5 research outputs found

    Sampled-data control of hybrid systems with discrete inputs and outputs

    Get PDF
    We address the control synthesis of hybrid systems with discrete inputs, disturbances and outputs. The control objective is to ensure that the events of the closed-loop system belong to the language of the control requirements. The controller is sampling-based and it is representable by a finite-state machine. We formalize the control problem and provide a theoretically sound solution. The solution is based on solving a discrete-event control problem for a finite-state abstraction of the plant. We propose a specific construction for the finite-state abstraction. This construction is not based on discretizing the state-space, but rather on converting the continuous-time hybrid system to a discrete-time one based on sampling. The construction works only for a specific class of hybrid systems. We describe this class of systems and we provide an example of such a system, inspired by an industrial use-case

    Model Reduction by Moment Matching for Linear Switched Systems

    Get PDF
    Two moment-matching methods for model reduction of linear switched systems (LSSs) are presented. The methods are similar to the Krylov subspace methods used for moment matching for linear systems. The more general one of the two methods, is based on the so called "nice selection" of some vectors in the reachability or observability space of the LSS. The underlying theory is closely related to the (partial) realization theory of LSSs. In this paper, the connection of the methods to the realization theory of LSSs is provided, and algorithms are developed for the purpose of model reduction. Conditions for applicability of the methods for model reduction are stated and finally the results are illustrated on numerical examples.Comment: Sent for publication in IEEE TAC, on October 201

    Model Reduction of Linear Switched Systems and LPV State-Space Models

    Get PDF

    Sampled-data control of hybrid systems with discrete inputs and outputs

    No full text
    We address the control synthesis of hybrid systems with discrete inputs, disturbances and outputs. The control objective is to ensure that the events of the closed-loop system belong to the language of the control requirements. The controller is sampling-based and it is representable by a finite-state machine. We formalize the control problem and provide a theoretically sound solution. The solution is based on solving a discrete-event control problem for a finite-state abstraction of the plant. We propose a specific construction for the finite-state abstraction. This construction is not based on discretizing the state-space, but rather on converting the continuous-time hybrid system to a discrete-time one based on sampling. The construction works only for a specific class of hybrid systems. We describe this class of systems and we provide an example of such a system, inspired by an industrial use-case
    corecore