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Abstract

A linear switched system (LSS) is a concatenation of more than one linear subsystems,
for which the operating subsystem at each time instant is chosen by a function called
the “switching signal”, whose range is the set of discrete modes. The allowed set of
switching sequences for an LSS can be arbitrary (user defined) or constrained due to
the modeled physical process itself or due to the physical constraints on choosing the
input. In this work, some methods are presented to approximate the input output
behavior of an LSS with arbitrary or restricted switching, with another LSS of smaller
complexity. Smaller system complexity in this context refers to “smaller continuous
state-space dimension”.

The methods are based on a non-trivial generalization of Krylov subspace-based
moment matching methods, to the linear switched systems. The newly developed
methods are numerically much more efficient than some naive approaches appeared
in the literature previously for the same problem. The numerical advantage of the
given methods stems from the fact that they do not rely on computing the finite
Hankel matrices of an LSS, whose size increases exponentially with the number of
discrete modes (linear subsystems) of an LSS.

The work consists of five major parts. The first four parts state model order reduc-
tion methods for LSSs. The first method can be interpreted as the complete analogue
of the solution to the moment matching problem in the linear case, for linear switched
systems. The second method is more general and it is based on the so-called “nice
selections” of some basis vectors, for some subspaces of reachability/unobservability
spaces of an LSS; and it allows for choosing the order of the reduced LSS a priori.
In the third part, the problem of model reduction of LSSs with constrained switching
is considered. The proposed method (whenever possible) computes a reduced order
LSS from a given LSS whose input-output behavior is exactly the same with the one
of the original LSS. The fourth part further discusses this method, constructing its
ties with system theoretical properties like reachability and observability. Namely,
the definitions of reachability and observability of LSSs with respect to a constrained
set of switching sequences are proposed, and a method to reduce an unreachable
and/or unobservable LSS to a reduced order reachable and/or observable LSS (with
respect to the same set of constrained switching) is given. The method again preserves
the complete input-output behavior. In the last part of the work, a similar approach
based on moment matching is taken for the purpose of model reduction of linear
parameter varying (LPV) state-space (SS) representations with affine dependence on
the scheduling variable. This jump from linear switched systems to LPV-SS represen-
tations is possible by observing the Markov parameters (moments) uniquely defining
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the input-output behavior of an LSS with arbitrary switching and an LPV-SS repre-
sentation can be defined in an equivalent way for both cases. For each method, the
results are illustrated with numerical examples. The proposed methods are expected
to be useful for control synthesis for LSSs and LPV-SS models, since reduced order
approximated plants can be used for control synthesis instead of the original ones,
yielding the resulting controllers to be of reduced order as well.



Synopsis

Et lineært skifte system (LSS) er en sammenkædning af lineær delsystemer, hvor
det aktive delsystemet bestemmes af en tidsafhængig funktion, kaldet et "skifte sig-
nal", som tager værdier i en mængde af diskrete tilstande. Den tilladte mængde af
skifte signaler hørende til et LSS kan være vilkårlig (brugerdefineret) eller begrænset
f.eks. på grund af den modellerede fysiske proces. I dette arbejde præsenteres nogle
metoder til tilnærmelse af input-output opførsel af et LSS, med vilkårlig eller be-
grænset skifte signaler, med et andet LSS af mindre kompleksitet. Mindre komplek-
sitet henviser i denne sammenhæng til mindre tilstandsrumsdimension.

Metoderne er baseret på en ikke-triviel generalisering af "Krylov subspace-based
moment matching" metoder for lineære systemer, til lineære skifte systemer. De nyud-
viklede metoder er numerisk set mere applikations orienteret end tilsvarende metoder
fra litteraturen. De numeriske fordele stammer fra det faktum, at de ikke beror på
beregninger af endelige Hankel matricer hørende til et LSS, hvis størrelse stiger ek-
sponentielt med antallet af diskrete tilstande (lineære delsystemer) hørende til et LSS.

Dette arbejde består af fem hoveddele. De første fire dele omhandler "model or-
den reduktions" metoder for LSSer. Første metode kan fortolkes som værende lineær
skifte systemers analog til "moment matching" metoden for lineære systemer. Den
anden metode er mere generel og er baseret på de såkaldte "nice selections" af ba-
sisvektorer, for underrum af det kontrollerbare/ikke-observerbare rum hørende til et
LSS. Metoden giver a prior mulighed for at vælge ordnen af den reducerede LSS.
I tredje del behandles problemet omhandlende modelreduktion af LSSer med be-
grænset skifte signaler. Den foreslåede metode beregner (når det er muligt) et reduc-
erede ordens LSS ud fra et given LSS, således at input-output adfærd stemmer overens
med det oprindelige LSS. Den fjerde del diskuterer system teoretiske egenskaber, så-
som kontrollerbarhed og observerbarhed, ved metoderne beskrevet i de tre første dele.
Mere præcist fremlægges der definitioner af kontrollerbarhed og observerbarhed af
LSS med begrænset skifte signaler og der præsenteres en fremgangsmåde til at re-
ducere et ikke-kontrollerbar og/eller ikke-observerbar LSS til et reducerede ordens
kontrollerbar og/eller observerbare LSS (med samme mængde af begrænsede skifte
signaler). Fremgangsmåden bevarer input-output adfærd. I den sidste del af arbejdet,
fokuseres der på "moment matching" med henblik på model reduktion af lineære pa-
rameter varierende (LPV) systemer med affin afhængighed af skeduleringsvariablen.
Dette spring fra lineære skifte systemer til LPV systemer er mulig da Markov parame-
trene entydigt definerer input-output opførsel af både et LSS med vilkårlig skift og
et LPV system. For hver metode er resultaterne illustreret med numeriske eksempler.
Det forventes at de foreslåede metoder er anvendelige ved kontrol syntese af LSSer
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og LPV systemer, da de reduceret systemer kan anvendes til kontrol syntese i stedet
for de oprindelige, hvilket medføre en reduceret ordens regulator.
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Introduction

This chapter presents the context, the problem, the approach and the general outline of the
thesis.

1 Context and Motivation

Hybrid systems are a class of nonlinear systems which result from the interaction of
continuous time dynamical sub-systems with discrete events [1]. More precisely, a
hybrid system is a collection of continuous time dynamical systems. The state of each
dynamical system is governed by a set of differential equations. Each of the separate
continuous time systems are labeled as a discrete state (mode). Hence, the operat-
ing continuous-time subsystem at a specific time instant is called the discrete mode
and its state is called the continuous state at a specific time instant. The operating
discrete mode in any time instant can be chosen arbitrarily, or it may depend on the
value of the continuous state or other constraints. The transitions between the discrete
states may result in a jump in the continuous state. If there is a jump, the function
which maps the continuous state just before the mode change to the continuous state
just after the the mode change is called the reset map. The continuous state evolves
continuously in time, whenever there is no transition to another discrete mode. Lin-
ear switched systems (LSSs) constitute a subclass of these systems where the discrete
events interacting with the sub-systems are governed by a piecewise continuous func-
tion called the switching signal. The switching signal may either be considered as an
additional external input, or an input satisfying certain constraints, or it may depend
on the state of the system. Linear switched systems are called “linear” because all
of their subsystems operating with respect to the value of the switching signal in a
particular time interval, are individually linear systems. All of the contributions re-
lated to linear switched systems in this thesis, consider specifically the case when the
reset maps (the maps specifying the next continuous state whenever a jump from one
discrete mode to another takes place) are taken as the identity map, i.e., the evolu-
tion of the continuous state is really a continuous function of time. Such systems are
used in modeling, analysis and design of supervisory control systems, mechanical
systems with impact, circuits with relays or ideal diodes for instance. These examples
and some system theoretic properties of switched systems have been studied in detail
in [1], [2], [3] and the references therein. Although there is a remarkable amount of
literature about switched systems, the subject is relatively recent and it is still open
for research.

Linear parameter varying (LPV) systems can be thought as a collection of linear
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time invariant (LTI) systems, each created by linearizing a non-linear system in dif-
ferent operating points. A time varying signal (which is called the scheduling signal)
is introduced to describe the changes in the operating points, from which the title
“parameter varying” follows [4]. In turn, an affine LPV system is an LPV system
where the dependence on this scheduling signal is affine. In [5], it is shown that
each affine LPV system has an associated LSS for which the coefficients describing the
input-output behavior of the system are exactly the same as those of the correspond-
ing affine LPV system. In addition, the realization theory of LPV systems and LSSs
are closely related, [5].

Model reduction is the other important concept about this thesis. For linear time-
invariant (LTI) systems the problem of model reduction can be formulated as follows:
Given an LTI discrete or continuous time input/output system represented by the
convolution integral (or sum), transfer function or state space representation; approx-
imate this system with a simpler system [6]. For the state space representation, the
complexity (sometimes called the order) of the system is defined as the dimension of
its state space. Thus, by “approximating the system by a simpler one”, it is meant
discarding some of the states and finding a reduced order approximation for the sys-
tem. The trade-off between model complexity and accuracy is a central issue. In order
to estimate how accurate is the reduced order system compared to the original one,
certain norms must be defined and used for measuring the distance between linear
systems. For instance, the L2 norm of an LTI system is defined to be the norm of its
impulse response, and the frequency domain equivalent of this norm is called the H∞
norm (both turn out to be equal in time and frequency domains respectively [6]).

The model reduction methods can be divided into two main subtopics: Singular
Value Decomposition (SVD)-based methods and Krylov-based methods for LTI sys-
tems. One of the most significant methods belonging to the former class is called
balanced truncation. The idea of the balanced truncation techniques for LTI systems
can be summarized as follows [6]: The states which have bigger components in the
space spanned by the eigenvectors corresponding to the smaller eigenvalues of reach-
ability gramian P of the system need more energy to be reached, i.e., they are difficult
to reach. Whereas, the states which have bigger components in the space spanned by
the eigenvectors corresponding to the smaller eigenvalues of observability gramian Q
of the system yields less observation energy, i.e., they are difficult to observe. A state
space transformation is called a balancing transformation, if in the resulting basis for
the state space, the reachability and observability gramians are equal, i.e., P = Q, i.e.,
the states which are difficult to reach are simultaneously the states which are difficult
to observe. The reduced order system is then acquired by truncating these compo-
nents of the states. In contrast, Krylov methods, make use of the partial realization
theory and they are based on finding an approximation of the original system whose
first certain number of Markov parameters are equal to the original one’s. This ap-
proach is called “moment matching” where the word “moment” stands for “Markov
parameters” which are the parameters defining the input-output behavior of a linear
system uniquely. An extensive reference for model reduction of linear systems is [6].

The methods stated in this thesis for the model reduction of linear switched sys-
tems (either with arbitrary or restricted switching) or LPV systems with affine de-
pendence on the scheduling parameter can be considered as a non-trivial extension
of Krlyov-based moment matching methods used for model reduction of linear sys-
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1. Context and Motivation

tems. Similar to the linear case, all of the methods are applicable to LSSs with un-
stable modes and LPV systems with unstable state-space parameters. Krylov based
methods have also the property to be computationally less cumbersome than the
SVD based methods and since there is no matrix factorization involved, the possi-
ble ill-conditioning of the balancing transformation matrix in SVD-based methods
is avoided [6]. The motivation for extending moment matching techniques to LSSs
is that these techniques can be applied to unstable systems and the corresponding
model reduction algorithms are computationally efficient. In this thesis, the under-
lying theory for applying Krylov type model reduction methods to LSSs and LPV
systems are built. However, the numerical aspects and computational efficiency of
the presented methods should be investigated further. This remains as a topic of fu-
ture research. Numerical challenges similar to those encountered in classical Krylov
methods are likely to appear for LSSs and LPV systems.

The remaining of this section is organized as follows: First, we describe the moti-
vation behind the model reduction of hybrid and linear switched systems. Then we
will briefly describe the problem formulation and motivation behind each papers A
to D, which deal with LSSs, in the contributions part of the thesis. We will conclude
with presenting the motivation for model reduction of LPV systems which is the sub-
ject of Paper E. A more detailed outline of these papers and the related work will be
presented later on in this chapter.

