value

and finite otherwise, where this critical value depends on both path loss

exponent and the SINR detection threshold for synchronization signal.

• The conditional mean cell search delay of a typical user given its nearest

BS distance has been derived for PPP distributed BSs and Rayleigh fading
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channels, based on which the cell search delay distribution can be evaluated

numerically. For the noise limited scenario, we have shown through numer-

ical results that increasing BS antenna number M significantly reduces the

cell search delay for cell edge users. By contrast, the cell search delay of

median users first decreases then increases as M increases.

Overall, this chapter has proved that the expected cell search delay

could be infinite due to the temporal correlations under the slow mobility

scenario. As a result, key system parameters including the number of BS an-

tennas and/or BS intensity need to be carefully designed, such that reasonable

cell search delay performance can be achieved for the slow mobile networks.

5.3 System Model

In this section, we describe the proposed directional initial access proto-

col, location models, propagation assumptions, and the performance metrics.

5.3.1 Directional Initial Access Protocol

We consider a time-division duplex (TDD) cellular system as shown in

Fig. 5.1, where the system time is divided into different IA cycles with period

T , and τ denotes the OFDM symbol period. Each IA cycle begins with a cell

search phase, followed by the random access phase and the data transmission

phase, similar to Chapter 4.

A large dimensional antenna array with M antennas is assumed at each
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BS to support highly directional communications. For analytical tractability,

we assume the actual antenna pattern is approximated by a sectorized beam

pattern, where the antenna gain is constant within the main lobe. In addition,

we assume a 0 side lobe gain for the BS, which is feasible because the BS uses

large dimensional antenna array with narrow beams, and modern BS antenna

design could enable a front-to-back ratio larger than 30 dB [130]. Each BS

supports analog beamforming with a maximum of M possible BF vectors,

where the m-th (1 ≤ m ≤ M) beamforming (BF) vector corresponds to the

main-lobe, which has antenna gain M , and covers a sector area with angle

[2πm−1
M
, 2π m

M
) [123]. Each user is assumed to have single omni-directional

antenna with unit gain.

In the cell search phase, each BS sweeps through all the M transmit

beamforming directions to broadcast the synchronization signals, and each user

is able to detect a BS (with sufficiently small miss detection probability such as

1%) if the signal-to-interference-plus-noise ratio (SINR) of the synchronization

signal from that BS exceeds Γcs. All BSs transmit synchronously using the

same beam direction during every symbol, and the cell search delay within

each IA cycle is therefore Tcs = M × τ . When every BS transmits using the

m-th (1 ≤ m ≤ M) BF direction, the typical user can only receive from the

BSs located inside the following “BS sector”:

S(o,
2π(m− 1)

M
+ π,

2πm

M
+ π), (5.1)
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where we define an infinite sector domain centered at u ∈ R2 as:

S(u, θ1, θ2) = {x ∈ R2, s.t., ∠(x− u) ∈ [θ1, θ2)}. (5.2)

There are M such non-overlapping BS sectors during cell search, with the j-th

(1 ≤ j ≤ M) sector being S(o, 2π(j−1)
M

, 2πj
M

). We say a BS sector is detected

during cell search if the typical user is able to detect the BS that provides the

smallest path loss inside this sector, where the path loss can be estimated from

the beam reference signals [102]. After cell search, the typical user selects the

BS with the smallest path loss among all the detected BS sectors as its serving

BS.

Initial access cycle n Initial access cycle n+1

CS period RA period CS period RA period

...

...

...

...

DL beam

DL beam

DL beam

...

...

...

...

pair M

pair 2

pair 1
UL beam
pair M

UL beam
pair 1

UL beam
pair 2

τ τ

time

Data transmission period Data transmission period

...... ......

Figure 5.1: Illustration of two cycles for the timing structure.

In the random access phase, the user initiates the connection to its

serving BS by transmitting a RA preamble sequence, which is uniformly se-

lected from Npa orthogonal preamble sequences. BSs will sweep through all M

receive beamforming directions synchronously to detect users. A contention

based random access process is adopted, and a user can be discovered by its

serving BS if there is no RA preamble collision with other users, and the
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Table 5.1: Notation and Simulation Parameters

Symbol Definition Simulation Value
Φ, λ BS PPP and intensity λ = 100 BS/km2

Φu, λu User PPP and intensity λu = 1000 users/km2

Pb, Pu BS and user transmit power 30 dBm, 23 dBm
fc, B Carrier frequency and system bandwidth (fc, B) = (73, 1) GHz,

(2, 0.2) GHz
W Total thermal noise power −174 dBm/Hz +

10 log10(B)
M Number of BS antennas and BF directions supported at each BS
Npa Number of random access preamble sequences 64

αL, αN Path loss exponents for dual-slope model (2.1, 3.3), (4, 4)
CL, CN Path loss at close-in reference distance for dual-slope model 69.71 dB, 38.46 dB
Rc Critical distance for dual-slope path loss model 50m

Γcs,Γra SINR threshold to detect synchronization signal and RA preamble -4 dB, -4 dB
τ OFDM symbol period 14.3 µs
T Initial access cycle period 20 ms

SM(i) i-th BS sector, i.e., SM(i) = {x ∈ R2, s.t., ∠x ∈ [2π (i−1)
M

, 2π i
M

)}
{xi0}Mi=1 BS providing the smallest path loss to the typical user inside SM(i)

B(x, r) (Bo(x, r)) Closed (open) ball with center x and radius r

SINR of its preamble sequence exceeds Γra. A user is connected to its serv-

ing BS upon successful random access, and the BS beamforming direction is

determined as the receive beamforming direction for the RA preamble of this

user. According to Fig. 5.1, the random access delay within each IA cycle is

Tra = M × τ .

5.3.2 Spatial Locations and Propagation Models

The BS locations are assumed to form the realization of a stationary

point process Φ = {xi}i with intensity λ. The user locations are modeled as

the realization of a homogeneous PPP with intensity λu, which is denoted by

Φu = {ui}i. The slow mobility scenario is investigated in this chapter, where

the BSs are static, and the users are either static or move with very slow

speed such as the pedestrian speed. As a result, the BS and user locations
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appear to be fixed across different initial access cycles. This is different from

the high mobility scenario investigated in Chapter 4, which assumes the users

and random blockers are moving with highway speeds, such that the BS and

user locations are independently re-shuffled across every initial access cycles.

We will prove later that the cell search delay under the slow mobility scenario

is fundamentally different from the high mobility scenario.

The transmit power of BSs and users are denoted by P and Pu respec-

tively. Without loss of generality, we can analyze the performance of a typical

user u0 located at the origin. This is guaranteed by Slivnyak’s theorem, which

states that the property observed by the typical point of a PPP Φ
′

is the

same as that observed by an additional point located at origin in the process

Φ
′ ∪ {o} [43, 44].

A dual-slope, non-decreasing path loss function [150] is adopted, such

that the path loss for a link with distance r is given by:

l(r) =

{
CLr

αL , if r < RC ,
CNr

αN , if r ≥ RC .
(5.3)

The dual slope path loss model is able to capture the dependency of the path

loss exponent on the link distance for various network scenarios, including

ultra-dense networks [150] and mmWave networks [121]. In particular, (5.3)

is referred to as the LOS ball blockage model for mmWave networks [150],

wherein αL and αN represent the LOS and NLOS path loss exponents, and

CL and CN represent the path loss at a close-in reference distance (e.g., 1

meter). We focus on the scenario where αN ≥ max(αL, 2). If αL = αN = α
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and CL = CN = C, the dual slope path loss model reverts to the standard

single-slope path loss model.

