8,188 research outputs found

    Large-Scale Distributed Internet-based Discovery Mechanism for Dynamic Spectrum Allocation

    Full text link
    Scarcity of frequencies and the demand for more bandwidth is likely to increase the need for devices that utilize the available frequencies more efficiently. Radios must be able to dynamically find other users of the frequency bands and adapt so that they are not interfered, even if they use different radio protocols. As transmitters far away may cause as much interference as a transmitter located nearby, this mechanism can not be based on location alone. Central databases can be used for this purpose, but require expensive infrastructure and planning to scale. In this paper, we propose a decentralized protocol and architecture for discovering radio devices over the Internet. The protocol has low resource requirements, making it suitable for implementation on limited platforms. We evaluate the protocol through simulation in network topologies with up to 2.3 million nodes, including topologies generated from population patterns in Norway. The protocol has also been implemented as proof-of-concept in real Wi-Fi routers.Comment: Accepted for publication at IEEE DySPAN 201

    High-speed, in-band performance measurement instrumentation for next generation IP networks

    Get PDF
    Facilitating always-on instrumentation of Internet traffic for the purposes of performance measurement is crucial in order to enable accountability of resource usage and automated network control, management and optimisation. This has proven infeasible to date due to the lack of native measurement mechanisms that can form an integral part of the network‟s main forwarding operation. However, Internet Protocol version 6 (IPv6) specification enables the efficient encoding and processing of optional per-packet information as a native part of the network layer, and this constitutes a strong reason for IPv6 to be adopted as the ubiquitous next generation Internet transport. In this paper we present a very high-speed hardware implementation of in-line measurement, a truly native traffic instrumentation mechanism for the next generation Internet, which facilitates performance measurement of the actual data-carrying traffic at small timescales between two points in the network. This system is designed to operate as part of the routers' fast path and to incur an absolutely minimal impact on the network operation even while instrumenting traffic between the edges of very high capacity links. Our results show that the implementation can be easily accommodated by current FPGA technology, and real Internet traffic traces verify that the overhead incurred by instrumenting every packet over a 10 Gb/s operational backbone link carrying a typical workload is indeed negligible

    Bounding the Bias of Tree-Like Sampling in IP Topologies

    Full text link
    It is widely believed that the Internet's AS-graph degree distribution obeys a power-law form. Most of the evidence showing the power-law distribution is based on BGP data. However, it was recently argued that since BGP collects data in a tree-like fashion, it only produces a sample of the degree distribution, and this sample may be biased. This argument was backed by simulation data and mathematical analysis, which demonstrated that under certain conditions a tree sampling procedure can produce an artificail power-law in the degree distribution. Thus, although the observed degree distribution of the AS-graph follows a power-law, this phenomenon may be an artifact of the sampling process. In this work we provide some evidence to the contrary. We show, by analysis and simulation, that when the underlying graph degree distribution obeys a power-law with an exponent larger than 2, a tree-like sampling process produces a negligible bias in the sampled degree distribution. Furthermore, recent data collected from the DIMES project, which is not based on BGP sampling, indicates that the underlying AS-graph indeed obeys a power-law degree distribution with an exponent larger than 2. By combining this empirical data with our analysis, we conclude that the bias in the degree distribution calculated from BGP data is negligible.Comment: 12 pages, 1 figur

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases

    Get PDF
    We consider the kk-core decomposition of network models and Internet graphs at the autonomous system (AS) level. The kk-core analysis allows to characterize networks beyond the degree distribution and uncover structural properties and hierarchies due to the specific architecture of the system. We compare the kk-core structure obtained for AS graphs with those of several network models and discuss the differences and similarities with the real Internet architecture. The presence of biases and the incompleteness of the real maps are discussed and their effect on the kk-core analysis is assessed with numerical experiments simulating biased exploration on a wide range of network models. We find that the kk-core analysis provides an interesting characterization of the fluctuations and incompleteness of maps as well as information helping to discriminate the original underlying structure

    VIoLET: A Large-scale Virtual Environment for Internet of Things

    Full text link
    IoT deployments have been growing manifold, encompassing sensors, networks, edge, fog and cloud resources. Despite the intense interest from researchers and practitioners, most do not have access to large-scale IoT testbeds for validation. Simulation environments that allow analytical modeling are a poor substitute for evaluating software platforms or application workloads in realistic computing environments. Here, we propose VIoLET, a virtual environment for defining and launching large-scale IoT deployments within cloud VMs. It offers a declarative model to specify container-based compute resources that match the performance of the native edge, fog and cloud devices using Docker. These can be inter-connected by complex topologies on which private/public networks, and bandwidth and latency rules are enforced. Users can configure synthetic sensors for data generation on these devices as well. We validate VIoLET for deployments with > 400 devices and > 1500 device-cores, and show that the virtual IoT environment closely matches the expected compute and network performance at modest costs. This fills an important gap between IoT simulators and real deployments.Comment: To appear in the Proceedings of the 24TH International European Conference On Parallel and Distributed Computing (EURO-PAR), August 27-31, 2018, Turin, Italy, europar2018.org. Selected as a Distinguished Paper for presentation at the Plenary Session of the conferenc

    One-step Estimation of Networked Population Size: Respondent-Driven Capture-Recapture with Anonymity

    Get PDF
    Population size estimates for hidden and hard-to-reach populations are particularly important when members are known to suffer from disproportion health issues or to pose health risks to the larger ambient population in which they are embedded. Efforts to derive size estimates are often frustrated by a range of factors that preclude conventional survey strategies, including social stigma associated with group membership or members' involvement in illegal activities. This paper extends prior research on the problem of network population size estimation, building on established survey/sampling methodologies commonly used with hard-to-reach groups. Three novel one-step, network-based population size estimators are presented, to be used in the context of uniform random sampling, respondent-driven sampling, and when networks exhibit significant clustering effects. Provably sufficient conditions for the consistency of these estimators (in large configuration networks) are given. Simulation experiments across a wide range of synthetic network topologies validate the performance of the estimators, which are seen to perform well on a real-world location-based social networking data set with significant clustering. Finally, the proposed schemes are extended to allow them to be used in settings where participant anonymity is required. Systematic experiments show favorable tradeoffs between anonymity guarantees and estimator performance. Taken together, we demonstrate that reasonable population estimates can be derived from anonymous respondent driven samples of 250-750 individuals, within ambient populations of 5,000-40,000. The method thus represents a novel and cost-effective means for health planners and those agencies concerned with health and disease surveillance to estimate the size of hidden populations. Limitations and future work are discussed in the concluding section

    Multiple Random Walks to Uncover Short Paths in Power Law Networks

    Full text link
    Consider the following routing problem in the context of a large scale network GG, with particular interest paid to power law networks, although our results do not assume a particular degree distribution. A small number of nodes want to exchange messages and are looking for short paths on GG. These nodes do not have access to the topology of GG but are allowed to crawl the network within a limited budget. Only crawlers whose sample paths cross are allowed to exchange topological information. In this work we study the use of random walks (RWs) to crawl GG. We show that the ability of RWs to find short paths bears no relation to the paths that they take. Instead, it relies on two properties of RWs on power law networks: 1) RW's ability observe a sizable fraction of the network edges; and 2) an almost certainty that two distinct RW sample paths cross after a small percentage of the nodes have been visited. We show promising simulation results on several real world networks
    • …
    corecore