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Model Reduction by Moment Matching for Linear Switched Systems

Mert Baştuğ1,2, Mihály Petreczky2, Rafael Wisniewski1 and John Leth1

Abstract— A moment-matching method for the model re-
duction of linear switched systems (LSSs) is developed. The
method is based upon a partial realization theory of LSSs and
it is similar to the Krylov subspace methods used for moment
matching for linear systems. The results are illustrated by a
numerical example.

I. INTRODUCTION

A linear switched system (abbreviated by LSS) is a system
which switches among a finite number of linear subsystems.
That is, the state and output trajectory of an LSS is a
concatenation of the state and output trajectories of the
linear subsystems. At each time instance, the active linear
subsystem is determined by a switching signal, which is
considered as an additional external input to the system,
i.e., any switching sequence is admissible. Linear switched
systems represent a class of hybrid systems and they have
been studied extensively, see [12], [25] for an overview.

Model reduction is the problem of approximating a dy-
namical system with another one of smaller complexity.
For LSSs, by complexity, we will mean the number of
continuous states, and by model reduction we will mean the
approximation of the original LSS by another one, with a
smaller number of continuous states.

Contribution of the paper In this paper, we present a
model reduction algorithm based on the partial realization
theory for LSSs [21]. The main idea is to replace the original
LSS by an LSS of smaller order, such that a finite number
of Markov parameters of the two LSSs coincide. By Markov
parameters of the LSS we mean the Markov parameters
of its input-output map, as defined in [21]. When applied
to the linear case, the definition of [21] yields the usual
definition of Markov parameters. The Markov parameters can
be interpreted as high-order partial derivatives of the input-
output maps with respect to the switching times. Hence, if
those Markov parameters of the two LSSs which correspond
to lower order partial derivatives coincide, then, by the same
logic as used in Taylor series approximation, one could say
that the two LSSs (more precisely, their input-output maps)
are close. Hence, the proposed algorithm extends the well-
known moment matching approach for linear systems [1]. By
analogy with the linear case, we will refer to the proposed
model reduction approach as moment matching for LSSs.
The contribution of the paper is thus twofold: (1) the paper
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tique et Automatique), École des Mines de Douai, 59508 Douai, France
mihaly.petreczky@mines-douai.fr

formulates model reduction by moment matching for LSSs,
and (2) it presents an algorithm for computing the reduced
order system. The algorithm presented in this paper is similar
to Krylov subspace methods for approximation of linear
systems.

Motivation The order of the controller and the compu-
tation complexity of controller synthesis usually increase
as the number of continuous states of the plant model
increases. Hence, the smaller the plant model is, the easier
it is to synthesize the control law and to implement it. This
becomes especially relevant for hybrid systems, as many of
the existing control synthesis methods are computationally
demanding and result in large scale controllers. For example,
many of the existing control synthesis methods rely on
computing a finite-state abstraction of the plant model [26].
Often, the computational complexity of these methods and
the size of the controller are exponential in the number
of continuous states of the plant. This gets even worse
for control problems with partial observation [18]. This
means that even plant models of moderate size can become
intractable and even a small reduction in the number of states
can make a difference. For this reason, we expect that model
reduction of switched systems will be useful for control of
switched systems.

Related work In the linear case, model reduction is a
mature research area, see [1] and the references therein. The
subject of model reduction for hybrid and switched systems
was addressed in several papers [4], [30], [15], [5], [9], [28],
[29], [7], [10], [11], [16], [24]. Except [9], the cited papers
propose techniques which involve solving certain LMIs, and
for this reason, they tend to be applicable only to switched
systems for which the continuous subsystems are stable. In
contrast, the approach of this paper works for systems which
are unstable. However, this comes at a price, since we are
not able to propose analytic error bounds, like the ones for
balanced truncation [23]. From a practical point of view, the
lack of an analytic error bound need not be a very serious
disadvantage, since it is often acceptable to evaluate the
accuracy of the the approximation after the reduced model
has been computed. For example, one can compute the L2
distance between the original and reduced order model [23].