Due to the adopted antenna pattern for BSs, the directivity gain be-

tween BS and user is M when BS beam is aligned with the user, and 0 other-

wise. The fading effect for every BS-user link is modeled by an i.i.d. random

variable, whose complementary cumulative distribution function (CCDF) is a

decreasing function G(·) with support [0,∞). In addition, we assume the IA

cycle length is such that the fading random variable for every link is also i.i.d.

across different cycles.

5.3.3 Performance Metrics

The main performance metrics to investigate in this chapter is the cell

search delay, which quantifies the delay for the typical user to discover its

neighboring BSs and determine a potential serving BS.

Without loss of generality, IA cycle 1 in Fig. 5.1 represents the first IA

cycle of the typical user. Denote by eM(n) and δM(n) the success indicator

for cell search and random access of IA cycle n. The number of IA cycles

for the typical user to succeed cell search and IA are therefore Lcs(M,λ) =

inf{n ≥ 1 : eM(n) = 1} and LIA(M,λ, λu) = inf{n ≥ 1 : eM(n)δM(n) = 1}

respectively. Since analog beamforming is adopted at each BS, the cell search

delay and initial access delay can be defined as follows:

Dcs(M,λ) = (Lcs(M,λ)− 1)T +Mτ,

DIA(M,λ, λu) = (LIA(M,λ, λu)− 1)T + 2Mτ. (5.4)
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5.4 Analysis for Cell Search Delay

In this section, we will present the analytical model for deriving cell

search delay, and investigate the mean cell search delay under various network

scenarios.

5.4.1 Cell Search Delay Under General BS Deployment and Fading
Assumptions

In this part, we investigate the cell search delay under a general BS

location model (not necessarily PPP) and fading distribution. According to

Section 5.3, the BS and user locations are fixed, and the fading variables for

every link are i.i.d. across IA cycles. Therefore, given the BS process Φ,

the cell search success indicator eM(n) is an i.i.d. Bernoulli random variable

for different IA cycles, and the cell search success probability is denoted by

πM(Φ) = E [eM(1)|Φ].

Since each BS sector can be independently detected given Φ, and cell

search is successful if at least one BS sector is detected, the cell search success

probability for every IA cycle is:

πM(Φ) = 1−
M∏
i=1

[1− E [êM(i)|Φ]] , (5.5)

where êM(i) denotes the indicator that the BS providing the smallest path

loss inside BS sector i is detected. Specifically, if we denote by SM(i) ,

S(o, 2π(i−1)
M

, 2πi
M

) the BS sector i, xi0 the BS providing the smallest path loss to

the typical user in Φ∩SM(i), and {F i
j} the fading random variables from BSs
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in SM(i) to the typical user, we have:

E [êM(i)|Φ] = P
(

F i
0/l(‖xi0‖)∑

xij∈Φ∩SM (i)\{xi0}
F i
j/l(‖xij‖) +W/PM

> Γcs

∣∣∣∣Φ) (5.6)

= E
[
G

(
Γcsl(‖xi0‖)(

∑
xij∈Φ∩SM (i)\{xi0}

F i
j/l(‖xij‖) +W/PM)

)∣∣∣∣Φ],
(5.7)

where the expectation in (5.7) is taken with respect to the i.i.d. fading random

variables {F i
j}.

In the following theorem, we derive the mean number of IA cycles for the

typical user to succeed the cell search under the Palm expectation of the user

process, i.e., E0
Φu

[Lcs(M,λ)|Φ]. Specifically, the Palm expectation of Lcs(M,λ)

is equal to the empirical average of Lcs(M,λ) seen by a large number of users

located within a large circular area. We will show later that since there will

exist a certain fraction of cell edge users requiring a very large number of IA

cycles to succeed in cell search, the mean of Lcs(M,λ) could be infinity under

the Palm expectation. For notational simplicity, we will use E to also denote

the Palm expectation for the rest of this chapter.

Theorem 5.4.1. The mean number of IA cycles needed for the typical user

to succeed the cell search is given by:

E[Lcs(M,λ)|Φ] =
1

1−
∏M

i=1 [1− E [êM(i)|Φ]]
, (5.8)

E[Lcs(M,λ)] = EΦ

[
1

1−
∏M

i=1 [1− E [êM(i)|Φ]]

]
. (5.9)
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Proof. The first part can be proved by the fact that given Φ, Lcs(M,λ) follows

the geometric distribution with success probability πM(Φ); while the second

part follows by taking the expectation of (5.8) with respect to Φ.

A lower bound and upper bound to E[Lcs(M,λ)] can immediately be

obtained from (5.9), which are provided in the following remarks.

Remark 5.4.1. By applying Jensen’s inequality to a positive random variable

X and function f(x) = 1
x
, we know that E[ 1

X
] ≥ 1

E[X]
. Thus a lower bound to

E[Lcs(M,λ)] is given by:

E[Lcs(M,λ)] ≥ 1

1− E
[∏M

i=1 [1− E [êM(i)|Φ]]
] , (5.10)

where the equality holds when the BS locations are independent across dif-

ferent IA cycles from the typical user’s perspective, i.e., the high mobility

scenario considered in [143].

Since E [êM(i)|Φ] > 0 almost surely according to (5.7), E[Lcs(M,λ)]

will be finite under the high mobility scenario. In fact, we will show in the rest

of this section that E[Lcs(M,λ)] behaves differently under the slow mobility

scenario, in that E[Lcs(M,λ)] could be infinite under certain network settings.

Remark 5.4.2. If we denote by x0 the BS providing the smallest path loss to

the typical user, and i∗ the index for the BS sector that contains x0, then∏M
j=1 [1− E [êM(j)|Φ]] ≤ 1 − E [êM(i∗)|Φ]. Therefore, an upper bound to

E[Lcs(M,λ)] is given by:

E[Lcs(M,λ)] ≤ E
[

1

E [êM(i∗)|Φ]

]
. (5.11)
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Based on Theorem 5.4.1, we can prove the following relation between

the BS antenna/beam number M and E[Lcs(M,λ)].

Lemma 5.4.2. Given a realization of BS locations Φ, the mean number of IA

cycles to succeed cell search satisfies that E[Lcs(M2, λ)|Φ] < E[Lcs(M1, λ)|Φ],

if M2 = mM1 with m being an integer larger than 1.

Proof. The proof is provided in Appendix 5.7.1.

Lemma 5.4.2 shows that for any BS location model and fading dis-

tribution, the conditional number of IA cycles for cell search to succeed de-

creases when the number of BS antenna/beams is multiplied by m, or equiva-

lently when the BS beamwidth is divided by m. This result also implies that

E[Lcs(M2, λ)] ≤ E[Lcs(M1, λ)] if M2 = mM1. However, besides the simple

ordering relation in Lemma 5.4.2, Theorem 5.4.1 does not provide a general

framework to compute the value of E[Lcs(M,λ)] in closed form. For the rest

of this section, we will investigate the mean cell search delay under several

specific network scenarios.