1.1 Motivation for Model Reduction of LSSs

If the problem of control synthesis for hybrid/switched systems are considered, it is
evident that the order of the controller and the computation complexity of controller
synthesis usually increase as the number of continuous states of the plant model
increases. In particular for robust control, H∞ control synthesis has a tendency to
provide controllers with a very high order, which from the implementation point of
view should be reduced [7]. Hence, the smaller the plant model is, the easier it is to
synthesize the control law and to implement it. This becomes especially relevant for
hybrid systems, as many of the existing control synthesis methods are computation-
ally demanding and result in large scale controllers.

For example, many of the existing control synthesis methods rely on computing
a finite-state abstraction of the plant model, see [8] and the references therein. After
having a finite-state abstraction for the physical phenomenon or the plant which is
desired to be modeled, one then applies discrete-event control synthesis techniques
to find a discrete controller for the finite-state abstraction of the plant. When building
a finite state abstraction, one proceeds as follows: The continuous state space is parti-
tioned into different regions, which have similar characteristics (similar characteristics
are defined according to the problem at hand). Then, each of these regions are con-
sidered as a discrete state, hence each region is considered as a point in the discrete
mode set. Usually, the discrete states of this abstraction are not directly measurable,
only the events (transition labels) are. This means that the controller has to contain a
copy of the abstracted plant model, in order to be able to estimate the discrete state
of the finite-state abstraction of the plant, [8–10]. In addition, the complexity of the
control synthesis algorithm is at best polynomial in the number of continuous states
of the finite-state abstraction [8, 9, 11]. The situation becomes even worse when one

5



considers the case of partial observations, i.e., when not all events (transition labels)
of the finite-state abstraction are observable. This can be caused by the nature of the
problem [12] or by the non-determinism of the abstraction. In this case, the control
synthesis algorithm can even have exponential complexity, [9, 11, 13], and the number
of states of the controller can be exponential in the number of the continuous states
of the abstraction. Even when one considers the behavior of the open loop plant only,
depending on the method used and on the application at hand, the size of the finite-
state abstraction i.e., the number of discrete modes of the finite-state abstraction, can
be very large. It could even be again exponential in the number of continuous states
of the original hybrid model, [8]. In such cases as defined above, synthesis or im-
plementation of controller might become very difficult, even for hybrid systems of
moderate size. Clearly, model reduction algorithms could be useful for such cases.

1.2 Motivation for Papers A and B

Paper A presents a non-trivial extension of Krylov type moment matching methods
for LSSs. The motivation for considering Krylov based model reduction methods is
that they are applicable to unstable systems as well as stable systems and they are
numerically attractive. Note that the results of paper A represent a first attempt to
extend Krylov based methods to LSSs. However, the approach of Paper A has its
shortcomings which prompted us to consider a more general approach in paper B. In
Paper B we introduce the framework of nice selections. This framework is flexible,
it allows to choose the model order of the reduced system, and it allows to ensure
that for designated switching signals, the input-output behavior of the reduced-order
and of the original system coincide. Moreover, by using nice selections, we can not
only select which switching signals we would like to preserve, but we can also aim
at preserving the response on some output channels only, or preserving the response
only with respect to certain input channels. That is, nice selections give us both
flexibility and allow for the following system theoretic interpretation of the reduced
system: the input-output behavior of the reduced system coincides with that of the original
one for some inputs, outputs and switching signals. The latter interpretation is consistent
with the usual interpretation of moment matching for LTI systems [14].

1.3 Motivation for Papers C and D

Papers C and D deal with discrete time LSSs. They both provide algorithms for
reducing the order of a discrete time LSS while preserving its input-output behavior
for a set of switching sequences. The difference between papers C and D are as
follows: The method in paper D preserves the input-output behavior along all the
switching sequences from a certain set. Whereas the method in paper C, computes
possibly a smaller order LSS whose input - output behavior is the same as the original
LSS for the time instances corresponding to the last element of each allowed switching
sequence. For instance, suppose the switching sequence 122 is the only element of the
constrained switching set. Then the method in paper D gives a reduced order LSS
whose output is the same as the output of the original LSS for the switching sequence
122 for all inputs and time instances 0, 1, 2; whereas paper C returns a possibly smaller
order LSS whose output is the same with the original LSS for the switching sequence
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2. Methodology

122 for all inputs at only the time instance 2. In addition, the algorithm in Paper D
admits an interpretation as reachability and / or observability reduction of LSSs with
constrained switching.

The particular model reduction and reachability/observability reduction problems
formulated in papers C and D were motivated by the observation that in many in-
stances, we are interested in the input-output behavior of the model only for certain
switching sequences. Restrictions on switching sequences could be imposed by cer-
tain physical constraints, which prevent generating all switching sequence in practice,
or by existing controllers which generate the switching sequences. The method given
in Paper D can be useful when one wishes to use the reduced order model to verify
the safety properties of the original model, or to synthesize a controller using the re-
duced model which ensures the safety properties of the original LSS. The method in
Paper C would be useful when one wishes to use the reduced order model to verify
the liveness properties of the original model, or to synthesize a controller using the
reduced model which ensures the liveness properties of the original LSS. A detailed
discussion will be given in Section 4.

1.4 Motivation for Paper E

Finally we turn our attention to Paper E, which proposes a similar model reduction
method for linear parameter varying - state space (LPV-SS) representations. Such
representations are used in a wide variety of applications, see for instance [15–19].
Their popularity is due to their ability to capture nonlinear dynamics, while remain-
ing simple enough to allow effective control synthesis, for example, by using optimal
H2/H∞ control, Model Predictive Control or PID approaches. LPV-SS representa-
tions arising in practice, especially which arise from first-principles based modeling
methods, often have a large number of states. This is due to the inherent complexity
of the physical process whose behavior the LPV-SS representations are supposed to
capture. Unfortunately, due to memory limitations and numerical issues, the existing
LPV controller synthesis tools are not always capable of handling large state-space
representations [20]. Moreover, even if the control synthesis is successful, large plant
models lead to large controllers. In turn, large controllers are more difficult and costly
to implement, and they often require application of reduction techniques. For this rea-
son, model reduction of LPV-SS representations is extremely relevant for improving
the applicability of LPV systems.

2 Methodology

In this section, a brief review of the (partial) realization theory for linear and lin-
ear switched systems will be presented. The main idea of moment matching, used
throughout the thesis stems from this theory. Hence, we review the relevant concepts
from the theory. In particular, we include a simple version of the Silverman realization
algorithm for the single-input single-output (SISO) case at the end of the subsection.
This algorithm is included to state the result about approximations to a linear system
by partial realizations. This in turn, serves as the main idea of all theory of moment
matching for LSSs and LPV-SS representations, constructed in this thesis.
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In the following, we will use N and R+ to denote respectively the set of natural
numbers including 0 and the set [0,+∞) of nonnegative real numbers. Let S be a
topological subspace of an Euclidean space Rn. The set of piecewise-continuous and left-
continous maps of the form R+ → S is denoted by PC(R+, S). That is, f ∈ PC(R+, S)
if it has finitely many points of discontinuity on any compact subinterval of R+, and
at any point of discontinuity both the left-hand and right-hand side limits exist, and
f is continuous from the left. Moreover, when S is a discrete set it will always be
endowed with the discrete topology.

In addition, we denote by AC(R+, Rn) the set of absolutely continuous maps, and
Lloc(R+, Rn) the set of Lebesgue measurable maps which are integrable on any compact
interval.

2.1 Review of Realization Theory for Linear Systems

A linear time invariant (LTI) system Σ is a tuple (A, B, C) with A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n. The state x(t) ∈ Rn and the output y(t) ∈ Rp of the LTI system Σ at time
t ≥ 0 is defined by

d
dt

x(t) = Ax(t) + Bu(t), x(0) = x0 (1a)

y(t) = Cx(t) (1b)

where the input u ∈ Lloc(R+, Rm), x ∈ AC(R+, Rn) and y ∈ PC(R+, Rp). We denote
the fact that the state space dimension of Σ is n by dim(Σ) = n. The number n is also
called the order of Σ.

Since the following discussion will be on realization theory of LTI systems, we
take x(0) = x0 = 0 unless stated otherwise, by following the usual convention. Note
that such results can easily be extended to the case of non-zero initial states.

We define the input-to-state map XΣ and input-to-output map YΣ as the maps

XΣ : Lloc(R+, Rm)→ AC(R+, Rn); u 7→ XΣ(u),

YΣ : Lloc(R+, Rm)→ PC(R+, Rp); u 7→ YΣ(u).

defined by letting t 7→ XΣ(u)(t) be the solution to (1a) with x(0) = 0, and letting
YΣ(u)(t) = CXΣ(u)(t) as in (1b).

Next we discuss what kind of input-output maps can be realized (described) by an
LTI system. Let f : Lloc(R+, Rm)→ PC(R+, Rp). The necessary condition for f to be
realized by an LTI system Σ of the form (1) is that f is of the form

f (u)(t) =
∫ t

0
G(t− τ)u(τ)dτ (2)

where G : R+ → Rp×m is an analytic map.

Definition 1 ((Minimal) Realization). An LTI system Σ of the form (1) is a realization of
a map f of the form (2) if for all u ∈ Lloc(R+, Rm)

f (u) = YΣ(u).

Moreover, we say that Σ is a minimal realization of f , if for any other realization Σ̂ of f ,
dim(Σ) ≤ dim(Σ̂).

8



2. Methodology

Theorem 1. An LTI system Σ of the form (1) is a realization of a map f of the form (2) if

G(t) = CeAtB.

Since the map G is analytic, it is uniquely described by the coefficients of its Taylor
series expansion around t = 0. In the following, we will denote this coefficients by

hk =
dk

dtk G(t)

∣∣∣∣∣
t=0

, ∀k ∈N

where N = {0, 1, . . . }. If f is realized by an LTI system Σ, these coefficients are called
the Markov parameters of Σ and they are defined as

hk =
dk

dtk CeAtB

∣∣∣∣∣
t=0

= CAkB, ∀k ∈N

where A0 denotes the n× n identity matrix In. Hence an equivalent formulation for
an LTI realization Σ of a map f can be presented as follows:

Theorem 2. An LTI system Σ of the form (1) is a realization of a map of the form (2) if

hk =
dk

dtk G(t)

∣∣∣∣∣
t=0

= CAkB, ∀k ∈N.

A state x f ∈ Rn of an LTI realization Σ is called reachable from the zero initial
state if there exists a time instant T ≥ 0 and an input u ∈ Lloc(R+, Rm) such that
XΣ(u)(T) = x f , i.e., if

x f = XΣ(u)(T) =
∫ T

0
eA(T−τ)Bu(τ)dτ. (3)

Let Xreach denote the set of all reachable states of an LTI realization Σ. The LTI
realization Σ is called reachable if Xreach constitutes the whole state space Rn, i.e., if
Xreach = Rn.

Let the zero-input state map and zero-input response map of Σ be defined by the maps

Xx0
Σ : Rn → AC(R+, Rn)Yx0

Σ : Rn → PC(R+, Rp)

by letting t 7→ Xx0
Σ (t) be the solution to (1a) with x(0) = x0 and u = 0, and letting

Yx0
Σ (t) = CXx0

Σ (t) as in (1b). Then, a state x0 ∈ Rn of Σ is called unobservable if
Yx0

Σ = 0, i.e.,
CeAtx0 = 0, ∀t ≥ 0. (4)

Note that the zero initial state is vacuously unobservable. Let Xunobs denote the set
of all unobservable states of an LTI realization Σ. The LTI realization Σ is called
observable if Xunobs consists only the zero initial state, i.e., if Xunobs = {0}.

The following well-known Theorems 3 and 4 are given without proof for further
discussion. Note that they can be proven by replacing the Taylor series expansion of
eAt around t = 0 in (3), (4), and using the Cayley-Hamilton Theorem [21].

9



Theorem 3. The reachable space Xreach of Σ is given by

Xreach = im(R) = im(
[
B AB A2B · · ·

]
) = im(

[
B AB · · · An−1B

]
).