Note that the proposed algorithm does have a system theo-
retic interpretation, as it operates on the Markov parameters.
Note also that the Markov parameters of switched systems
characterize their input-output behavior uniquely [17]. More-
over, the Euclidean distance between Markov parameters can
be used to define a natural distance for LSSs with state-
space representations [22], [20]. For this reason, we believe
that it might be possible to give a theoretical justification



for the proposed algorithm. However, this remains a topic
of future research. Note that even in the linear case, it is
very challenging to give analytic error bounds for algorithms
based on moment matching, [1].

The model reduction algorithm proposed in this paper is
similar in spirit to moment matching for linear systems [1],
[8] and bilinear systems [13], [2], [6]; however, the details
and the system class considered are entirely different. The
model reduction algorithm for LPV systems described in [27]
is related, as it also relies on a realization algorithm and
Markov parameters. In turn, the realization algorithms and
Markov parameters of LPV systems and LSSs are closely
related, [19]. However, the algorithm of [27] applies to a
different system class, and it is not yet clear if it yields a
partial realization.

Outline In Section II, we fix the notation and terminology
of the paper. In Section III, we present the formal definition
and main properties of LSSs. In Section IV, we recall
the concept of Markov parameters, and we present the
fundamental theorem and corollaries which form the basis
of the model reduction by moment matching procedure. The
algorithm itself is stated in Section V in detail. Finally,
in Section VI the algorithm is illustrated on a numerical
example.

II. PRELIMINARIES: NOTATION AND TERMINOLOGY

Denote by N the set of natural numbers including 0.
Denote by R+ the set [0,+∞) of nonnegative real numbers.
In the sequel, let PC(R+,S), with S a topological subspace
of an Euclidean space Rn, denote the set of piecewise-
continuous and left-continuous maps. That is, f ∈ PC(R+,S)
if it has finitely many points of discontinuity on any compact
subinterval of R+, and at any point of discontinuity both
the left-hand and right-hand side limits exists, and f is
continuous from the left. In addition, denote by AC(R+,Rn)
the set of absolutely continuous maps, and Lloc(R+,Rn) the
set of Lebesgue measurable maps which are integrable on
any compact interval.

III. LINEAR SWITCHED SYSTEMS

In this section, we present the formal definition of linear
switched systems and recall a number of relevant definitions.
We follow the presentation of [17], [23].

Definition 1 (LSS): A continuous time linear switched
system (LSS) is a control system of the form

d
dt

x(t) = Aσ(t)x(t)+Bσ(t)u(t), x(t0) = x0 (1a)

y(t) =Cσ(t)x(t) (1b)

where1 Q = {1, · · · ,D}, D > 0, called the set of discrete
modes, σ ∈ PC(R+,Q) is called the switching signal, u ∈
Lloc(R+,Rm) is called the input, x ∈ AC(R+,Rn) is called
the state, and y∈ PC(R+,Rp) is called the output. Moreover,
Aq ∈ Rn×n, Bq ∈ Rn×m, Cq ∈ Rp×n are the matrices of the

1Q is endowed with discrete topology.

linear system in mode q ∈ Q, and x0 is the initial state. The
notation

Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) (2)

is used as a short-hand representation for LSSs of the form
(1). The number n is called the dimension (order) of Σ and
will sometimes be denoted by dimΣ.

Throughout the paper, Σ denotes an LSS of the form (1).
Next, we present the basic system theoretic concepts for
LSSs.

Definition 2: The input-to-state map XΣ,x and input-to-
output map YΣ,x of Σ are the maps

XΣ,x : Lloc(R+,Rm)×PC(R+,Q)→ AC(R+,Rn);(u,σ) 7→ XΣ,x(u,σ)

YΣ,x : Lloc(R+,Rm)×PC(R+,Q)→ PC(R+,Rp);(u,σ) 7→ YΣ,x(u,σ)

defined by letting t 7→ XΣ,x(u,σ)(t) be the solution to the
Cauchy problem (1a) with t0 = 0 and x0 = x, and letting
YΣ,x(u,σ)(t) =Cσ(t)XΣ,x(u,σ)(t) as in (1b).