5.4.2 Mean Cell Search Delay in Poisson Networks with Rayleigh
Fading

In this part, the BS locations are assumed to be the realization of a

homogeneous PPP with intensity λ, and the fading random variables are as-

sumed to be exponentially distributed with unit mean (i.e., G(x) = exp(−x)).

Due to its high analytical tractability, this network setting has been widely
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adopted to obtain the fundamental design insights for conventional macro and

heterogeneous cellular networks [2,22], ultra-dense cellular networks [150], and

even mmWave cellular networks1 [125,143].

Due to the PPP assumption for BSs, and the fact that different BS

sectors are non-overlapping, every BS sector can therefore be detected in-

dependently with the same probability. Since the path loss function l(r) is

non-decreasing, the BS that provides the minimum path loss to the typical

user inside i-th BS sector Φ ∩ SM(i) (i.e., xi0) is the closest BS to the origin.

The angle of xi0 is uniformly distributed within [2π(i−1)/M, 2πi/M), and the

CCDF for the norm of xi0 can be derived as follows:

P(‖xi0‖ ≥ r) = P
(

min
x∈Φ∩SM (i)

‖x‖ ≥ r

)
= exp(−λπr

2

M
), (5.12)

where the second equality follows from the void probability for PPPs. There-

fore, the probability distribution function (PDF) for ‖xi0‖ is given by:

f‖xi0‖(r) =
2λπr

M
exp(−λπr

2

M
). (5.13)

By applying Φ ∼ PPP(λ) and G(x) = exp(−x) into (5.7), the condi-

tional detection probability for the i-th BS sector is given by:

E [êM(i)|Φ] = E
[
exp

(
−Γcsl(‖xi0‖)

( ∑
xij∈Φ∩SM (i)\{xi0}

F i
j/l(‖xij‖) +W/PM

))∣∣∣∣Φ]

1The SINR and rate trends for mmWave networks under Rayleigh fading and PPP con-
figured BSs have been shown to be close to more realistic fading assumptions, such as the
Nakagami fading or log-normal shadowing [125].
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= exp

(
−WΓcsl(‖xi0‖)

PM

)
E
[ ∏
xij∈Φ∩SM (i)\{xi0}

exp

(
−Γcsl(‖xi0‖)F i

j/l(‖xij‖)
)]

(a)
= exp

(
−WΓcsl(‖xi0‖)

PM

) ∏
xij∈Φ∩SM (i)\{xi0}

1

1 + Γcsl(‖xi0‖)/l(‖xij‖)
, FM(i,Φ),

(5.14)

where step (a) is obtained by taking the expectation w.r.t. the fading random

variables.

Theorem 5.4.3. If BS process Φ ∼ PPP(λ), and the fading variable is expo-

nentially distributed with unit mean, the mean number of cycles for cell search

to succeed is:

E[Lcs(M,λ)] =
∞∑
j=0

AMj , (5.15)

where Aj = E[(1− FM(1,Φ))j], which is given by:

Aj =

∫ ∞
0

{ j∑
k=0

(−1)k
(
j

k

)
exp

(
−WkΓcsl(r1)

PM

)
exp

(
−2πλ

M

∫ ∞
r1

(
1−

1

(1 + Γcsl(r1)/l(r))k

)
rdr

)}
2λπr1

M
exp(−λπr

2
1

M
)dr1. (5.16)

Proof. The proof is provided in Appendix 5.7.2.

Remark 5.4.3. Theorem 5.4.3 can be interpreted as:

E[Lcs(M,λ)] =
∞∑
j=0

P(Lcs(M,λ) > j),

with AMj in (5.15) representing the probability that all the BS sectors are

unable to be detected within j IA cycles, i.e., P(Lcs(M,λ) > j).
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Theorem 5.4.3 provides a series-expansion form expression to compute

the expected number of IA cycles to succeed cell search. However, it is unclear

whether E[Lcs(M,λ)] is finite or not. Therefore, we will investigate the finite-

ness of E[Lcs(M,λ)] under two typical network scenarios, namely the noise

limited scenario and the interference limited scenario.

5.4.2.1 Noise limited Scenario

In the noise limited scenario, we assume the noise power dominates the

interference power (or interference power is perfectly canceled), such that only

noise power needs to be taken into account. Compared to the conventional

micro-wave cellular network, the mmWave network has much higher noise

power due to the wider bandwidth, and the interference power is much smaller

due to the high isotropic path loss in mmWave. As a result, the mmWave

cellular network is typically noise limited, especially when the carrier frequency

and system bandwidth are high enough (e.g. 73 GHz carrier frequency with

500 MHz bandwidth) [119,121].

Since the interference power is zero under the noise limited scenario,

Theorem 5.4.3 becomes:

E[Lcs(M,λ)] =
∞∑
j=0

{∫ ∞
0

(
1− exp

(
−WΓcsl(r1)

PM

))j
2λπr1

M
exp(−λπr

2
1

M
)dr1

}M
.

(5.17)
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Through change of variable (v = λr2), (5.17) becomes

E[Lcs(M,λ)] =
∞∑
j=0

{∫ ∞
0

(
1− exp

(
−
WΓcsl(

√
(v/λ))

PM

))j
2π

M
exp(−πv

M
)dv

}M
,

(5.18)

which shows that E[Lcs(M,λ)] is non-increasing as the BS intensity λ increases.

In the next two lemmas, we will prove that the finiteness for E[Lcs(M,λ)]

depends on the NLOS path loss exponent αN , and a phase transition for

E[Lcs(M,λ)] happens when αN = 2.

Lemma 5.4.4. Under the noise limited scenario, for any finite number of BS

antennas M and BS intensity λ, E[Lcs(M,λ)] = ∞ whenever the NLOS path

loss exponent αN > 2.

Proof. The proof is provided in Appendix 5.7.3.

According to Lemma 5.4.4, the expected cell search delay is infinity

whenever αN > 2, which cannot be alleviated by BS densification (i.e., increase

λ), or using higher number of BS antennas (i.e., increase M). The reason can

be explained from (5.29), which shows that due to the PPP-configured BS

deployment, the typical user could locate at the “cell edge” with its closest BS

inside every BS sector farther than some arbitrarily large distance v. There

is exp(−λπv2) fraction of such cell edge users, and the corresponding number

of IA cycles required for them to succeed cell search is at least exp(CvαN ) for

some C > 0. Therefore, the expected cell search delay averaged over all the

users will ultimately be infinite since αN > 2. From a system level perspective,
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this indicates that for noise limited network with αN > 2, there will always

be a significant fraction of cell edge users requiring very large number of IA

cycle to succeed cell search, such that the average cell search delay perceived

by all users will be crushed by these cell edge users, i.e., an infinite average

cell search delay is observed.

Lemma 5.4.5. Under the noise limited scenario with NLOS path loss ex-

ponent αN = 2, the expected number of IA cycles to succeed cell in search

E[Lcs(M,λ)] = ∞ if BS density λ and BS antenna number M satisfy that

λM < ΓcsCNW
Pπ

, and E[Lcs(M,λ)] < ∞ if λM > ΓcsCNW
Pπ

, i.e., the phase tran-

sition for E[Lcs(M,λ)] happens at (λ∗,M∗) with λ∗M∗ = ΓcsCNW
Pπ

.

Proof. The proof is provided in Appendix 5.7.4.