Hence Σ is reachable if

rank(
[
B AB · · · An−1B

]
) = n.

Theorem 4. The unobservable space Xunobs of Σ is given by

Xunobs = ker(O) = ker




C
CA
CA2

...


 = ker




C
CA

...
CAn−1


 .

Hence Σ is observable if

rank




C
CA

...
CAn−1


 = n.

The following definition will be given to state a necessary and sufficient condition
on a map being realizable.

Definition 2. The Hankel matrix H f of a map f of the form (2) is the following infinite
matrix, given in p×m real blocks:

H f =


h0 h1 h2 · · ·
h1 h2 h3 · · ·
h2 h3 h4 · · ·
...

...
...

. . .

 .

Theorem 5. If f is realized by a Σ of the form (1), then the Hankel matrix H Σ of Σ is given
by

H Σ = H f =


CB CAB CA2B · · ·

CAB CA2B CA3B · · ·
CA2B CA3B CA4B · · ·

...
...

...
. . .

 .

Theorem 6 ( [6]). 1. A map f of the form (2) is realizable by an LTI system Σ if and only
if rank(H f ) = n < ∞.

2. A realization Σ of f is minimal if and only if it is reachable and observable.

3. All minimal realizations have the order n = rank(H f ).

4. If Σ1 = (A1, B1, C1) and Σ2 = (A2, B2, C2) are two minimal realizations, then there
exists a non-singular matrix (isomorphism map) S ∈ Rn×n such that

SA1 = A2S, SB1 = B2 C1 = C2S.

In this case, Σ1 and Σ2 are called isomorphic systems or realizations.
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2. Methodology

One proof of Theorem 6 can be found in [6] (here, the statement of the theorem is
slightly simpler than the one in [6] to be consistent with our purposes). There, it is
shown how to construct a realization from the finite rank Hankel matrix. By Kalman
decomposition, one can reduce a non-reachable and/or a non-observable system to
an equivalent reachable and/or observable one. Thus, once any realization of f is
constructed, Kalman decomposition can be used to acquire a minimal one. Hence, in
the rest, whenever we talk about a realization Σ of f , we may assume that Σ is minimal
without loss of generality. In the next, we state a procedure on how to construct a
minimal realization for a realizable map f , from its Hankel matrix H f for the single-
input single-output (SISO) case (this choice is made for simplicity, since the aim of this
subsection is only to present the idea of approximations by partial realizations). For
this purpose, we define a map f as SISO-realizable if f is realizable by a Σ = (A, B, C)
of the form (1) with p = m = 1.

Theorem 7 (Silverman realization algorithm (SISO case) [22], [6]). Let f be a SISO-
realizable map of the form (2) and rank(H f ) = n. Define the following sub-matrices of
H f :

Φ ∈ Rn×n is the n× n principal minor matrix of H f , i.e.,

Φ =

 h0 · · · hn−1
... · · ·

...
hn−1 · · · h2n−2

 .

σΦ ∈ Rn×n is the sub-matrix of H f having the rows with the same index as those of Φ and
the columns one column to the right of the ones of Φ, i.e.,

σΦ =

h1 · · · hn
... · · ·

...
hn · · · h2n−1

 .

Γ ∈ Rn×1 is the sub-matrix of H composed of the first n rows of the first column of H f , i.e.,

Γ =

 h0
...

hn−1

 .

Λ ∈ R1×n is the sub-matrix of H composed of the first n columns of the first row of H f ,
i.e.,

Λ =
[
h0 · · · hn−1

]
.

Then the LTI system Σ = (A, B, C) where

A = Φ−1σΦ B = Φ−1Γ C = Λ

is a minimal realization of f .

Now we will define the concept of a partial realization, which lies in the heart of
the discussion for finding an approximation to an LTI realization.
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Definition 3 (Partial realization). Let a map f of the form (2) be realized by a Σ = (A, B, C)
of the form (1). Another LTI realization Σ̄ = (Ā, B̄, C̄) is called an N-partial realization of Σ
(equivalently, of f ) if

hk = CAkB = C̄Āk B̄ = h̄k, k = 0, 1, . . . , N.

Let the map realized by Σ̄ be called f̄ . Intuitively, an N-partial realization Σ̄ of Σ is
an approximation for the system Σ because first N + 1 (not all) Markov parameters of
both systems are equal. This means that the Taylor series coefficients for some lower
order derivatives (namely, up to order N) of the maps comprising G and Ḡ are equal.
This in turn, implies that Σ̄ can be considered as an approximation for Σ. However,
one has to say when exactly a partial realization becomes a full realization of the
system in question. More precisely, what is the minimum number N, such that any
N-partial realization of Σ is also a complete realization of Σ? The following corollary
to Theorem 7 gives the answer to this question.

Corollary 1 (Partial and full realizations). Let Σ of the form (1) be a realization of a map
f of the form (2). Any N-partial realization of Σ (equivalently, of f ) is also a complete
realization if N ≥ 2n− 1.

The justification of this corollary follows from noticing that the Markov parameter
with the highest index number used in constructing a full realization for f in Theorem
7 is 2n− 1, i.e., the element of σΦ in its nth row and nth column is h2n−1.

Corollary 1 completes the idea of approximation by partial realizations. It states
that as long as N < 2n − 1, an N-partial realization of an LTI system Σ is a better
approximation of the system as N increases. As soon as N ≥ 2n − 1, all N-partial
realizations become full realizations of Σ. This idea of approximating a large scale
LTI system with N-partial realizations of smaller order is called moment matching in
the literature [6]. In this work, this idea is extended to linear switched systems and
LPV-SS representations, to approximate such large-scale systems. In the next section,
we will review the analogous results to the ones given in this section, in realization
theory of linear switched systems.

2.2 Review of Realization Theory for Linear Switched Systems

Analogous results to the ones given for LTI systems in the previous subsection exist
in the recent literature like [23], [3], and this section is devoted to a brief review of
these results. The procedures for model or reachability / observability reduction of
LSSs with arbitrary or constrained switching given in this work (more precisely, from
papers A to D) are built upon the realization theory of LSSs.

Definition 4 (Linear Switched System). A continuous time linear switched system (LSS)
Σ is a tuple Σ = ({(Aq, Bq, Cq)|q ∈ Q}, x0)

1 with Q = {1, . . . , D}, D > 0, Aq ∈ Rn×n,

1It is unconventional in the classical linear system theory to include the initial state x0 as a system parame-
ter, but this choice is taken in the linear switched case for the sake of precision, since most of the following dis-
cussion in this work will be about equivalence or approximation of input-output behaviors of linear switched
systems resulting from a specific initial state, not necessarily zero. Having stated that, we also remark that the
assumption x0 = 0 will be taken for some of the following discussion to keep the notation simpler, whenever
the arguments can be easily extended to the nonzero initial state case, or a nonzero initial state is not in the
core of the discussion. The feed-forward matrix D, present in the classical theory, is taken to be zero for the
same reason.
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2. Methodology

Bq ∈ Rn×m, Cq ∈ Rp×n for all q ∈ Q and x0 ∈ Rn. The state x(t) and the output y(t) of
the LSS Σ at time t ≥ 0 is defined by

d
dt

x(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = x0 (5a)

y(t) = Cσ(t)x(t) (5b)

where σ ∈ PC(R+, Q) is the switching signal, u ∈ Lloc(R+, Rm) is the input, x ∈
AC(R+, Rn)) is the state, and y ∈ PC(R+, Rp) is the output and Q = {1, . . . , D}, D > 0
is the set of discrete modes. We denote the fact that the state space dimension of Σ is n by
dim(Σ) = n. The number n is also called the order of Σ.

The input-to-state map XΣ,x and input-to-output map YΣ,x of Σ are the maps

XΣ,x0 : Lloc(R+, Rm)× PC(R+, Q)→ AC(R+, Rn); (u, σ) 7→ XΣ,x(u, σ),

YΣ,x0 : Lloc(R+, Rm)× PC(R+, Q)→ PC(R+, Rp); (u, σ) 7→ YΣ,x(u, σ).

defined by letting t 7→ XΣ,x0 (u, σ)(t) be the solution to the Cauchy problem (5a) with
x(0) = x0, and letting YΣ,x0 (u, σ)(t) = Cσ(t)XΣ,x(u, σ)(t) as in (5b).

Notice that the restriction to a finite interval [0, t] of any switching signal σ ∈
PC(R+, Q) can be interpreted as a finite sequence of pairs

µ = (q1, t1)(q2, t2) · · · (qk, tk) (6)

where q1, . . . , qk ∈ Q and t1, . . . , tk ∈ R+\{0}, t1 + · · · + tk = t, such that for all

s ∈
[
∑i−1

l=1 tl , ∑i
l=1 tl

)
, i ∈ {1, . . . , k},

σ(s) = qi (7)

and σ(t) = qk. Hence the first element of each pair in (6) represents a discrete mode,
and the second element represents the time this mode is active (the time periods
t1, . . . , tk are called the dwell times of the modes q1, . . . , qk respectively). Note that
this encoding is not one-to-one, since if qi−1 = qi for any i ∈ {2, . . . , k} and µ =
(q1, t1)(q2, t2) · · · (qk, tk) corresponds to σ|[0,t], then

(q1, t1)(q2, t2) · · · (qi−1, ti−1 + ti)(qi+1, ti+1) · · · (qk, tk)

also corresponds to σ|[0,t].
From [23], it follows that a necessary condition for an input-output map of the

form f : Lloc(R+, Rm)× PC(R+, Q) → PC(R+, Rp) to be realizable by an LSS is that
f has a generalized kernel representation. For a detailed definition of a generalized kernel
representation of f , we refer the reader to [23, Definition 19]. If f has a generalized
kernel representation, then there exists a unique family of analytic functions K f

q1,...,qk :

Rk
+ → Rp and G f

q1,...,qk : Rk
+ → Rp×m, q1, . . . , qk ∈ Q, k ≥ 1, such that for all (u, σ) ∈

Lloc(R+, Rm) × PC(R+, Q), t > 0 and for any µ = (q1, t1)(q2, t2) · · · (qk, tk) which
corresponds to σ on [0, t],

f (u, σ)(t) =K f
q1q2···qk (t1, t2, . . . , tk)+

k

∑
i=1

∫ ti

0
G f

qiqi+1···qk (ti − s, ti+1, . . . , tk)u

s +
i−1

∑
j=1

tj

 ds,
(8)
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and the functions {K f
q1···qk , G f

q1···qk | q1, . . . , qk ∈ Q, k ≥ 1} satisfy a number of technical
conditions, see [23, Definition 19] for details.

Definition 5 ((Minimal) Realization). An LSS Σ of the form (5) is a realization of a map
f of the form (8) if for all u ∈ Lloc(R+, Rm) and σ ∈ PC(R+, Q)

f (u, σ) = YΣ,x0 (u, σ).

Moreover, we say that Σ is a minimal realization of f , if for any other realization Σ̂ of f ,
dim(Σ) ≤ dim(Σ̂).

Theorem 8. An LSS Σ of the form (5) is a realization of a map f of the form (8) if

K f
q1q2···qk (t1, t2, . . . , tk) = Cqk eAqk tk eAqk−1 tk−1 · · · eAq1 t1 x0,

and for all i ∈ {1, . . . , k}

G f
qiqi+1···qk−1qk (ti, ti+1, . . . , tk−1, tk) = Cqk eAqk tk eAqk−1 tk−1 · · · eAqi+1 ti+1 eAqi ti Bqi .

Since the maps K f and G f are analytic, they are again uniquely described by the
coefficients of their Taylor series expansions around t1 = · · · = tk = 0. Similar to the
LTI case, these coefficients will be called sub-Markov parameters of the map f . Some
of these coefficients can be collected in a matrix to create a totally analogous notion
of Markov parameters in the LTI case, hence these matrices will be called the Markov
parameters of f . To denote these high-order derivatives of the maps K f and G f , we
will need the following notation, which is standard in automata theory [24].