The input-output behavior of an LSS realization can be
formalized as a map

f : Lloc(R+,Rm)×PC(R+,Q)→ PC(R+,Rp). (3)

The value f (u,σ) represents the output of the underlying
(black-box) system. This system may or may not admit
a description by an LSS. Next, we define when an LSS
describes (realizes) a map of the form (3).

The LSS Σ of the form (1) is a realization of an input-
output map f of the form (3), if f is the input-output map of
Σ which corresponds to some initial state x0, i.e., f = YΣ,x0 .
The map YΣ,x0 will be referred to as the input-output map of
Σ, and it will be denoted by YΣ. The following discussion is
only for realizable input-output maps.

We say that the LSSs Σ1 and Σ2 are equivalent if YΣ1 =YΣ2 .
The LSS Σm is said to be a minimal realization of f , if Σm
is a realization of f , and for any LSS Σ such that Σ is a
realization of f , dimΣm ≤ dimΣ. In [17], it is stated that
an LSS realization Σ is minimal if and only if it is span-
reachable and observable. See [17] for detailed definitions
of span-reachability and observability for LSSs. Moreover,
if Σ is a realization of f , then there exists an algorithm for
computing from Σ a minimal realization Σm of f , see [17],
[23]. Hence, in the sequel, unless stated otherwise we will
assume that the LSSs are minimal realizations of their input-
output maps.

IV. MOMENT MATCHING FOR LINEAR SWITCHED
SYSTEMS: PROBLEM FORMULATION

In this section, we state formally the problem of moment
matching for LSSs.

Notation 1: Consider a finite non-empty set Q with D
elements, which will be called the alphabet. Denote by Q∗

the set of finite sequences of elements of Q. The elements of
Q∗ are called strings or words over Q. Each non-empty word
w is of the form w = q1q2 · · ·qk for some q1,q2, · · · ,qk ∈ Q.
The element qi is called the ith letter of w, for i = 1,2, · · · ,k
and k is called the length of w. The empty sequence (word)
is denoted by ε . The length of word w is denoted by |w|;



note that |ε|= 0. The set of non-empty words is denoted by
Q+, i.e., Q+ = Q∗\{ε}. The concatenation of word w ∈ Q∗

with v ∈ Q∗ is denoted by wv: if v = v1v2 · · ·vk, and w =
w1w2 · · ·wm, k > 0,m > 0, v1,v2, . . . ,vk,w1,w2, . . . ,wm ∈ Q,
then vw = v1v2 · · ·vkw1w2 · · ·wm. If v = ε , then wv = w; if
w = ε , then wv = v. For simplicity, the finite set Q will be
identified with its index set, that is Q = {1,2, · · · ,D}.

Next, consider an input-output map f of the form (3).
Notice that the restriction to a finite interval [0, t] of any σ ∈
PC(R+,Q) can be interpreted as finite sequence of elements
of Q×R+ of the form

µ(σ) = (q1, t1)(q2, t2) · · ·(qk, tk) (4)

where q1, · · · ,qk ∈Q and t1, · · · , tk ∈R+\{0}, t1+ · · ·+tk = t,
such that for all s ∈ [0, t]

σ(s) =



q1 if s ∈ [0, t1]
q2 if s ∈ (t1, t1 + t2]

...
qi if s ∈ (t1 + · · · ti−1, t1 + · · ·+ ti−1 + ti]

...
qk if s ∈ (t1 + · · · tk−1, t1 + · · ·+ tk−1 + tk]