We can observe from the proof to Lemma 5.4.5 that for any arbitrarily

large distance r0, there is exp(−λπr2
0) fraction of cell edge users whose nearest

BSs are farther than r0, and the number of IA cycles for these edge users to

succeed cell search scales as exp(
WΓcsCNr

2
0

PM
). As a result, if the BS deployment

is too sparse or the number of BS antennas/beams is too small such that

λM < ΓcsCNW
Pπ

, the average cell search delay perceived by all the users becomes

infinity due to the cell edge users. By contrast, under network densification,

the fraction of cell edge users with bad conditions is reduced, and the average

cell search delay can be reduced to a finite value whenever λM > ΓcsCNW
Pπ

.

Similar behavior happens when the BSs are using more antennas to increase

the SNR for the cell edge users.
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To summarize, for the noise limited scenario such as mmWave net-

works, the cell search delay distribution is heavy-tailed due to the common BS

locations across different IA cycles. In particular, the mean cell search delay is

infinite whenever the NLOS path loss exponent αN > 2, which is typically the

case for mmWave. However, the mean cell search delay when αN = 2 could

switch from infinity to a finite value through careful network design, such as

BS densification or adopting more BS antennas.

5.4.2.2 Interference limited Scenario

In the interference limited scenario, the noise power is dominated by

the interference power, or the noise power is perfectly canceled, such that we

can assume W = 0. In particular, conventional micro-wave cellular networks

which communicate below 6 GHz, are typically interference limited. In this

part, we investigate the cell search delay in sub 6 GHz network with standard

single slope path loss function l(r) = Crα, which is suitable for networks with

sparsely deployed BSs as opposed to the ultra-dense networks [150].

First, we prove that Theorem 5.4.3 can be greatly simplified under the

interference limited scenario.

Lemma 5.4.6. The expected number of initial access cycles required for cell

search to succeed under the interference limited scenario is given by:

E[Lcs(M)] =
∞∑
j=0

( j∑
k=0

(−1)k
(
j
k

)
1 + 2

∫ +∞
1

(1− (1 + Γcs/rα)−k)rdr

)M
. (5.19)

Proof. The proof is provided in Appendix 5.7.5.
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We can observe from Lemma 5.4.6 that E[Lcs(M)] does not depend

on the BS intensity under the interference limited scenario. This is because

the increase/decrease of signal power can be perfectly counter-effected by the

increase/decrease of interference power in the interference limited network [2].

Another immediate observation from Lemma 5.4.6 is that Aj is independent

of the number of the BS antennas M for ∀j. As a result, E[Lcs(M)] is mono-

tonically non-increasing with respect to M , which is a stronger observation

than Lemma 5.4.2.

Remark 5.4.4. If α = 2, Lemma 5.4.6 directly shows that E[Lcs(M)] =∞ for

∀M . This is mainly because the interference power will dominate the signal

power when α = 2, such that the coverage probability is 0 for any SINR

threshold Γcs.

In fact, we can prove that, for the interference limited scenario with

α > 2, there may exist a phase transition for E[Lcs(M)] in terms of the BS

beam number M . In order to show that, we will first apply Remark 5.4.2 and

obtain a sufficient condition to guarantee the finiteness for E[Lcs(M)].

Lemma 5.4.7. Under the interference limited scenario with path loss exponent

α > 2, the expected number of IA cycles to succeed cell search E[Lcs(M)] <∞

whenever the number of BS beams M > 2Γcs
α−2

, where Γcs denotes the detection

threshold for a BS. In particular, when M = 1, i.e., the BS is omni-directional,

E[Lcs(1)] is finite if and only if α > 2Γcs + 2.

Proof. The proof is provided in Appendix 5.7.6.
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Remark 5.4.5. According to Remark 5.4.4, Lemma 5.4.6 and Lemma 5.4.7,

the number of IA cycles to succeed in cell search (i.e., E[Lcs(M)]) may have

a phase transition in terms of the number of BS beams M , depending on the

relation between the path loss exponent α and detection threshold Γcs.

• If α > 2 + 2Γcs, E[Lcs(M)] < ∞ for the omni-directional BS antenna case,

i.e., M = 1. By the monotonicity of E[Lcs(M)] with respect toM , E[Lcs(M)]

is guaranteed to be finite for any M ≥ 1.

• If α ≤ 2 + 2Γcs, we know that E[Lcs(M)] =∞ for M = 1, and E[Lcs(M)] <

∞ ifM > 2Γcs
α−2

. Therefore, according to the monotonicity of E[Lcs(M)], there

exists a phase transition of M∗ ∈ [2, 2Γcs
α−2

], such that E[Lcs(M)] = ∞ for

M ≤M∗, and E[Lcs(M)] <∞ for M > M∗. In particular, E[Lcs(M)] =∞

for ∀M if α = 2, which means M∗ =∞.

The path loss exponent α depends on the propagation environment,

and α = 2 corresponds to a free space LOS scenario; while α increases as the

environment becomes relatively more lossy and scatter-rich, such as urban and

suburban areas. In addition, the SINR detection threshold Γcs depends on the

receiver decoding capability, which is typically within −10 dB and 0 dB [109].

Remark 5.4.5 shows that in a lossy environment with α > 2 + 2Γcs, the

typical user can detect a nearby BS in a finite number of IA cycles on average.

This is because the relative strength of the useful signal with respect to the

interfering signals is strong enough. However, when α ≤ 2 + 2Γcs, E[Lcs(M)]

could be exploded due to the cell edge users that require very high number

197



of IA cycles to succeed cell search. Specifically, the cell edge user has poor

coverage and SIR performance because it is located at a position where there

exist other BSs, at a distance similar to that of its potential serving BS. When

M is very small (e.g., M = 1), there is a significant fraction of such cell edge

users, so the corresponding cell search delay averaged over all users becomes

infinity. However, as M increases, the BS beam sweeping will create enough

angular separation so that the nearby BSs to the edge user could locate in

different BS sectors. As a result, Lcs(M) is significantly decreased for the cell

edge users as M increases, and therefore the phase transition for E[Lcs(M)]

happens.

In summary, for interference limited networks, we can always ensure

the network to be in a desirable condition with finite mean cell search delay,

by tuning the number of BS beams/antennas M appropriately.

5.4.3 Cell Search Delay Distribution in Poisson Networks with
Rayleigh Fading

The previous part is mainly focused on the expected number of IA

cycles to succeed cell search E[Lcs(M,λ)], or the cell search delay equivalently

through (5.4). However, due to the large fraction of cell edge users requiring

significantly high number of IA cycles for cell search, E[Lcs(M,λ)] is infinity

under several settings. In this section, we will focus on obtaining the cell search

delay distribution, and investigate the cell search delay performance for the

95th percentile, 50th percentile, and 10th percentile users, which correspond to
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the cell center, median, and cell edge users respectively.

We investigate the cell search delay distribution through deriving the

expected number of IA cycles to succeed in cell search, given the distance

from the typical user to its closest BS R0, i.e., E[Lcs(M,λ)|R0]. In fact,

E[Lcs(M,λ)|R0] is a random variable with mean E[Lcs(M,λ)]. According

to (5.4), we will evaluate the empirical distribution of the following condi-

tional expected cell search delay in this section:

Dcs(R0,M, λ) , (E[Lcs(M,λ)|R0]− 1)T +Mτ. (5.20)

The main reason to instigate the cell search delay conditional on R0 is because

R0 measures the location and therefore the signal quality of the typical user.