Notation 1. The notation |S| is used to denote the cardinality of a set S. Consider a finite
non-empty set Q which will be called the alphabet. Denote by Q∗ the set of finite sequences
of elements of Q. The elements of Q∗ are called words over Q and any set L ⊆ Q∗ is
called a language over Q. Each non-empty word w is of the form w = q1q2 · · · qk for some
q1, q2, . . . , qk ∈ Q. The element qi is called the ith letter of w, for i = 1, 2, . . . , k, and k is
called the length of w. The empty sequence (word) is denoted by ε. The length of word
w is denoted by |w|; we define |ε| = 0. The set of non-empty words is denoted by Q+, i.e.,
Q+ = Q∗\{ε}. The subset of Q∗ containing all the words of length at most (resp. at least)
N ∈ N will be denoted by Q≤N (resp. Q≥N). The concatenation of word v ∈ Q∗ with
w ∈ Q∗ is denoted by vw: If v = v1v2 · · · vk, and w = w1w2 · · ·wm, k > 0, m > 0, then
vw = v1v2 · · · vkw1w2 · · ·wm. If v = ε, then vw = w; if w = ε, then vw = v. The notation

(q)ω will be used to denote the word
ω times︷ ︸︸ ︷
qq · · · q where q ∈ Q, ω ∈ N. We define (q)0 = ε. For

simplicity, the finite set Q will be identified with its index set, that is Q = {1, 2, . . . , D} if
|Q| = D.

We can now define the sub-Markov parameters of f as follows:

Definition 6 (Sub-Markov parameters of f ). The sub-Markov parameters of f are the val-
ues of the maps

S f : Q∗ → Rp×m, S f
0 : Q∗ → Rp
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2. Methodology

where for all q0, q ∈ Q,

S f
0 (q) = K f

q (0) and S f (q0q) = G f
q0q(0, 0).

and for all q0, q ∈ Q, v ∈ Q∗, v 6= ε by

S f
0 (vq) =

d
dt1
· · · d

dtk
K f

q1···qkq(t1, . . . , tk, 0)
∣∣∣∣
t1=t2=···=tk=0

S f (q0vq) =
d

dt1
· · · d

dtk
G f

q0q1···qkq(0, t1, . . . , tk, 0)
∣∣∣∣
t1=t2=···=tk=0

where v = q1q2 · · · qk, k ≥ 1, q1, q2, . . . , qk ∈ Q.

From [23], it follows that the values S f , S f
0 are the coefficients of the Taylor series

of the analytic maps {K f
q1···qk , G f

q1···qk | q1, . . . , qk ∈ Q, k ≥ 1} around zero, and hence
they determine those maps uniquely. More precisely, in [23] it was shown that for any
ω1, . . . , ωk ∈N, q1, . . . , qk ∈ Q, k > 0,

S f
0 (q

ω1
1 · · · q

ωk
k qk) =

dω1

dtω1
1
· · · dωk

dtωk
k

K f
q1···qk (t1, . . . , tk)|t1=···=tk=0,

S f (q1qω1
1 qω2

2 · · · q
ωk−1
k−1 qωk

k qk) =
dω1

dtω1
1
· · · dωk

dtωk
k

G f
q1···qk (t1, . . . , tk)|t1=···=tk=0.

(9)

Note that Definition 6 already includes the statement in (9). Nevertheless, (9)
is given as an alternative, to emphasize that the Markov parameters in the linear
switched case corresponds to all combinations of high order derivatives of the maps
K f and G f with respect to the individual dwell times of each operating mode evalu-
ated at zero, i.e., at t1 = · · · = tk = 0.

One way to encode the maps S f , S f
0 is by defining the following matrix valued

map M f : Q∗ → RpD×(mD+1), where for all v ∈ Q∗,

M f (v) =


S f

0 (v1) S f (1v1) · · · S f (Dv1)
S f

0 (v2) S f (1v2) · · · S f (Dv2)
...

... · · ·
...

S f
0 (vD) S f (1vD) · · · S f (DvD)

 . (10)

The matrix representation of the map M f (v) as in (10) will be called the Markov
parameter of f , related to the word v. This notion is the total analogue of the notion of
a Markov parameter for the linear case.

If f has a realization by an LSS Σ of the form (5), then the Markov-parameters of f
can be expressed as products of the matrices of Σ. In order to present the correspond-
ing formula, we will use the following notation.

Notation 2. Let w = q1q2 · · · qk ∈ Q∗, q1, . . . , qk ∈ Q, k > 0 and Aqi ∈ Rn×n, i =
1, . . . , k. Then the matrix Aw is defined as

Aw = Aqk Aqk−1 · · · Aq1 . (11)

If w = ε, then Aε is the identity matrix.
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Example 1. This example illustrates Notation 2. Consider the bimodal (D = 2) LSS Σ. Since
the system has two modes, the alphabet set is: Q = {1, 2}. If we consider the two words of
the set Q∗ defined by w = 112 and v = 212, Aw denotes the matrix Aw = A2 A1 A1 and Av
denotes the matrix Av = A2 A1 A2. The concatenation of these two words is wv = 112212,
thus Awv denotes the matrix Awv = Av Aw = A2 A1 A2 A2 A1 A1. If N = 2 the set Q≤N is
defined as Q≤N = {ε, 1, 2, 11, 12, 21, 22}.

Definition 7 ( [23]). An LSS of the form (5) is a realization of a map f of the form (8) if

S f
0 (vq) = Cq Avx0 and S f (q0vq) = Cq AvBq0 , ∀v ∈ Q∗, (12)

i.e.,
M f (v) = C̃Av B̃, ∀v ∈ Q∗ (13)

with C̃ =
[
CT

1 , · · · , CT
D
]T and B̃ =

[
x0, B1, B2, · · · , BD

]
.

Note that Definition 7 corresponds to the analogous definition in the previous
subsection (Definition 2) of a realization in the LTI case, for the linear switched case.
This relation can be explained as follows: Consider an LSS realization Σ of the form
(5) with x0 = 0 and Q = {1}, i.e, the LSS only has one discrete mode, in other words,
the LSS is actually just an LTI system. In this case the set Q∗ would be defined with
Q∗ = {ε, 1, 11, 111, . . . }, hence a word v ∈ Q∗ could just be defined by the number of

the letter 1 it contains. Hence M f (v) = C1 A|v|1 B1. It means that if Σ = (A, B, C) is an
LTI system of the form (1) with A = A1, B = B1 and C = C1 then the corresponding

Markov parameters of both systems would be equal, i.e., M f (v) = C1 A|v|1 B1 = CAkB
for all words v ∈ Q∗ and k ∈N such that |v| = k.

A state x f ∈ Rn of an LSS realization Σ is called reachable from the initial
state x(0) = x0 if there exists a time instant T ≥ 0, an input u ∈ Lloc(R+, Rm)
and a switching signal σ ∈ PC(R+, Q) associated with the switching sequence µ =
(q1, t1) · · · (qk, tk), t1 + · · ·+ tk = T, k ∈ {1, 2, . . . } on the time interval [0, T], such that
XΣ,x0 (u, σ)(T) = x f , i.e., if

x f =XΣ,x0 (u, σ)(T)

=eAqk tk · · · eAq1 t1 x0 +
k

∑
i=1

∫ ti

0
eAqk tk · · · eAqi (ti−τ)Bqi u

τ +
i−1

∑
j=1

tj

 dτ.
(14)

where µ = (q1, t1) · · · (qk, tk), t1 + · · · + tk = T, k ∈ {1, 2, . . . } is the switching
sequence associated with σ on the time interval [0, T]. Let Xreach denote the set
of all reachable states of Σ. The LSS realization Σ is called span-reachable if the
linear span of the elements of Xreach constitutes the whole state space Rn, i.e., if
span(Xreach) = Rn. Note that there is a difference between the analogous definition
for the LTI case. The reason for it is that the reachable set from a nonzero initial state
in the linear switched case (both in continuous and discrete time) is not necessarily
a subspace of the whole state space [3]. For continuous time LSSs, the reachable set
from the zero initial state constitutes a vector space (for discrete time LSSs this is not
necessarily true), but the proof is highly non-trivial [3]. This is why the definition is
made in terms of the linear span of the reachable set and the term “span-reachability”
is adopted in the LSS realization theory literature [23], [25]. In the rest of this work,
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2. Methodology

whenever the term “reachability” is used for LSSs, the concept of “span-reachability”
is meant, as defined here.

A non-zero initial state x0 ∈ Rn of Σ is called unobservable if YΣ,x0 (0, σ) = 0 for
all switching signals σ ∈ PC(R+, Q), i.e., if

Cqk eAqk tk · · · eAq1 t1 x0 = 0 (15)

for all switching sequences µ = (q1, t1) · · · (qk, tk) of any length k ∈ {1, 2, . . . }. Note
that the zero initial state is again vacuously unobservable. Let Xunobs denote the set
of all unobservable states of Σ. The LSS realization Σ is called observable if Xunobs
consists only the zero initial state, i.e., if Xunobs = {0}.

To state the counterparts of Theorems 3 and 4 we will define the following order-
ing on Q∗ as follows:

Definition 8. (Ordering on Q∗). Suppose that Q = {1, . . . , D}. Let the map φ : Q∗ → N

be defined as follows:

φ(ε) = 0

φ(v) = q1(D + 1)k−1 + q2(D + 1)k−2 + · · ·+ qk.
(16)

where v = q1q2 · · · qk with q1, . . . , qk ∈ Q, k ≥ 1. Then an ordering ≺ on the elements of
Q∗ can be defined as follows: For any two words v, w ∈ Q∗, if φ(v) < φ(w), then v ≺ w.

Intuitively, this ordering states that v ≺ w if w is bigger than v when the words v, w
are interpreted as integer numbers in the basis D + 1. Note that for any v, w ∈ Q∗,
v ≺ w implies |v| ≤ |w|, and |v| < |w| implies v ≺ w. In the following, we will assume
that the elements of the set Q∗ are ordered with this ordering, i.e., if Q∗ = {v1, v2, . . . }
then v1 ≺ v2 ≺ · · · .

Let Σ be an LSS realization. We will define the N-reachability matrix of Σ RN with
N ∈N as

RN =
[

Av1 B̃ Av2 B̃ · · · Av|Q≤N |
B̃
]

. (17)

where |Q≤N | denotes the cardinality of the set Q≤N ; v1, v2, . . . , v|Q≤N | ∈ Q≤N and
v1 ≺ v2 ≺ · · · ≺ v|Q≤N | with respect to the ordering in Definition 8, and B̃ =[
x0 B1 · · · BD

]
.

In addition, we will define the N-observability matrix of Σ ON with N ∈N as

ON =


C̃Av1

C̃Av2

· · ·
C̃Av|Q≤N |

 . (18)

where v1, v2, . . . , v|Q≤N | ∈ Q≤N and v1 ≺ v2 ≺ · · · ≺ v|Q≤N | with respect to the

ordering in Definition 8, and C̃ =
[
CT

1 · · · CT
D
]T.

Theorem 9. The linear span of the reachable set span(Xreach) of an LSS Σ is given by

span(Xreach) = im(R) = im(
[
Av1 B̃ Av2 B̃ Av3 B̃ · · ·

]
) = im(Rn−1).

where n is the order of Σ, v1, v2, · · · ∈ Q∗ and v1 ≺ v2 ≺ · · · . Hence Σ is reachable if

rank(Rn−1) = n.
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Theorem 10. The unobservable space Xunobs of an LSS Σ is given by

Xunobs = ker(O) = ker




C̃Av1

C̃Av2

C̃Av3

...


 = ker(On−1).

where n is the order of Σ, v1, v2, · · · ∈ Q∗ and v1 ≺ v2 ≺ · · · . Hence Σ is observable if

rank(On−1) = n.

Theorems 9 and 10 can be proven in a similar fashion to the LTI case, by (14) and
repeated use of Cayley-Hamilton Theorem [3], [23].

The following definition of Hankel matrix of a map f of the form (8) will be given
to state a necessary and sufficient condition of a map being realizable by an LSS Σ.