From [17], it follows that a necessary condition for f to
be realizable by an LSS is that f has a generalized kernel
representation. For a detailed definition of a generalized
kernel representation of f , we refer the reader to [17,
Definition 19]. For our purposes, it is sufficient to recall that
if f has a generalized kernel representation, then there exists
a unique family of analytic functions K f

q1,...,qk : Rk
+→Rp and

G f
q1,...,qk : Rk

+→Rp×m, q1, . . . ,qk ∈Q, k≥ 1, such that for all
(u,σ) ∈ Lloc(R+,Rm)×PC(R+,Q), t > 0

f (u,σ)(t) = K f
q1q2···qk

(t1, t2, · · · , tk)+
k

∑
i=1

∫ ti

0
G f

qiqi+1···qk
(ti− s, ti+1, · · · , tk)u

(
s+

i−1

∑
j=1

t j

)
ds,

with µ(σ) = (q1, t1)(q2, t2) · · ·(qk, tk) and the functions
{K f

q1···qk ,G
f
q1···qk | q1, . . . ,qk ∈ Q,k ≥ 0} satisfy a number of

technical conditions, see [17, Definition 19] for details. From
[17], it follows that there is a one-to-one correspondence be-
tween f and the family of maps {K f

q1···qk ,G
f
q1···qk | q1, . . . ,qk ∈

Q,k≥ 0}. If f has a realization by an LSS (1), then the func-
tions K f

q1q2···qk(t1, t2, · · · , tk) and G f
q1q2···qk(t1, t2, · · · , tk) satisfy

K f
q1q2···qk

(t1, t2, · · · , tk) =Cqk eAqk tk eAqk−1 tk−1 · · ·eAq1 t1x0

G f
q1q2···qk

(t1, t2, · · · , tk) =Cqk eAqk tk eAqk−1 tk−1 · · ·eAq1 t1Bq1 .

We can now define the Markov parameters of f as follows.
Definition 3 (Markov parameters): Let f have a GCR.

The Markov parameters of f are the values of the map

M f : Q∗→ RDp×(mD+1),

defined by,

M f (v) =


S0(v1), S(1v1), · · · S(Dv1)
S0(v2), S(1v2), · · · S(Dv2)

...
... · · ·

...
S0(vD), S(1vD), · · · S(DvD)

 ,

where the vectors S0(vq) ∈ Rp and the matrices S(q0vq) ∈
Rp×m are defined as follows. For all q0,q ∈ Q,

S0(q) = K f
q (0) and S(q0q) = G f

q0q(0,0).

and for all q0,q ∈ Q, v ∈ Q∗, v 6= ε by

S0(vq) =
∂

∂ t1
· · · ∂

∂ tk
K f

q1···qkq(t1, · · · , tk,0)
∣∣∣∣
t1=t2=···=tk=0

S(q0vq) =
∂

∂ t1
· · · ∂

∂ tk
G f

q0q1···qkq(0, t1, · · · , tk,0)
∣∣∣∣
t1=t2=···=tk=0

.

where v = q1q2 · · ·qk, k ≥ 0, q1,q2, · · · ,qk ∈ Q.
That is, the Markov parameters of f are certain partial

derivatives of the functions {K f
q1···qk ,G

f
q1···qk | q1, . . . ,qk ∈

Q,k ≥ 0}. From [17], it follows that the Markov param-
eters {M f (v)}v∈Q∗ determine the maps {K f

q1···qk ,G
f
q1···qk |

q1, . . . ,qk ∈ Q,k ≥ 0}, and hence determine f , uniquely. In
fact, in [17], it was shown that the entries of {M f (v)}v∈Q∗

can be considered as high-order derivatives of the maps
{K f

q1···qk ,G
f
q1···qk | q1, . . . ,qk ∈ Q,k ≥ 0}. More precisely, for

any α1, . . . ,αk ∈ N, q1, . . . ,qk ∈ Q, k > 0,

S0(q
α1
1 · · ·q

αk+1
k ) =

∂ α1

∂ tα1
1
· · · ∂ αk

∂ tαk
k

K f
q1···qk

(t1, · · · , tk)

∣∣∣∣∣
t1=···=tk=0

S(qα1+1
1 · · ·qαk+1

k ) =
∂ α1

∂ tα1
1
· · · ∂ αk

∂ tαk
k

G f
q1···qk

(t1, · · · , tk)

∣∣∣∣∣
t1=···=tk=0

.