In particular, R0 � 1
2
√
λ

corresponds to the cell center user, while R0 � 1
2
√
λ

corresponds to the cell edge user.

In order to derive E[Lcs(M,λ)|R0] in (5.20), we will first derive the

following quantity: E[Lcs(M,λ)|R1, R2, ..., RM ], where Ri denotes the distance

from the typical user to its closest BS in the i-th BS sector (i.e., Ri = ‖xi0‖)

for 1 ≤ i ≤M .

Lemma 5.4.8. Given the distances from the typical user to its nearest BSs

inside every BS sector R1, ..., RM , the mean number of IA cycles for cell search

is:

E[Lcs(M,λ)|R1, R2, ..., RM ] =
∞∑
j=0

M∏
i=1

fj(Ri,M, λ), (5.21)

199



where fj(Ri) denotes the probability that xi0 is detected in at least j IA cycles,

which is:

fj(Ri,M, λ) =

j∑
k=0

(−1)k
(
j

k

)
exp

(
−WkΓcsl(Ri)

PM

)
× exp

(
−2λπ

M

∫ ∞
Ri

(1− 1

(1 + Γcsl(Ri)/l(r))k
)rdr

)
.

We can first use the tower property for conditional expectations to prove

E[Lcs(M,λ)|R1, R2, ..., RM ] = E[E[Lcs(M,λ)|Φ]|R1, R2, ..., RM ]. The rest of

the proof follows similar steps to Theorem 5.4.3, and therefore we omit the

details.

We will need the following corollary to derive E[Lcs(M,λ)|R0] from

E[Lcs(M,λ)|R1, R2, ..., RM ].

Corollary 5.4.9. For all i.i.d. non-negative random variables R1, R2,...,RM

with CCDF G(r), and all functions F : [0,∞)M → [0,∞) which are symmet-

ric, the following relation is true:

E[F (R1, R2, ..., RM)|min(R1, R2, ..., RM) = r] =
E[F (r, R2, ..., RM)1{Rj>r,∀j 6=1}]

(G(r))M−1
.

(5.22)

Proof. The proof is provided in Appendix 5.7.7.

By taking F (R1, R2, ..., RM) = E[Lcs(M,λ)|R1, R2, ..., RM ] in Corol-

lary 5.4.9, E[Lcs(M,λ)|R0] can directly obtained as follows.
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Lemma 5.4.10. Given the distance from the typical user to the nearest BS

R0, the mean number of IA cycles to succeed cell search is:

E[Lcs(M,λ)|R0] =
∞∑
j=0

fj(R0,M, λ)

{∫ ∞
R0

fj(r,M, λ)
λ2πr

M
exp(−λπr

2

M
)dr

}M−1

× exp

(
λπ(M − 1)R2

0

M

)
,

where the function fj(r,M, λ) is defined in Lemma 5.4.8.

Lemma 5.4.10 provides a method to evaluate the cell search delay dis-

tribution under a general setting, which cannot be further simplified. However,

for the noise limited networks and interference limited networks, we can obtain

the following simple result.

Corollary 5.4.11. For a noise limited scenario, E[Lcs(M,λ)|R0] is given by:

E[Lcs(M,λ)|R0]

=



∑∞
j=0(1− exp(−ΓcsWCNR

αN
0

PM
))j{

∫∞
R0

(1− exp(−ΓcsWCNr
αN

PM
))j

×λ2πr
M

exp(−λπr2

M
)dr}M−1 exp(λπM−1

M
R2

0), if R0 ≥ Rc,∑∞
j=0(1− exp(−ΓcsWCLR

αL
0

PM
))j{

∫∞
RC

(1− exp(−ΓcsWCNr
αN

PM
))j

×λ2πr
M

exp(−λπr2

M
)dr +

∫ RC
R0

(1− exp(−ΓcsWCLr
αL

PM
))j

×λ2πr
M

exp(−λπr2

M
)dr}M−1 exp(λπM−1

M
R2

0), if R0 < Rc.

(5.23)

Corollary 5.4.11 can be easily proved from Lemma 5.4.10 and the fact

that interference power is 0.

Corollary 5.4.12. Under the interference limited scenario and the standard

single-slope path loss model with path loss exponent α > 2, E[Lcs(M)|R0] is
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given by:

E[Lcs(M)|R0] =
∞∑
j=0

{ j∑
k=0

(−1)k
(
j

k

)
exp

(
−2πλR2

0H(k, α,Γcs)

M

)}

×
{ j∑
k=0

(−1)k
(
j
k

)
exp

(
−2πλR2

0H(k,α,Γcs)

M

)
1 + 2H(k, α,Γcs)

}M−1

, (5.24)

where H(k, α,Γcs) =
∫∞

1
(1− 1

(1+Γ/rα)k
)rdr.

Proof. The proof is provided in Appendix 5.7.8.

5.5 Numerical Evaluations for Cell Search Delay Dis-
tribution in Noise Limited Networks

For the noise limited networks, we have proven that the expected cell

search delay is infinite whenever the NLOS path loss exponent is greater than

2. Therefore, the cell search delay distribution is numerically evaluated in

this section. Specifically, we consider a mmWave cellular network operating

at fc = 73 GHz with bandwidth B = 2 GHz, and the BS intensity is λ = 100

BS/km2. The path loss exponents for LOS and NLOS links are 2.1 and 3.3

respectively, and the critical distance Rc = 50m. In addition, the IA cycle

length is chosen as T = 20 ms, and the OFDM symbol period τ = 14.3

µs [102,143].

Fig. 5.2 plots the empirical CCDF of the cell search delayDcs(R0,M, λ),

which is obtained by generating 105 realizations of R0 and computing the

corresponding cell search delay through Corollary 5.4.11. We can observe
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from Fig. 5.2 that under the log-log scale, the tail distribution function of

Dcs(R0,M, λ), i.e., P(Dcs(R0,M, λ) ≥ t), decreases almost linearly with re-

spect to t. This validates the fact that the cell search delay is indeed heavy-

tailed. It can also be observed from Fig. 5.2 that the decrease rate for the

tail distribution function satisfies limt→∞
− log P(Dcs(R0,M,λ)≥t)

log t
< 1 for M =

4, 8, 18, 36, which validates Lemma 5.4.4.

In addition, Fig. 5.2 shows that as the number of BS antennas M

increases, the tail of Dcs(R0,M, λ) becomes lighter and thus the cell search

delay for edge users is significantly reduced. For example, the cell search de-

lay for the 10th percentile user is almost 10 times smaller when M increases

from 18 to 36. In fact, increasing M will increase the SNR of cell edge users,

such that the number of IA cycles required for the edge users to succeed in

cell search (i.e., E[Lcs(M,λ)|R0]) can be shortened. Since Dcs(R0,M, λ) ,

T (E[Lcs(M,λ)|R0]− 1) +Mτ , and the IA cycle length T is much larger than

the OFDM symbol period τ , the tail distribution of Dcs(R0,M, λ) therefore be-

comes lighter as M increases, despite having a higher beam-sweeping overhead

within every IA cycle.