Definition 9. The Hankel matrix H f of a map f of the form (8) is the following infinite
matrix, given in (pD)× (mD + 1) real blocks:

H f =


M(v1v1) M(v2v1) ... M(vkv1) ...
M(v1v2) M(v2v2) ... M(vkv2) ...
M(v1v3) M(v2v3) ... M(vkv3) ...

...
... ...

...
. . .

 .

where v1, v2, · · · ∈ Q∗ and v1 ≺ v2 ≺ · · · .

If f is realized by a Σ of the form (5), then the Hankel matrix H Σ of Σ is defined
by

H Σ =

C1x0 C1B1 . . . C1BD C1 A1x0 C1 A1B1 ...
...

... . . .
...

...
... ...

CDx0 CDB1 . . . CDBD CD A1x0 CD A1B1 ...
C1 A1x0 C1 A1B1 . . . C1 A1BD C1 A1 A1x0 C1 A1 A1B1 ...

...
... . . .

...
...

... ...
CD A1x0 CD A1B1 . . . CD A1BD CD A1 A1x0 CD A1 A1B1 ...
C1 A2x0 C1 A2B1 . . . C1 A2BD C1 A2 A1x0 C1 A2 A1B1 ...

...
... . . .

...
...

... ...
CD A2x0 CD A2B1 . . . CD A2BD CD A2 A1x0 CD A2 A1B1 ...

C1 A1 A1x0 C1 A1 A1B1 . . . C1 A1 A1BD C1 A1 A1 A1x0 C1 A1 A1 A1B1 ...
...

... . . .
...

...
... ...

CD A1 A1x0 CD A1 A1B1 . . . CD A1 A1BD CD A1 A1 A1x0 CD A1 A1 A1B1 ...
C1 A2 A1x0 C1 A2 A1B1 . . . C1 A2 A1BD C1 A2 A1 A1x0 C1 A2 A1 A1B1 ...

...
... . . .

...
...

... ...
CD A2 A1x0 CD A2 A1B1 . . . CD A2 A1BD CD A2 A1 A1x0 CD A2 A1 A1B1 ...

...
... . . .

...
...

...
. . .



.
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2. Methodology

A better intuition of the Hankel matrix H Σ of an LSS realization can be acquired
by noticing that it can be written as the product of the infinite observability and
reachability matrices of Σ, which are implicitly defined respectively in Theorems 9
and 10:

H Σ = OR =


C̃Av1

C̃Av2

C̃Av3

...

 [Av1 B̃ Av2 B̃ Av3 B̃ · · ·
]

.

The Hankel matrix of a map f plays a crucial role in the realization theory of
LSSs (similar to the LTI case) as it can be used to get a realization Σ for f . Below we
present the principal theorem of realizability with LSSs which can be considered as
the counterpart of the Theorem 6 given for the LTI case in the previous subsection.

Theorem 11 ( [23]). 1. A map f of the form (8) is realizable by an LTI system Σ of the
form (5) if and only if rank(H f ) = n < ∞.

2. A realization Σ of f is minimal if and only if it is span-reachable and observable.

3. All minimal realizations have the order n = rank(H f ).

4. If Σ = ({(Aq, Bq, Cq)|q ∈ Q}, x0) and Σ̂ = ({(Âq, B̂q, Ĉq)|q ∈ Q}, x̂0) are two
minimal realizations, then there exists a non-singular matrix (isomorphism map) S ∈
Rn×n such that

SAq = ÂqS, SBq = B̂q Cq = ĈqS ∀q ∈ Q and Sx0 = x̂0.

In this case, Σ and Σ̂ are called isomorphic LSS realizations.

In the same reference [23] where the proofs for the statements in the above theorem
can be found, a procedure for reducing a non-reachable and/or a non-observable LSS
to an equivalent reachable and/or observable one is given. Thus, again in the linear
switched case, whenever we talk about a realization Σ of f , we may assume that Σ is
minimal without loss of generality.

In [23], a realization algorithm for LSSs in a similar spirit to the Silverman real-
ization algorithm (Theorem 7 in Subsection 2.1) given. The extension to the case of
linear switched systems is far from being trivial, hence the procedure itself will not
be explicitly stated here.

Now we will define the concept of a partial realization for LSSs.

Definition 10 (Partial realization (of an LSS)). Let a map f of the form (8) be realized
by a Σ = ({(Aq, Bq, Cq)|q ∈ Q}, x0) of the form (5). Another LSS realization Σ̄ =
({(Āq, B̄q, C̄q)|q ∈ Q}, x̄0) is called an N-partial realization of Σ (equivalently, of f ) if

M f (v) = C̃Av B̃ = ˜̄C ˜̄Av
˜̄B = M f̄ (v), ∀v ∈ Q≤N

where the map f̄ is realized by Σ̄.

The main idea of the works presented in Papers A to D, concerning LSSs stems
from the following: Similar to the LTI case, an N-partial realization Σ̄ of Σ can be
considered as an approximation for the system Σ because Markov parameters indexed
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by words up to length N of both systems are equal, i.e., M f (v) = M f̄ (v), ∀v ∈ Q≤N .
This means again that the Taylor series coefficients for some lower order derivatives
(namely, up to order N) of the maps comprising f and f̄ are equal. This, in turn,
implies that Σ̄ is an approximation for Σ. The following natural question arises also
in the linear switched case: Is there a number k as in the linear case, such that all
N-partial realizations of a Σ with N ≥ k are also complete realizations? If yes, what is
this number k? From [23] it follows that the answer is yes, and the following corollary
to Theorem 4 in [23] presents this number.

Corollary 2 (Partial and full realizations of LSSs). Let Σ of the form (5) be a realization
of a map f of the form (8). Any N-partial realization of Σ (equivalently, of f ) is also a complete
realization if N ≥ 2n− 1 (where n is the order of Σ).

It is worthwhile to note the analogy between this corollary and the corresponding
one in the LTI case. In the LTI case, one has to match all derivatives of f of order
up to 2n − 1 (evaluated at t = 0) and it turns out this number is exactly the same
for the linear switched case. One important difference is that in the linear case, there
is only one coefficient to be matched for a derivative of order k ≤ 2n − 1 whereas
in the linear switched case this number increases exponentially with the number of
discrete modes. Namely there are Dk coefficients to be matched, corresponding to the
derivatives of order k ≤ 2n− 1, where D is the number of discrete modes of Σ (note
that this also follows from the fact that there are exactly Dk words of length k in the set
Q∗ related to Σ). The justification of this corollary follows also from the Silverman-like
realization algorithm given in [23] for LSSs, relying on the Hankel matrices.

Corollary 2 completes the circle of ideas lying in the basis of approximation by
partial realizations for LSSs. It states that as long as N < 2n− 1, an N-partial real-
ization of an LSS Σ is a better approximation of the system as N increases. As soon
as N ≥ 2n− 1, all N-partial realizations become full realizations of Σ. This idea of
approximating a large scale LSS with N-partial realizations of smaller order is called
also moment matching throughout this work, evoking the LTI case. In the next section,
we will review some of the analogous results for discrete time LPV-SS representations
(which is the subject of Paper E).

2.3 Review of LPV-SS Realizations

In this section, we will review the Markov parameters and related concepts in real-
ization theory of LPV-SS representations analogous to the two previous subsections.
The notation used in this section follows the convention of the related literature on
LPV-SS representations [4], [26], hence it is slightly different than the previous two
subsections.

A discrete time linear parameter-varying state-space representation with affine
dependence on parameters (abbreviated as LPV-SS representations in the sequel) is a
tuple Σ = ({(Ai, Bi, Ci)}

np

i=0)
2 with Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx for all

i ∈ {0, 1, . . . , np}, np ≥ 1. The state x(t) ∈ Rnx and the output y(t) ∈ Rny of the

2For all discussion about LPV-SS representations in this work, the initial state x(0) = x0 is taken to be
zero to keep the notation less cumbersome, unless stated otherwise. Note that all the related results can be
generalized to the case of nonzero initial states, in a similar fashion shown in the previous subsection.
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2. Methodology

LPV-SS representation at time t ∈N is defined by

x(t + 1) = A(p(t))x(t) + B(p(t))u(t)

y(t) = C(p(t))x(t),
(19)

where u(t) ∈ Rnu is the input, and p(t) =
[
p1(t) · · · pnp (t)

]T ∈ P ⊆ Rnp is the
scheduling signal at time t ∈N. Here P is an arbitrary but fixed subset of Rnp with a
non-empty interior. The matrices A(p(t)), B(p(t)), C(p(t)) in (19) are assumed to be
affine and static functions of p(t), where this dependence is defined explicitly by:

A(p(t)) = A0 +
np

∑
i=1

Ai pi(t),

B(p(t)) = B0 +
np

∑
i=1

Bi pi(t),

C(p(t)) = C0 +
np

∑
i=1

Ci pi(t),

(20)

where Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx are constant matrices for all i ∈
{0, 1, . . . , np} 3. The fact that the state space dimension of Σ is nx, is denoted by
dim(Σ) = nx. The number nx is called again the order of Σ.

In this subsection, we will skip the formalities regarding the input-output maps
which can be potentially realized by an LPV-SS representation Σ of the form (19). Such
formal discussion can be found in [5]. We will keep the discussion for already realized
maps, and focus on the similarities of Markov parameters of LPV-SS representations
and LSSs. We will end the subsection by stating a similar result as in the last parts
of the two previous subsections, which justifies the interpretation of partial LPV-SS
realizations for a Σ of the form (19) as an approximation for Σ.

Now we recall the concepts of an infinite impulse response (IIR) representation of an
input-output map [26] and the concept of sub-Markov parameters.

Consider an LPV-SS representation Σ of the form (19), and consider its input-
output map f : Rnu N ×Rnp N → Rny N where for any set S, SN denotes the set of
all functions g of the form g : N → S. Recall from [26] that for any input sequence
u = {u(k)}∞

k=0 and scheduling sequence p = {p(k)}∞
k=0,

f (u, p)(t) =
t

∑
m=0

(hm � p)(t)u(t−m) (21)

for all t ∈N where

(h0 � p)(t) = 0,

(h1 � p)(t) = C(p(t))B(p(t− 1)),

...

(hm � p)(t) = C(p(t))A(p(t− 1)) · · · A(p(t−m + 1))B(p(t−m)), ∀m > 1.

(22)

3In this subsection, we use the notations nx , nu , ny for the corresponding analogous numbers n, m, p in
the previous two subsections. We prefer this notation to be consistent with the related literature on LPV-SS
representations, see [4], [26] for instance.
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The representation above is called the IIR of f . From (22) and (20), it can be seen that
the terms (hm � p)(t), m ≥ 0 can be written as follows:

(h0 � p)(t) = 0,

(h1 � p)(t) =
np

∑
q=0

np

∑
q0=0

CqBq0 pq(t)pq0 (t− 1)

...

(hm � p)(t) =
np

∑
q=0

np

∑
j1=0
· · ·

np

∑
jm−1=0

np

∑
q0=0

Cq Aj1 · · · Ajm−1 Bq0 p̂qj1···jm−1q0

(23)

where p0(k) = 1 for all k ∈ It
0 and p̂qj1···jm−1q0 = pq(t)pj1 (t − 1) · · · pjm−1 (t − m +

1)pq0 (t−m).
Now we are ready to define the sub-Markov parameters of Σ. To this end, we

recall that the symbol ε denote the empty sequence of integers, i.e. ε will stand for
a sequence of length zero and we denote by S(Inp

0 ) the set {ε} ∪ {j1 · · · jm | m ≥
1, j1, . . . , jm ∈ I

np
0 } of all sequence of integers from I

np
0 , including the empty sequence.

If s ∈ S(Inp
0 ), then |s| denotes the length of the sequence s. By convention, if s = ε,

then |s| = 0.
The coefficients

ηΣ
q,q0

(ε) = CqBq0 ,

...

