11,908 research outputs found

    Sampling algebraic sets in local intrinsic coordinates

    Full text link
    Numerical data structures for positive dimensional solution sets of polynomial systems are sets of generic points cut out by random planes of complimentary dimension. We may represent the linear spaces defined by those planes either by explicit linear equations or in parametric form. These descriptions are respectively called extrinsic and intrinsic representations. While intrinsic representations lower the cost of the linear algebra operations, we observe worse condition numbers. In this paper we describe the local adaptation of intrinsic coordinates to improve the numerical conditioning of sampling algebraic sets. Local intrinsic coordinates also lead to a better stepsize control. We illustrate our results with Maple experiments and computations with PHCpack on some benchmark polynomial systems.Comment: 13 pages, 2 figures, 2 algorithms, 2 table

    Learning Algebraic Varieties from Samples

    Full text link
    We seek to determine a real algebraic variety from a fixed finite subset of points. Existing methods are studied and new methods are developed. Our focus lies on aspects of topology and algebraic geometry, such as dimension and defining polynomials. All algorithms are tested on a range of datasets and made available in a Julia package

    Sampling From A Manifold

    Full text link
    We develop algorithms for sampling from a probability distribution on a submanifold embedded in Rn. Applications are given to the evaluation of algorithms in 'Topological Statistics'; to goodness of fit tests in exponential families and to Neyman's smooth test. This article is partially expository, giving an introduction to the tools of geometric measure theory

    Median K-flats for hybrid linear modeling with many outliers

    Full text link
    We describe the Median K-Flats (MKF) algorithm, a simple online method for hybrid linear modeling, i.e., for approximating data by a mixture of flats. This algorithm simultaneously partitions the data into clusters while finding their corresponding best approximating l1 d-flats, so that the cumulative l1 error is minimized. The current implementation restricts d-flats to be d-dimensional linear subspaces. It requires a negligible amount of storage, and its complexity, when modeling data consisting of N points in D-dimensional Euclidean space with K d-dimensional linear subspaces, is of order O(n K d D+n d^2 D), where n is the number of iterations required for convergence (empirically on the order of 10^4). Since it is an online algorithm, data can be supplied to it incrementally and it can incrementally produce the corresponding output. The performance of the algorithm is carefully evaluated using synthetic and real data

    Persistent Cohomology and Circular Coordinates

    Full text link
    Nonlinear dimensionality reduction (NLDR) algorithms such as Isomap, LLE and Laplacian Eigenmaps address the problem of representing high-dimensional nonlinear data in terms of low-dimensional coordinates which represent the intrinsic structure of the data. This paradigm incorporates the assumption that real-valued coordinates provide a rich enough class of functions to represent the data faithfully and efficiently. On the other hand, there are simple structures which challenge this assumption: the circle, for example, is one-dimensional but its faithful representation requires two real coordinates. In this work, we present a strategy for constructing circle-valued functions on a statistical data set. We develop a machinery of persistent cohomology to identify candidates for significant circle-structures in the data, and we use harmonic smoothing and integration to obtain the circle-valued coordinate functions themselves. We suggest that this enriched class of coordinate functions permits a precise NLDR analysis of a broader range of realistic data sets.Comment: 10 pages, 7 figures. To appear in the proceedings of the ACM Symposium on Computational Geometry 200

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi
    • …
    corecore