Sampled-data control of hybrid systems with discrete inputs and outputs

Abstract

We address the control synthesis of hybrid systems with discrete inputs, disturbances and outputs. The control objective is to ensure that the events of the closed-loop system belong to the language of the control requirements. The controller is sampling-based and it is representable by a finite-state machine. We formalize the control problem and provide a theoretically sound solution. The solution is based on solving a discrete-event control problem for a finite-state abstraction of the plant. We propose a specific construction for the finite-state abstraction. This construction is not based on discretizing the state-space, but rather on converting the continuous-time hybrid system to a discrete-time one based on sampling. The construction works only for a specific class of hybrid systems. We describe this class of systems and we provide an example of such a system, inspired by an industrial use-case

    Similar works