ηΣ
q,q0

(j1 · · · jm) = Cq Aj1 · · · Ajm Bq0 ,

(24)

m ≥ 1; q, j1, . . . , jm, q0 ∈ I
np
0 appearing in (23) are called the sub-Markov parameters

of the LPV-SS representation Σ. In the sequel, the sub-Markov parameters ηΣ
q,q0

(s),

q, q0 ∈ I
np
0 , s ∈ S(Inp

0 ), |s| = m will be called sub-Markov parameters of Σ of length m.
The intuition behind this terminology is totally analogous with the linear switched
case: The length of a sub-Markov parameter is determined by the number of Aj
matrices which appear in (24) as factors.

Example 2 (Output of an LPV-SS realization). Let Σ = ({(Ai, Bi, Ci)}2
i=0) be an LPV-

SS realization. Then the output of Σ due to the input u = {u(k)}∞
k=0 and scheduling sequence

p = {p(k)}∞
k=0 at time t = 2 will be

y(2) =
2

∑
i=0

(hi � p)(2) · u(2− i)

= 0 + (h1 � p)(2) · u(2− 1) + (h2 � p)(2) · u(2− 2)

= C(p)B(p(t− 1))u(1) + C(p)A(p(t− 1))B(p(t− 2))u(0)

=
2

∑
q=0

2

∑
q0=0

CqBq0 pq(2)pq0 (1)u(1) +
2

∑
q=0

2

∑
j1=0

2

∑
q0=0

Cq Aj1 Bq0 pq(2)pj1 (1)pq0 (0)u(0).
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2. Methodology

Now we can define the Markov parameters of an ALPV realization in an analogous
way to the linear switched case. Intuitively, a Markov parameter related to a word
(sequence) j1 · · · jm will be again the collection of all ηΣ

q,q0
(j1 · · · jm) = Cq Aj1 · · · Ajm Bq0

such that q, q0 ∈ I
np
0 , in a block-matrix.

For an LPV-SS representation

Σ = ({(Ai, Bi, Ci)}
np

i=0)

with the scheduling space dimension np, consider an associated LSS

ΣLSS = ({(ALSS
q , BLSS

q , CLSS
q )|q ∈ Q}, 0)

with D = |Q| = np + 1 discrete modes. Note that the state space parameters of such
an LSS and LPV-SS representation satisfy ALSS

q = Aq−1, BLSS
q = Bq−1, CLSS

q = Cq−1
for all q ∈ Q = {1, . . . , D}. For a detailed formal discussion see [5]. Using the
correspondence above between LPV-SS and LSS realizations we can see that the sub-
Markov parameter ηΣ

q,q0
(j1 · · · jm) = Cq Aj1 · · · Ajm Bq0 of Σ, equals the sub-Markov

parameter S f (q0vq) of ΣLSS where f = YΣLSS,0 is the input-output map of ΣLSS from
the zero initial state, and v = (jm + 1) · · · (j1 + 1). Note that in turn, reachable and
observable (hence, minimal) realizations can be equivalently formulated for LPV-SS
representations [5], as it is done in the linear switched case. These steps are omitted
here to avoid the repetition of analogous concepts in different contexts (namely LPV
and linear switched) and the focus is given more to the final model reduction idea.
To state once again this idea for the LPV case, we present the definition of partial
realizations for LPV-SS representations as follows.

Definition 11. Let Σ = ({(Ai, Bi, Ci)}
np

i=0) be an LPV-SS representation of the form (19).
Another LPV-SS representation Σ̄ = ({(Āi, B̄i, C̄i)}

np

i=0) is called an N-partial realization of
Σ, for some N ∈N, if

∀s ∈ S(Inp
0 ), q, q0 ∈ I

np
0 , |s| ≤ N : ηΣ

q,q0
(s) = ηΣ̄

q,q0
(s)

That is, Σ̄ is an N-partial realization of Σ, if sub-Markov parameters of Σ and Σ̄ up
to length N are equal. In other words, Σ̄ is an N-partial realization of Σ, if

CqBq0 = C̄q B̄q0 , ∀q, q0 ∈ I
np
0 ,

Cq Aj1 · · · Ajk Bq0 = C̄q Āj1 · · · Ājk B̄q0 , ∀k ∈ IN
1 , ∀q, q0, j1, . . . , jk ∈ I

np
0 .

Now we can build the relationship with partial and full realizations with the fol-
lowing theorem. In a similar way to the linear and linear switched case, this theorem
constructs the idea of approximations by N-partial realizations for LPV-SS represen-
tations.

Theorem 12 ( [5]). Let Σ = ({(Ai, Bi, Ci)}
np

i=0) be an LPV-SS representation of the form
(19). Any N-partial realization Σ̄ is also a complete realization of Σ (i.e., an equivalent
realization of Σ) if N ≥ 2n− 1.

The main idea of paper E lies, similarly with LSSs, in approximating an LPV-SS
Σ representation with N-partial realizations Σ̄, where N < 2nx − 1 and n̄x < nx, i.e.,
the approximated model is of reduced order with respect to the original model (n̄x
denotes the order of Σ̄).
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3 Related Work

In the linear case, model reduction is a mature research area, see [6] and the refer-
ences therein. The subject of model reduction for hybrid and switched systems was
addressed in several papers [27–40]. The paper [29] addresses the question of reduc-
ing the number of discrete modes. All the remaining papers address the question
of reducing the number of continuous states. Namely, the paper [31] deals with the
problem of observability reduction for affine systems whose state spaces are restricted
to polytopes and does not study the hybrid case. The rest of the cited papers are given
for hybrid systems and they propose methods based on some extensions of balanced
truncation techniques for model reduction. These techniques require existence of a
solution to an LMI, which implies at least local stability of the subsystems. In con-
trast, the approach taken in this work functions for LSSs with unstable local modes
and LPV-SS representations with unstable state map matrices. However, this comes
at a price, since we are not able to propose analytic error bounds, like the ones for
balanced truncation [40]. From a practical point of view, the lack of an analytic er-
ror bound need not be a very serious disadvantage, since it may often be acceptable
to evaluate the accuracy of the the approximation after the reduced model has been
computed. For example, one can compute the L2 distance between the original and
reduced order model [40], provided the LSSs in question are quadratically stable.
Such analysis on a posteriori error bounds for quadratically stable LSSs is provided
in Paper B.

One of the main problems arising in the context of model reduction for switched
systems is to define and use a valid norm for comparing how close are the original
system and approximated model. For this purpose, metrics and topology for hybrid
systems are studied in references as [41] and [42] (though it should be noted that, they
can only serve as a posteriori error computations between the original and reduced
systems. No clear a priori error bound is provided in this work). Note that each of
the proposed methods in the present work does have a system theoretical interpre-
tation, as each method operates on the Markov parameters. Markov parameters of
switched systems characterize their input-output behavior uniquely [23]. Moreover,
the Euclidean distance between Markov parameters can be used to define a natural
distance for LSSs with state-space representations [41, 42]. For this reason we believe
that it might be possible to improve the theoretical justification for the proposed al-
gorithms in terms of error bounds. However, this remains a topic of future research.
Note that even in the linear case, it is not possible to give clear analytic error bounds
for algorithms based on moment matching, [6].

3.1 Work Related to Papers A and B

To the best of our knowledge, the only result provided for moment matching of LSSs
has appeared in [43]. In [43], it is pointed out that the partial realization theory can be
used for developing theory for model reduction and identification of switched linear
systems as well. In the basis of this work lies the following idea: The partial realization
theory used for model reduction for switched linear systems. The motivation is that
a realization procedure can be interpreted as a model reduction method when it is
used for acquiring a partial realization for the original system rather than computing
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3. Related Work

a full realization. It can be used to compute a reduced order model in the sense
some certain number of Markov parameters (moments) of the reduced order model
coincides with the original one. This is similar to the case in Krylov-based methods
for approximation of linear systems. However, even though the possibility of model
reduction by moment matching for LSSs was hinted in [43], no details were provided,
no efficient algorithm was proposed, and no numerical experiments were done. Note
that a naive application of the realization algorithm of [43] yields an algorithm whose
computational complexity is exponential.

The basis of the model reduction algorithms proposed in these works are similar
in spirit to moment matching for linear systems [6, 44] and bilinear systems [45–47],
however, the details and the system class considered are entirely different.

3.2 Work Related to Papers C and D

Results on realization theory of linear switched systems with constrained switching
appeared in [23]. However, [23] does not yield a model reduction algorithm. There,
the continuous time case is considered and it was shown that if Σ is an LSS realization
of an input-output map f and M is a number which depends on the cardinality of
the state-space of a deterministic finite state automaton accepting L (the restricted
switching set), then it is possible to find a Σ̄ such that Σ̄ has the same input-output
behavior for all the allowed switching sequences in L and

dim Σ̄ ≤ M dim Σ. (25)

Let us call such a Σ̄ as an L-realization of Σ. This result may also be extended for the
discrete time case in a similar way. However, as (25) shows, the obtained L-realization
can even be of higher dimension than the original system. Whereas the methods
given in Paper C and D compute a (possibly) reduced order system, whose order is
at most the same as the original one, while preserving the input-output behavior for
the switching sequences in L.

In [3], the definition of reachability under a constrained switching set is given, but
the counterpart of this definition for observability is not provided. Moreover, there, no
procedure for reducing a non-reachable and/or non-observable LSS with constrained
switching to a reachable and/or observable one is given. Paper D precisely gives
the answers to these questions, by building systematically the related definitions and
specifying the conditions under which such a reduction would work. The procedures
for reachability / observability reduction for discrete time LSSs with arbitrary switch-
ing appeared before in [25], [3]. These procedures and their counterparts given in
Paper D for the constrained switching case, actually resemble a Kalman-like decom-
position of the reachable / unreachable or observable / unobservable subspaces of
a linear system [48] and an LSS [3]. But the question of minimality for constrained
switching is still an open problem. Note that it is not clear if the reachability and ob-
servability reduction procedures stated in Paper D yields a minimal realization with
respect to a constrained switching set.

3.3 Work Related to Paper E

Results on model reduction of LPV-SS representations can be found in several papers
such as [49–53]. However, except for [53] they are only applicable to quadratically
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stable LPV systems. The method of [53] is applicable to quadratically stabilizable and
detectable LPV-SS representations. In contrast, paper E does not impose any restric-
tions on the class of LPV-SS representations. In [54] joint reduction of the number of
states and the number of scheduling parameters has been investigated. However, the
method of [54] requires constructing the Hankel matrix explicitly. Hence, it suffers
from the same curse of dimensionality. The model reduction algorithm for LPV sys-
tems described in [26] is related to the method given in Paper E, as it also relies on a
realization algorithm and Markov parameters. However, when used for model reduc-
tion, the method in [26] does not yield a partial realization. In addition, the computa-
tional complexity of the method in [26] increases exponentially with the dimension of
the scheduling space, since this method rely on constructing the partial Hankel ma-
trix of an LPV-SS representation explicitly. In turn, the size of these matrices increase
exponentially with the dimension of the scheduling space. These issues concerning
LPV-SS representations and improvements provided by this work discussed more in
detail in Paper E. In contrast, the algorithm proposed in Paper E does not require the
explicit computation of Hankel matrices, and its worst-case computational complexity
is polynomial. We present an example where the algorithm of [26] is not feasible due
to the large size of the Hankel-matrix, while the algorithm given in paper E works
without problems.In addition, the system theoretic interpretation of the algorithm is
less clear.

4 Content Outline and Comparison of Papers A to E

4.1 Outline of Paper A

Paper A presents a procedure of model order reduction for LSSs with arbitrary switch-
ing and it can be considered as the direct analogue of the moment matching problem
for linear systems described in Section 2.1. As described in Section 2.2, the Markov
parameters of an LSS Σ can be considered as a multiplication of some state space
parameters of different local modes, starting with a C matrix, ending with either the
initial state x0 or a B matrix, and factors of individual A matrices in the middle. In
this work, more specifically from papers A to D, the initial state x(0) = x0 exciting
the autonomous behavior of the LSS is treated as a system parameter, whereas con-
ventionally, the initial state is viewed as a disturbance in the LTI case, and it is taken
to be zero to state the results related to the LTI systems theory. There are two main
reasons for this rather unconventional choice taken for the LSSs in the current work:

1. LTI models are usually results of linearization of nonlinear systems around the
equilibrium point zero. For modeling a nonlinear process by an LSS, this choice
may be less clear since LSS modeling can be used when the equilibrium point
around which we linearize changes.