Due to the heavy-tail nature for the cell search delay distribution,

Fig. 5.2 shows there exists an extremely large variation of the cell search delay

performance from cell center users to cell edge users. Fig. 5.3 plots the cell

search delay for the 95th percentile users, as the number of BS antennas M

increase. Since the 95th percentile users are located at the cell center, they

are typically LOS to their serving BSs with sufficiently high isotropic SNR,
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Figure 5.2: Cell search delay distribution for noise limited networks.

and thus they can succeed cell search in the first cycle that they initiates

IA. Therefore, as M increases, Fig. 5.3 shows that the cell search delay for

the 95th percentile users increases almost linearly due to the increase of the

beam-sweeping overhead.
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Figure 5.3: 95th percentile cell search delay for noise limited networks.

The cell search delay performance for the 50th percentile users, or the

median users, is plotted in Fig. 5.4. We can observe that in contrast to the
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mean cell search delay which is infinity, the median delay is less than 1 ms for

various BS antenna number M . When M is small, median users do not have

high enough SNR and thus they will need more than 1 IA cycles to succeed

in cell search. As M increases, the cell search delay for median users first

decreases due to the improved SNR and cell search success probability, until

the median users could succeed cell search in the first cycle that they initiates

IA. Then the cell search delay will increase as M is further increased, which

is because of the higher beam sweeping overhead within every IA cycle. The

optimal BS antenna number M is 12 in Fig. 5.4, which corresponds to a cell

search delay of 0.31 ms.
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Figure 5.4: 50th percentile cell search delay for noise limited networks.

5.6 Summary

This chapter has proposed a stochastic geometry framework to derive

the directional cell search delay for slow mobile cellular networks, where the

BS and user locations are fixed for long period of time. Different from the local
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delay metric which quantifies the number of cycles for the typical user’s SINR

from the entire plane to exceed a threshold [90,146], the directional cell search

delay is the number of cycles for the maximum SINR that the typical user

experiences from non-overlapping BS sectors to exceed a threshold. Given the

BS locations, we have first derived the conditional expected cell search delay

under the Palm distribution of the user process. By utilizing the Taylor series

expansion, we have further derived the exact expression for the overall expected

cell search delay in a Poisson cellular network. Base on this expression, the

expected cell search delay under noise-limited scenario is shown to be infinite

as long as the NLOS path loss exponent is larger than 2. By contrast, a

new type of phase transition for the expected cell search delay in interference-

limited scenario is proved to exist, such that it is finite when the number of

BS beams/antennas is greater than a threshold, and infinite otherwise.

The framework developed in this chapter provides an analytical tool

for investigating the spatial-temporal performance of cellular networks. The

overall initial access delay, as well as the downlink throughput performance

for the slow mobile networks, can be further derived based on this framework.

5.7 Appendix

5.7.1 Proof of Lemma 5.4.2

Since M2 = mM1, we know that SM1(i) =
⋃m
j=1 SM2((i − 1)m + j)

for 1 ≤ i ≤ M1. Denote by xi0 the BS providing the smallest path loss to the

typical user inside Φ∩SM1(i), and assume xi0 ∈ Φ∩SM2((i−1)m+j0) for some
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j0 ∈ [1,m]. Due to the facts that M2 > M1, SM2((i− 1)m+ j0) ( SM1(i), and

G(·) is a decreasing function, we can observe from (5.7) that E [êM1(i)|Φ] <

E [êM2((i− 1)m+ j0)|Φ]. Also note that E [êM2((i− 1)m+ j)|Φ] > 0 for ∀j 6=

j0 according to (5.7), we have:

m∏
j=1

[1− E [êM2 ((i− 1)m+ j) |Φ]] < 1− E [êM2(i)|Φ] . (5.25)

Thus the cell search success probability for the typical IA cycle will satisfy:

πM2(Φ) = 1−
M2∏
i=1

[1− E [êM2(i)|Φ]]

= 1−
M1∏
i=1

(
m∏
j=1

[
1− E

[
êM2 ((i− 1)m+ j)

∣∣∣∣Φ]]
)

> 1−
M1∏
i=1

[1− E [êM1(i)|Φ]] = πM1(Φ). (5.26)

Finally the proof is concluded by applying Theorem 5.4.1.

5.7.2 Proof of Theorem 5.4.3

By substituting (5.14) into Theorem 5.4.1, we can obtain:

E[Lcs(M,λ)] = E
[

1

1−
∏M

i=1 [1− FM(i,Φ)]

]
(a)
= E

[ ∞∑
j=0

( M∏
i=1

[1− FM(i,Φ)]

)j]
(b)
=

∞∑
j=0

E
[( M∏

i=1

[1− FM(i,Φ)]

)j]
(c)
=

∞∑
j=0

{
E
[(

1− FM(1,Φ)

)j]}M
, (5.27)
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where step (a) is derived from the fact that 1
1−x =

∑∞
j=0 x

j for 0 ≤ x < 1, step

(b) follows from the monotone convergence theorem, and step (c) is because

the event for every BS sector to be detected is i.i.d.. Furthermore, we can

compute Aj as follows:

E
[(

1− FM(1,Φ)

)j]
=

∫ ∞
0

E
[(

1− FM(1,Φ)

)j∣∣∣∣x1
0 = (r1, 0)

]
2λπr1

M
exp(−λπr

2
1

M
)dr

(a)
=

∫ ∞
0

j∑
k=0

(−1)k
(
j

k

)
Ex

1
0

Φ

[
(FM(1,Φ))k

∣∣∣∣Φ ∩ SM(1) ∩B(o, r1) = 0

]
× 2λπr1

M
exp(−λπr

2
1

M
)dr

(b)
=

∫ ∞
0

j∑
k=0

(−1)k
(
j

k

)
E
[
exp

(
−WkΓcsl(r1)

PM

) ∏
xij∈Φ∩SM (i)∩Bc(o,r1)

1

(1 + Γcsl(r1)/l(‖xij‖))k

]

× 2λπr1

M
exp(−λπr

2
1

M
)dr, (5.28)

where Ex
1
0

Φ [·] in (a) denotes the expectation under the Palm distribution at

x1
0; and step (b) is derived from the Slivnyak’s theorem. Finally the proof

can be concluded by applying the probability generating functional (PGFL)

of PPP [44] to (5.28).

5.7.3 Proof of Lemma 5.4.4

Given the number of BS sectors M and for any arbitrarily large value

v0 > 0 with v0 > Rc, we can re-write (5.17) to obtain the lower upper of
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E[Lcs(M)] as follows:

∞∑
j=0

{∫ ∞
0

(
1− exp

(
−WΓcsl(r1)

PM

))j
2λπr1

M
exp(−λπr

2
1

M
)dr1

}M
(a)

≥
∞∑
j=0

{∫ ∞
v0

(
1− exp

(
−WΓcsCNr

αN
1

PM

))j
2λπr1

M
exp(−λπr

2
1

M
)dr1

}M
>

∞∑
j=0

{(
1− exp

(
−WΓcsCNv

αN
0

PM

))j∫ ∞
v0

2λπr1

M
exp(−λπr

2
1

M
)dr1

}M
=
∞∑
j=0

(
1− exp

(
−WΓcsCNv

αN
0

PM

))jM
exp(−λπv2

0)

=
exp(−λπv2

0)

1− (1− exp(−WΓcsCNv
αN
0 /PM))M

(b)

≥ 1

M
exp

(
WΓcsCNv

αN
0 /PM − λπv2

0

) v0→∞−→ ∞, (5.29)

where l(r1) = CNr
αN
1 in step (a) because r1 ≥ v0 > Rc. Step (b) follows from

the fact that for any 0 ≤ x ≤ 1 and M ∈ N+, we have: (1 − x)M + xM ≥ 1,

thus 1
1−(1−x)M

≥ 1
xM

. Note that since αN > 2, (5.29) goes to infinity when v0

goes to infinity, which completes the proof.