2. Consider an LTI system Σ = (A, B, C) of the form (1). By Kalman decomposi-
tion, one can separate the controllable and uncontrollable parts of Σ as

A =

[
Ac ∗
0 Auc

]
, B =

[
Bc
0

]
, C =

[
Cc Cuc

]
.
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4. Content Outline and Comparison of Papers A to E

where Σc = (Ac, Bc, Cc) and Σuc = (Auc, 0, Cuc) are respectively controllable and

uncontrollable. Hence if we decompose the initial state also as x0 =

[
x0c

x0uc

]
, then

either x0uc = 0 or the contribution of x0uc cannot be controlled. In other words,
if Auc is stable, in practical cases we can forget about x0uc since its contribution
in the output will converge to zero. In addition, if Auc is not stable, we cannot
influence the uncontrollable component eAuctx0uc in the output anyway. Hence,
since the set of states reachable from zero is the same as the set of the states
which can be steered (controlled) to zero in the continuous time LTI-case, an
unreachable state is not of interest in the following sense: Either the unreachable
part converges to zero in the output, or there is nothing one can do to control
it. On the other hand, if x0 is reachable in finite time T with the input u(t),
t ∈ [0, T], then we may consider the system being initialized with the zero initial
state and some input is applied until the real initial state is reached. Hence in
both cases, adding a nonzero initial state to the discussion of the theory can be
considered redundant.

In contrast, for LSSs the situation can be more complicated. Since for LSSs,
the switching signal σ can also be considered as a control together with the
input u, the definition of an uncontrollable state may change depending on the
allowed switching sequences. For example, there are examples of LSSs with all
local modes unstable but for which a stabilizing switching sequence exists [55].
Consequently, we have no concrete reason to exclude initial states which are not
reachable from 0 from the discussion.

Paper A defines the moments of a linear switched state space representation (as
explained in Subsection 2.2, it turns out these coefficients called ’moments’ uniquely
determine the input-output behavior of the LSS, hence they are representation inde-
pendent parameters of the system itself) analogous to the linear case, and proposes
a method of model reduction such that the original and reduced order LSSs have
exactly the same moments (Markov parameters) which consists up to a certain num-
ber of A matrix factors. In Paper A, these Markov parameters which include up to
a certain number of A matrix factors are named as “Markov parameters indexed by
sequences up to a certain length N”. That approach works for unstable systems, it has
a clear system theoretic interpretation (namely, it is the analogue of moment match-
ing methods for linear systems, in the linear switched case) and the corresponding
algorithm is computationally efficient. However, despite being easier to understand
and apply, that approach has a number of drawbacks. First, it does not contain any
rigorous interpretation related to switching sequences, i.e., no precise mathematical
statement could be formulated regarding the input-output behavior of the original
and reduced order systems for switching sequences of interest. Second, it is quite
conservative in the following sense: If the number of discrete modes is sufficiently
large, then even for small N, the reduced system tends to have the same dimension as
the original one. More precisely, it can happen that even when the number N is cho-
sen to be 0 (the smallest possible value for it), the approximation system computed
with the method can already be of the same order with the original system. This
was confirmed both by numerical examples, and by analytic results, showing that for
any given N, for a large enough number of discrete states the reduced order system
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will generically be of the same dimension as the original one. The reason for this is
intuitively the following: The number of Markov parameters indexed by sequences of
discrete modes of length at most N is of the order of magnitude DN , where D is the
number of discrete modes. The Hankel matrix formed by these Markov parameters
will have O(DN/2) rows and columns, i.e., even for small N, its size maybe larger than
n × n where n is the order of the related LSS realization [23]. Generically, a matrix
with more than n rows and n columns will have at least rank n. Consequently, even
for small N, we may have an N-partial realization in the sense defined in Subsection
2.2 which is already a complete realization of the original system with the same order.
Third, even when the LSS at hand allows for at least one reduced order model with
the use of the method, it is not possible to choose this reduced order a priori (before
using the method). In generic cases, the reduced order can be calculated by using the
value N, but in non-generic cases even this prediction on the reduced order is not
possible. An obvious solution is to try to preserve not all the Markov parameters, but
only those which are of interest for the following reason: Either they occur in those
output responses related to some switching sequences which we are really interested
in, or we know that in order to preserve them, an LSS of dimension r < n suffices
(where n is the order of the original LSS).

4.2 Outline of Paper B and Comparison with Paper A

The considerations mentioned in the previous subsection motivate us to build a less
conservative framework for model reduction of linear switched systems and it turns
out that the framework of nice selections given in Paper B, allow us to select Markov
parameters complying with both criteria discussed above. That is, we can either fix the
desired dimension r < n of the reduced LSS and choose a nice selection (essentially,
a set of Markov parameters) such that there exists an LSS of dimension r generat-
ing those Markov parameters. Alternatively, we can choose a nice selection so that
any LSS which generates those Markov parameters will yield the same response as
the original one for certain switching signals of interest. These points can be further
clarified: Namely, with the approach of nice selections, the user chooses arbitrarily
the basis vectors for smaller subspaces of the reachability (respectively observability)
space of LSSs, of arbitrary dimensions. With the help of these basis vectors, a projec-
tion can be defined and all of the states can be restricted to this smaller subspace. This
fact in turn, allows for the a priori choice of the reduced order. In fact, computing the
reduced order models in the sense defined in paper A can also be formulated just as
a special case of the method based on nice selections, given in paper B. In addition,
choosing an arbitrary subspace of the reachability (resp. observability) space and re-
stricting all the states to this subspace has another advantage: It turns out that there
are particular switching sequences related to this subspace, where the resulting state
trajectories have relatively bigger components in this subspace, when compared to
any other. Hence choosing the subspace in such a way results in a cleverly tailored
reduced order system, which serves as a better approximation for these particular
switching sequences. Whenever one is interested not all possible switching sequences
but only a subset of them (the restriction of the allowed switching sequences may
result from physical constraints if the switching is considered as a control input or it
can be directly the result of the modeling or abstraction [8]), the framework of nice
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4. Content Outline and Comparison of Papers A to E

selections gives also the tool for a “good approximation”. Finally in paper B, for con-
tinuous time LSSs, it is shown that whenever the nice selections are chosen such that
they contain a basis for the set of states reached by allowed switching sequences, it
is possible to get a reduced order system which has exactly the same input-output
behavior with the original system, for all of the allowed switching sequences. It is
also proven in Paper B that if the original LSS considered is quadratically stable, then
the resulting reduced order LSS will be quadratically stable as well.

Here is a simple example just to illustrate the basic idea of the method given in
paper B (hence also for the method in paper A since it can be considered as a special
case of the method in paper B). Consider a continuous time, single input - single
output SISO LSS Σ of order 3 with 2 discrete modes of the form:

d
dt

x(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = x0 (26)

where σ : R+ → Q is the switching signal, Q = {1, 2} is the set of discrete modes and

A1 =

1 0 0
0 0 1
0 1 0

 , B1 =

1
0
0

 , A2 =

0 0 1
0 1 0
1 0 0

 , B2 =

0
0
1

 , x0 =

0
0
0

 . (27)

Simple calculation by integrating (26) shows that the LSS Σ is reachable (from
zero), i.e., the reachability space of Σ is R3, i.e., any state x ∈ R3 can be reached in a
finite time by integrating (26) in time with some switching signal σ and input signal
u. Assume we would like to get a reduced order approximation to this LSS of order
2. In this case, both of the methods given in paper A and paper B are applicable.
Namely, applying the method in paper A with N = 0 or the method in paper B by
choosing β = {(ε, 1, 1), (ε, 2, 1)} will be equivalent, both yielding the reduced order
approximation LSS Σ̄ of order 2, whose parameters are given as follows:

Ā1 =

[
1 0
0 0

]
, B̄1 =

[
1
0

]
, Ā2 =

[
0 1
1 0

]
, B̄2 =

[
0
1

]
, x0 =

[
0
0

]
. (28)

Figure 1 illustrates the action of both methods in this case. Basically, both methods
creates a new basis for the reduced reachability space, namely the columns of the full
column rank matrix V whose image is im(V) = im(

[
B1 B2

]
). Then, this matrix is

used for defining the orthogonal projection matrix V−1 (i.e., the left inverse of V) as
V−1 = (VTV)−1VT. So when the projector V−1 is applied to a state in R3 which
does not belong to the space im(

[
B1 B2

]
), it produces the orthogonal projection of

this state onto the space spanned by columns of V. In other words, V−1 restricts all
the states in R3 to the space im(

[
B1 B2

]
). This action is illustrated on Figure 1.

The restricted space of dimension 2 is defined by R2 = im(
[
B1 B2

]
) = span{e1, e3}

where ei, i = 1, 2 denotes the ith canonical basis vector in R3. The state v ∈ R3 is
projected onto R2 with V−1, i.e., V−1v = vp where v ∈ R3 and vp ∈ R2. The resulting
LSS Σ̄ of order 2, consistent with this state transformation is an approximation to Σ,
since with the help of such a projection first some number of Markov parameters (the
coefficients of the Taylor series expansion of the input-output map of an LSS around
t = 0) of Σ and Σ̄ are equal, hence they have similar input-output behaviors.

Now assume that a reduced order approximation of order 1 to the same LSS Σ
is desired to be computed. Such a task is not possible with the formulation given in
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paper A, because even choosing the number N = 0 will yield an LSS Σ̄ of order 2 and
if N ≥ 1 the method will always yield a Σ̄ of order 3, which is the order of Σ already
(in fact, in this case the original LSS Σ and the computed LSS Σ̄ will be isomorphic).
However, with the method in paper B the set β can be chosen as β = {(ε, 2, 1)}, and
hence all the states can be restricted to the subspace R1 = im(

[
B2
]
) = span{e3} with

the projection V−1 where im(V) = R1. This example illustrates that the method in
paper B is more general than the method in paper A, since it allows the user to choose
the order of the reduced model a priori. However, it should be noted that paper A
is formulated as it is since it has a more intuitive and easier-to-understand system
theoretic interpretation.

span{e1}

span{e2}

R1=span{e3}

v

vp

v-vp

R3

R2=span{e1,e3}

vpp

vp-vpp

Fig. 1: Example 1 (ACC 2014 IEEE TAC 2015)

4.3 Outline and Comparison of Papers C and D

In papers C and D an entirely different problem is considered, but a similar, mo-
ment matching based solution is proposed. First of all, these papers deal with the
discrete time case rather than the continuous-time. Second, these papers provide a
solution to the problem of exactly matching the input-output behavior of an LSS with
another LSS with possibly reduced order, rather than approximating the input-output
behavior. Third, the case of constrained switching is considered. Hence, the LSSs
considered in these papers have a specific set of allowed switching sequences (note
that all possible switching sequences, i.e., the case of arbitrary switching, is also in-
cluded by simply taking the “restricted” switching sequence set as the whole set Q∗).
Hence, the solutions presented in those papers are intended for reachability and / or
observability reduction of LSSs with constrained switching, where the definitions of
reachability and observability are made in a slightly different manner. The motiva-
tion for having these different definitions and formulating two solutions to these two
slightly different problem is stated in this subsection.
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4. Content Outline and Comparison of Papers A to E

We will again consider a simple example to illustrate the aim of the methods in
papers C and D. Consider this time the discrete time SISO LSS Σ of order 3 with 3
discrete modes

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = x0 (29)

where σ : N→ Q is the switching signal, Q = {1, 2} is the set of discrete modes,

A1 =

1 0 0
0 0 0
0 0 0

 , B1 =

1
0
0


A2 =

0 0 0
0 1 0
0 0 0

 , B2 =

0
1
0


A3 =

0 0 0
0 0 0
0 0 1

 , B3 =

0
0
1


(30)

and x0 =
[
0 0 0

]T. Let us consider the case of arbitrary switching first, i.e., the set
of allowed switching sequences L consists of all possible sequences which can be gen-
erated by the alphabet Q, i.e., L = Q∗ where Q∗ is as defined in Notation 1. Clearly,
the set of reachable states for this LSS is not the whole space R3. Simple calculation
by (29) reveals that the reachable set is the union of bold black, blue and green lines
on Figure 4, i.e., R = span{e1} ∪ span{e2} ∪ span{e3} (note that no matter which
switching and input signal is chosen, at all time instants t ∈ N, two components of
the state are certainly zero). It can be seen that the reachable set is not a subspace
and indeed this can be the case for many discrete or continuous time LSSs (it can also
happen that the reachable set is not even a finite union of subspaces [3], unlike even
the case in the current example).