5.7.4 Proof of Lemma 5.4.5

If αN = 2, it is clear from (5.29) that E[Lcs(M,λ)] = ∞ if λM <

ΓcsCNW
Pπ

. In addition, we can simplify the upper bound to E[Lcs(M,λ)] from

Remark 5.4.2 under the noise limited scenario, which is given as follows:

E[Lcs(M,λ)]

(a)

≤
∫ ∞

0

exp

(
WΓcsl(r0)

PM

)
λ2πr0 exp(−λπr2

0)dr0
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=

∫ Rc

0

exp

(
WΓcsCLr

αL
0

PM

)
λ2πr0 exp(−λπr2

0)dr0 +

∫ ∞
Rc

exp

(
WΓcsCNr

αN
0

PM

)
× λ2πr0 exp(−λπr2

0)dr0

< exp

(
WΓcsCLR

αL
c

PM

)(
1− exp(−λπR2

c)

)
+

∫ ∞
Rc

exp

(
WΓcsCNr

αN
0

PM

)
× λ2πr0 exp(−λπr2

0)dr0, (5.30)

where (a) is obtained by applying the noise limited assumption to (5.14), and

noting that the BS providing the smallest path loss is the closest BS of Φ to

the origin. Since αN = 2, it can be observed from (5.30) that E[Lcs(M)] is

guaranteed to have finite mean if λM > ΓcsCNW
Pπ

.

5.7.5 Proof of Lemma 5.4.6

By substituting W = 0 and l(r) = Crα into (5.16), then Aj defined

in (5.16) can be further simplified as follows:

Aj =

∫ ∞
0

{ j∑
k=0

(−1)k
(
j

k

)
exp

(
−2πλ

M

∫ ∞
r1

(
1− 1

(1 + Γcsrα1 /r
α)k

)
rdr

)}
× 2λπr1

M
exp(−λπr

2
1

M
)dr1

=

j∑
k=0

(−1)k
(
j

k

){∫ ∞
0

exp

(
−2πλr2

1

M

∫ ∞
1

(
1− 1

(1 + Γcs/rα)k

)
rdr

)
× 2λπr1

M
exp(−λπr

2
1

M
)dr1

}
=

j∑
k=0

(−1)k
(
j
k

)
1 + 2

∫ +∞
1

(1− (1 + Γcs/rα)−k)rdr
,

which completes the proof.
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5.7.6 Proof of Lemma 5.4.7

Denote by x0 the BS closest to the origin, and SM(i∗) the BS sector con-

taining x0, we can obtain an upper bound to E[Lcs(M)] by substituting (5.14)

and W = 0 into Remark 5.4.2 as follows:

E[Lcs(M)] ≤ E
[ ∏
xj∈Φ∩SM (i∗)\{x0}

(
1 + Γcsl(‖x0‖)/l(‖xj‖)

)]
(a)
=

∫ ∞
0

E
[ ∏

xj∈Φ∩SM (i∗)∩Bc(o,r0)

(
1 + Γcsl(r0)/l(‖xj‖)

)]
2λπr0 exp(−λπr2

0)dr0

(b)
=

∫ ∞
0

exp

(
2πλΓcs
M

∫ ∞
r0

l(r0)r

l(r)
dr

)
2λπr0 exp(−λπr2

0)dr0

(c)
=

∫ ∞
0

exp

(
−
(

1− 2Γcs
M(α− 2)

)
v

)
dv

=

{
∞, if M ≤ 2Γcs

α−2
,

M(α−2)
M(α−2)−2Γcs

, if M > 2Γcs
α−2

,
(5.31)

where (a) is obtained by noting that x0 is the closest BS to the origin, (b)

follows from the PGFL for the PPP2, and (c) is derived through change of

variables (i.e. v = λπr2
0). It can be observed that (5.31) is finite whenever

M > 2Γcs
α−2

, which is a sufficient condition for the finiteness of E[Lcs(M)]. In

particular, the equality holds in the first step of (5.31) when M = 1. As a

result, E[Lcs(1)] is finite if and only if α > 2Γcs + 2.

2Note that [45, Theorem 4.9] does not directly apply to the PGFL calculation here since
f(x) = 1 + Γcsl(r0)/l(x) is larger than 1. However, we can use dominated convergence
theorem to prove that for PPP Φ with intensity measure Λ(·), the PGFL result still holds
if function f(x) satisfies f(x) ≥ 1 and

∫
R2(f(x) − 1)Λ(dx) < ∞, i.e. E[

∏
xi∈Φ f(xi)] =

exp(
∫
R2(f(x)− 1)Λ(dx).
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5.7.7 Proof of Corollary 5.4.9

Denote by R0 = min(R1, R2, ..., RM), then we can obtain (5.22) as

follows:

E[F (R1, R2, ..., RM)|R0 = r]

= lim
ε→0

E[F (R1, R2, ..., RM)× 1|R0−r|<ε]

P(|R0 − r| < ε)

= lim
ε→0

∑M
i=1 E[F (R1, R2, ..., RM)× 1({|Ri−r|<ε}∩{Rj>Ri,∀j 6=i})]∑M

k=1 P({|Rk − r| < ε} ∩ {Rj > Rk, ∀j 6= k})

= lim
ε→0

∑M
i=1 E[F (R1, R2, ..., RM)1({Rj>Ri,∀j 6=i})||Ri − r| < ε]∑M

k=1 P({Rj > Rk,∀j 6= k}||Rk − r| < ε)

=

∑M
i=1 E[F (R1, R2, ..., RM)1({Rj>Ri,∀j 6=i})|Ri = r]∑M

k=1 P({Rj > Rk,∀j 6= k}|Rk = r)
,

the proof is completed by noting F is symmetric.

5.7.8 Proof of Corollary 5.4.12

Since W = 0 and l(r) = Crα, fj(Ri,M, λ) in Lemma 5.4.10 can be

simplified as:

fj(Ri,M, λ) =

j∑
k=0

(−1)k
(
j

k

)
exp

(
−2πλR2

0H(k, α,Γcs)

M

)
. (5.32)

Therefore, we can further obtain that:∫ ∞
R0

fj(r,M, λ)
λ2πr

M
exp(−λπr

2

M
)dr =

j∑
k=0

(−1)k
(
j

k

)
exp(−λπ

M
(1 + 2H(k, α,Γcs))R

2
0)

1 + 2H(k, α,Γcs)
.

(5.33)

The proof can be completed by substituting (5.32) and (5.33) into Lemma 5.4.10.
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Chapter 6

Conclusions

This dissertation has utilized stochastic geometry to address several

challenges in modeling and analyzing the evolution of cellular networks. A first

contribution of this dissertation is the development of several new methodolo-

gies for the stochastic geometry analysis of cellular networks, including a new

tractable analytical framework for determinantal point process based macro

cellular network, a new probabilistic framework for the MAC layer analysis

of the coexisting cellular network and Wi-Fi network, and new frameworks

to analyze the spatial and temporal dynamics of the cellular networks with

high mobility and slow mobility respectively. The second contribution, which

leverages these new methodologies, is the new system design insights into sev-

eral practical challenges during the evolution of cellular networks. In the rest

of this chapter, we summarize the system design insights obtained from each

contribution, and discuss the prospective future works.

6.1 Summary

In Chapter 2, we have proposed to use the soft-core repulsive deter-

minantal point processes as an accurate yet also tractable model for macro
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BS locations. The empty space function, the nearest neighbor function, the

mean interference, and the SIR distribution for DPP configured macro cellular

networks are derived. Based on the Quasi-Monte Carlo integration method,

these metrics are numerically evaluated for the Gauss DPP model. By us-

ing hypothesis testing methods, DPPs fitted to real macro BS deployments

are demonstrated to be accurate in terms of the K function and the coverage

probability. Finally, we demonstrate that DPPs have better accuracy than

the Poisson point process and the deterministic grid model for macro cellular

networks.

In Chapter 3, we have developed a stochastic geometry framework for

analyzing the coexistence performance of Wi-Fi network and cellular network,

when cellular network operates in the 5 GHz unlicensed spectrum. Three coex-

istence scenarios are investigated, including cellular with no protocol change,

cellular with discontinuous transmission, and cellular with listen-before-talk

and random back-off. The medium access probability, SINR coverage prob-

ability, density of successful transmission and rate coverage probability have

been analytically derived and numerically evaluated for these coexistence sce-

narios. We have shown that Wi-Fi performance will be significantly degraded

when cellular network operates in the unlicensed spectrum with no protocol

changes. In order to guarantee a fair coexistence with Wi-Fi, cellular network

needs to adopt a short transmission duty cycle, lower channel access priority

than Wi-Fi, or more sensitive CCA threshold.

In Chapter 4, we have utilized stochastic geometry to design and ana-
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lyze initial access protocol for mmWave cellular networks under the high mo-

bility scenario. For both both the single stage beamforming approach and two

stage beamforming approach, unified analytical expressions for the expected

initial access delay and average perceived throughput have been derived for

three initial access protocols. Among the initial access protocols that are in-

vestigated, the baseline exhaustive search protocol is shown to achieve the

smallest initial access delay when blockage is severe. The best trade-off be-

tween the initial access delay and user-perceived downlink throughput can be

achieved by the fast CS protocol, which has low beam-sweeping overhead in

cell search. Finally, the two stage beamforming approach is shown to increase

the average user-perceived throughput for the baseline protocol over the sin-

gle stage approach, and it is able to achieve good initial access delay and

user-perceived throughput simultaneously by adapting the beam refinement

factor.

In Chapter 5, the directional cell search delay performance for slow

mobile cellular networks is analyzed using stochastic geometry. In particular,

the proposed framework can handle the spatial and temporal correlations of

user’s SINR process, which is created by the fixed BS an user locations of

slow mobile networks. For Poisson network with Rayleigh fading, closed-form

expression for the expected cell search delay have be derived. Based on this

expression, the expected delay is proved to be infinite for noise limited network

(e.g., mmWave network) whenever the NLOS path loss exponent is larger than

2. In addition, the interference limited network is proved to exhibit a phase
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transition for the expected cell search delay, such that it is finite when the

number of BS antennas is greater than a threshold, and infinite otherwise.

6.2 Future Directions

Based on the stochastic geometry frameworks that have been developed

in this dissertation, various performance metrics of the traditional macro cel-

lular networks and emerging 5G cellular networks can be analyzed through a

fundamental approach. As cellular networks continue to evolve with more ad-

vanced features, stochastic geometry still serves as an important system level

analysis tool. However, the advanced network features could also lead to much

more challenging stochastic geometry analysis, especially when homogeneous

PPP is not the most accurate model for BS/user locations. Motivated by these

facts, this dissertation is concluded with two prospective research directions

that extends the derived stochastic geometry frameworks.

6.2.1 Multi-point Connectivity Performance in MmWave Cellular
Networks

The initial access protocols proposed in Chapter 4 only allow the user to

associate with one mmWave BS. However, when the users or blockers are mov-

ing, the users will be subject to frequent outages and re-associations if served

by only one BS. By enabling the user to associate with multiple mmWave

BSs (i.e., multi-point connectivity), better robustness to blockage and faster

re-association/handover can be achieved.
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Motivated by these observations, we will investigate the performance

of multi-point connectivity in mmWave cellular networks from space-time as-

pects. Specifically, we consider a scenario where BSs and users are fixed, while

the mmWave links are subject to random moving obstacles such as cars and

pedestrians. During the initial access, each user tries to associate with multiple

BSs, among which only one BS serves the user, and others are back-up BSs.

In order to model the effects of moving obstacles, a simple Gilbert two-state

Markov model for each BS-user link can be used. By leveraging both stochas-

tic geometry and stochastic processes, we propose to investigate the following

problems: (1) initial access protocol design to enable multi-point connectivity;

(2) stationary distribution of the serving BS for the typical user; (3) duration

of coverage for a user in given period with multi-point connectivity; and (4)

optimal system parameters such as the number of associated BSs.

6.2.2 Exploration of Analytical Methods with Good Balance Be-
tween Accuracy and Simplicity for Non-Poisson Networks

Leveraging stochastic geometry to analyze the SINR distribution in

cellular networks can be largely facilitated by modeling the node locations

using homogeneous PPP, which is equivalent to assuming complete spatial

randomness (CSR) for node locations. However, the CSR assumption neglects

the dependencies among node locations in various network scenarios, includ-

ing the conventional macro cellular networks discussed in Chapter 2, and the

CSMA networks discussed in Chapter 3. In fact, an accurate spatial point

process to model the dependencies among node locations could lead to very
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complicated closed-form SINR coverage expressions, which generally require

high computational complexity (e.g., DPPs or Ginibre point process for macro

BSs [10,37]). In many scenarios including the modified Matérn hard-core pro-

cess for CSMA/CA networks [53, 81], such closed-form SINR distribution is

even unavailable. From a practical system design perspective, a method that

can provide good balance between modeling accuracy and analytical simplicity

is desirable.

One promising approach to achieve such balance is through the non-

homogeneous PPP approximation, which approximates the interferers by a

non-homogeneous PPP, whose intensity function is equal to the conditional

intensity of the original point process given the serving transmitter loca-

tion. This technique has been applied to various scenarios, including the

macro cellular networks with DPP distributed BSs [10], the transmitting ac-

cess points in CSMA/CA networks [53,81], and uplink transmitters in cellular

networks [151,152]. The corresponding SINR coverage expressions can be effi-

ciently evaluated as opposed to its closed-form counterparts. However, most of

the existing works validate the accuracy of non-homogeneous PPP approxima-

tion through simulating limited set of scenarios, while its accuracy in general

is still largely unknown. Therefore, a valuable future direction is to investigate

the general applicability of non-homogeneous PPP approximation. For exam-

ple, the accuracy of estimating SINR using non-homogeneous PPP can be val-

idated through comprehensive numerical evaluations for parameterized point

processes, such as the Gauss DPP, the Ginibre DPP, the modified Matern hard
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core process for CSMA/CA, and the Poisson clustered processes. In summary,

a good understanding of when and why non-homogeneous PPP approximation

is accurate for certain network scenarios is important for efficient performance

evaluation and optimization of practical wireless networks.
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