The set Q∗ of arbitrary switching (non-constrained switching sequence set) can be
represented by the language of the non-deterministic finite state automaton (NDFA)
shown in Figure 2. The formal definition of an NDFA can be found in the related
papers (papers C and D). For now, it is enough to first define a word accepted by
an NDFA as the concatenation of labels along a path starting from the initial state
(named with s0 in Figure 2) and ending in one of the final states (indicated by double
circles in Figure 2); and then define the language accepted by the NDFA as the union
of all words accepted by it.
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start s0

1
2

2

1 1

2

3

3

3

Fig. 2: The NDFA A accepting the arbitrary switching sequence set Q∗

Now consider the case when some of the edges are removed from the NDFA
(namely edges labeled with the discrete mode 3) in Figure 2, i.e., the NDFA in Figure 3
(hence, the set of allowed switching sequences is now constrained). Call the language
accepted by this NDFA as L. Now the set L of all allowed switching sequences is the
set of all sequences in the discrete modes 1 and 2, hence it is a proper subset of Q∗.
Let us denote the set of all the states reachable using only the switching sequences in
L as R̂L.

start s0

1
2

2

1 1

2

Fig. 3: The NDFA AL accepting the restricted switching sequence set L ⊂ Q∗

Again, it is clear by simple calculations using (29) that the set R̂L is the union of
bold black and blue lines on Figure 4, i.e., R̂L = span{e1} ∪ span{e3} (note that when
a jump to discrete mode 3 is not allowed, all of the reachable states rest inside the
space span{e1, e3}, and in this space, one component either in span{e1} or span{e3}
is always zero). Let us also define the smallest subspace containing the set R̂L as RL,
i.e., RL is the linear span of all elements in the set R̂L. For such a case of constrained
switching, the methods given in papers C and D basically perform the following:
They compute a matrix V for which R̂L ⊆ RL = im(V) and define its left inverse as
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V−1 = (VTV)−1VT. With this left inverse, all of the states which are not anymore
reachable with the restricted set of switching sequences, are restricted (projected) to
the space RL = im(V) = span{e1, e3}. Hence the reduced order LSS consistent with
this new basis of the state space is of order 2 and this LSS has clearly the same input-
output behavior for all switching sequences in the restricted switching set (language)
L. One example state for this procedure can be seen as v on Figure 4, its restricted
counterpart to the space RL being vp, i.e., V−1v = vp. Note that V projects onto
the space RL, which is larger than R̂L. Hence we keep some states which cannot be
reached by the set of allowed switching sequences. One such example state is u in
Figure 4: The state u is in the space RL but not in the set R̂L, and the action of the
projection V−1 on this state is to leave it unchanged.

In fact the method restricts the system to the subspace RL which may be larger
than the set R̂L. If R̂L happens to be a vector space then RL = R̂L. However, in general,
the reachable set R̂L is not a vector space. If we want to represent the restricted system
as an LSS, its state space must be a vector space. Therefore, the best one can do is to
consider the smallest vector space containing R̂L, which is exactly RL.

span{e1}

span{e2}

span{e3}

v

vp

v-vp

u

R3

RL=span{e1,e3}

Fig. 4: Example 2 (CDC 2014 Automatica 2015)

Note that all the explanations and illustrations so far formulated for the reachabil-
ity case, can also be formulated dually for the observability case. These dual methods
which deal with the issue of observability are also provided in the papers A, B, C and
D.

The main difference between the motivations for considering the problems in Pa-
per C and Paper D separately can be explained as follows: The method given in
paper C can be useful for verification of a hybrid finite state abstraction models for
liveness type of properties (whenever safety concerns are of negligible importance)
whereas the method in paper D can be preferred whenever safety and/or liveness
related properties have to be verified [56]. In other words, whenever the concern for
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checking the model can be summed up as “something good eventually happens” in
the output behavior, one can ignore the output behavior corresponding to the inter-
mediate states of the NDFA which generates the allowed discrete mode (switching)
sequences. In such cases, one is only interested in the output behavior corresponding
to the final states of the governing NDFA, and it is of little interest how this desired
behavior is achieved, since the safety concerns are of lesser importance (due to the
specific physical problem taken at hand). On the other hand, when one wishes to ver-
ify safety oriented properties, the concern can be summed up as “something bad never
happens”. In such cases, one has to consider the output behavior along each allowed
switching sequence (intuitively, it is clear that considering the whole behavior along
the switching sequences decreases the amount of possible reduction of the model,
with respect to the case of considering the behavior only at the end of the sequences).
For the model checking of such properties, it can be useful to reduce the unreachable
or unobservable LSS with constrained switching, to a reachable or observable one,
by using the method in paper D. This will essentially mean that some useless portion
of the continuous state space is removed (the state space model is reduced). This in
turn may be very beneficial for computational complexity when verifying the model,
especially for switched or hybrid systems. Note that since the “behavior along the
switching sequence” also includes the behavior at the final states of the automaton,
the method in Paper D can be used again for model reduction with the purpose of
verifying liveness properties.

The discussion in the previous paragraph can be summarized in the following
three items: (1) The advantage of Paper C compared with Paper D, could be in the
cases when safety issues are not of paramount importance. In such cases, the given
method in Paper C results in the possibility of reducing the model order more than
the one given in Paper D. (2) Whereas the method given in Paper D, even though
its reduction capabilities are more limited than the one given in Paper C, is useful
also for verifying safety related properties. (3) Moreover, analogous with the linear
case, the method in Paper D can be interpreted as a quasi-minimization procedure for
discrete time LSSs with constrained switching since it restricts an unreachable and/or
unobservable state space representation of a discrete time LSS to a reachable and/or
observable one. Whereas the method in Paper C should only be interpreted as a
model reduction method which preserves the output behavior at the end of allowed
switching sequences. The reachability or observability properties of the reduced mod-
els acquired by the procedure in paper C are not clear.

To illustrate the discussion above, we will briefly sketch a case when the results
of paper D could be useful for verification and control design for safety properties.
In [57] one considers LSSs with discrete outputs. One then would like to verify the
discrete outputs generated by the LSS satisfy a certain temporal logic formula (this
results in a restriction in the allowed switching sequence set). In addition, one is
also interested in finding a controller, such that the symbolic output generated by the
closed loop system satisfies the temporal logic formula. The discrete outputs corre-
spond to a polyhedral partition of the state-space: An output symbol is generated
if the current state belongs to the corresponding polyhedron. Such modeling can be
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represented by the following piecewise-linear hybrid system H [58, 59],

H


Σ

{
x(t + 1) = Aq(t)x(t) + Bq(t)u(t) and x(0) = x0

y(t) = Cq(t)x(t)

φ
{

q(t) = φ(yt−1, qt−1) and q(0) = q0

(31)

where q(t) ∈ Q = {1, . . . , D} is the switching signal, Aq, Bq, Cq are matrices of suitable
size and φ : Q × Rp → Q is a discrete-state transition function which defines the
conditions for a change in the discrete mode. The map φ is defined by polyhedral
sets, i.e. {y | φ(y, q1) = q2} is a polyhedral set for all q1, q2 ∈ Q. Such systems
arise either by piecewise-linear modeling of a complex plant, or by explicit modeling
of a switching controller. It is easy to see that (31) can be viewed as a feedback
interconnection of a discrete time LSS Σ (first two lines of (31)) with the discrete time
controller φ (last line of (31)) whose next operating discrete state is specified by the
past discrete states and past outputs.

As a consequence, the solutions of H corresponds to the solutions {qt, xt, ut, yt}∞
t=0

of the discrete time LSS Σ with qt = φ({ys, qs}t−1
s=0). A simple example of such a

system is qt = φ(yt−1), t > 0, and q0 is fixed, where φ is a piecewise affine map.
Often, it is desired to verify if the system is safe, i.e., that the sequences of discrete
modes generated by the system H belong to a certain set of safe sequences L for
all (some) continuous input signals. Consider now another piecewise-affine hybrid
system H̄ obtained by interconnecting the discrete event generator φ with a reduced
order discrete time LSS Σ̄, such that the input-output behavior of Σ̄ coincides with
that of Σ for all the switching sequences from L. If L is prefix closed, then H is
safe if and only if H̄ is safe, and hence it is sufficient to perform safety analysis on
H̄. Since the number of continuous-states of H̄ is smaller than that of H, it is easier
to perform verification for H̄ than for the original model. Note that verification of
piecewise-affine hybrid systems has high (in certain cases exponential) computational
complexity, [60, 61]. Likewise, assume that it is desired to design a control law for H
which ensures that the switching signal generated by the closed-loop system belongs
to a certain prefix closed set L. Such problems arise in various settings for hybrid
systems [8]. Since the next discrete state generated by the controller φ only depends on
the output and the current discrete state, H̄ can be used instead of H for synthesizing
the controller φ. The computational burden for control synthesis can hence decrease,
since the output depends on the state and H̄ has a smaller number of states than H.

Given the above discussion, still it should be noted that it remains as future work
to demonstrate the usefulness of our approach by investigating several practical case
studies.

4.4 Outline of Paper E

In paper E, an entirely different class of systems, namely LPV systems are considered.
Paper E, provides a solution to the model reduction problem for LPV systems by mo-
ment matching. The tools which have been used in paper E stem from the realization
theory of LPV-SS representations [5, 26]. As hinted in Subsections 2.2 and 2.3 the
Markov parameters and realization theory of LPV-SS representations are closely re-
lated with the counterpart concepts for LSSs. In fact, we use the relationship between
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LPV-SS representations and linear switched systems derived in [5] to adapt the tools
developed for model reduction of LSSs in the Papers A - D, to LPV-SS representations.
Namely, from [5] it follows that there exists a linear switched SS representation with
np + 1 local modes associated with an LPV-SS representation with scheduling space
dimension of np. Moreover, this switched SS representation has exactly the same sub-
Markov parameters (the coefficients uniquely determining the input-output behavior
of a system) as the corresponding LPV-SS representation. Hence, in paper E, by mak-
ing use of this connection between linear switched SS and LPV-SS representations, the
moment matching method used in Paper A for linear switched systems is adapted to
LPV-SS models.

5 Conclusion

Four methods for model reduction of LSSs suitable for different purposes and one
method for model reduction of LPV-SS representations are given. One of the pro-
posed model reduction methods given for LSSs is analogous to the moment matching
techniques used for LTI systems. The other method which is based on nice selections,
allows model reduction specific to certain switching sequences and a priori choice of
the order of reduced model. The rest of the two methods given for LSSs, considers the
problem of model order reduction, in the case of restricted switching. One of these
methods allows for reducing the order possibly more than the other, but lacks some
system theoretical interpretations which the other holds. The second method given
for model reduction of LSSs with constrained switching can actually be considered
as a reachability and / or observability reduction procedure for LSSs with restricted
discrete dynamics. Finally, a similar method relying on a moment matching technique
is given for model reduction of LPV-SS representations.

The following important aspects of the problems summarized above have not been
investigated and remain as topics of future research: The numerical aspects of the
algorithms stated in the contributions of the thesis can be improved and detailed
complexity analyses can be made. Practical case studies motivated by real world
examples can be made for each method. The performance of the model reduction
methods can be assessed when they are used for control synthesis. In addition, the
reduction methods given for LSSs with arbitrary switching can be extended to hybrid
systems with reset maps. Finally, the question of minimality for LSSs with restricted
discrete dynamics can be investigated, with the help of the reachability / observability
reduction method given in the thesis.
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