If f has a realization by an LSS Σ of the form (1), then
the Markov-parameters of f can be expressed as products
of the matrices of Σ. In order to present the corresponding
formula, we will use the following notation.

Notation 2: Let w = q1q2 · · ·qk ∈Q∗, q1, . . . ,qk ∈Q, k > 0
and Aqi ∈ Rn×n, i = 1, · · · ,k. Then the matrix Aw is defined
as

Aw = Aqk Aqk−1 · · ·Aq1 . (5)

If w = ε , then Aε is the identity matrix.
From [17], it follows that an LSS (1) is a realization of the

map f if and only if f has a generalized kernel representation
and ∀v∈Q∗ : S0(vq) =CqAvx0 and S(q0vq) =CqAvBq0 , or, in
more compact form

∀v ∈ Q∗ : M f (v) = C̃Av
[
x0 B1 B2 · · · BD

]
(6)

with C̃ =
[
CT

1 · · · CT
D
]T.

The main idea behind moment matching for LSSs is as
follows: approximate f by another input-output map f̂ , such
that some of the Markov parameters of f and f̂ coincide.
One obvious choice is to say that M f (v) = M f̂ (v) for all
v ∈ Q∗, |v| ≤ N for some N. Intuitively, this means that all
the partial derivatives of order at most N of {K f

q1···qk ,G
f
q1···qk |

q1, . . . ,qk ∈ Q,k ≥ 0} and of {K f̂
q1···qk ,G

f̂
q1···qk | q1, . . . ,qk ∈

Q,k≥ 0} coincide. Intuitively, this will mean that for any in-
put and switching signal (u,σ)∈ Lloc(R+,Rm)×PC(R+,Q),
the outputs f (u,σ)(t) and f̂ (u,σ)(t) should be close, at least
for small enough t. Moreover, since we are interested in
input-output maps which are realizable by LSSs, we would
like f̂ to be realizable by an LSS of dimension smaller than



that of the minimal LSS realization f . In order to formalize
the intuition described above, we introduce the following
definitions.

Definition 4 (N-partial realization): The LSS (1) is called
N-partial realization of f , if

∀v ∈ Q∗, |v| ≤ N : M f (v) = C̃AvB̃

with C̃ =
[
CT

1 · · · CT
D
]T and B̃=

[
x0 B1 B2 · · · BD

]
.

If Σ is of the form (1) and YΣ is the input-output map of Σ,
then the concept of N partial realization can be interpreted
as follows: Σ is an N partial realization of f , if those Markov
parameters of f and YΣ which are indexed by words of length
at most N coincide. The problem of model reduction by
moment matching can now be formulated as follows.

Problem 1 (Moment matching): Let Σ be an LSS (1) and
let f = YΣ be its input-output map. Fix N ∈ N. Find an LSS
Σ̄ such that dim Σ̄ < dimΣ and Σ̄ is an N partial realization
of f = YΣ.
Note that there is a trade off between the choice of N and the
dimension Σ. This follows from the result of [21, Theorem
4].

Theorem 1: Assume that Σ is a minimal realization of f
and 2dimΣ− 1 ≤ N. Then for any LSS Σ̄ which is an N
partial realization of f , dimΣ≤ dim Σ̄.
That is, if we choose N too high, namely if we choose any N
such that N ≥ 2n−1, where n is the dimension of a minimal
LSSs realization of f , then there will be no hope of finding
an LSS which is an N partial realization of the original input-
output map, and whose dimension is lower than n.

In order to solve the moment matching problem, one could
consider applying the partial realization algorithm [21]. How-
ever, that approach yields a model reduction algorithm whose
memory-usage and run-time complexity is exponential.

V. THE MODEL REDUCTION ALGORITHM

In this section, the aim is to present an efficient model
reduction algorithm which transforms an LSS Σ into an LSS
Σ̄ such that dim Σ̄ ≤ dimΣ and Σ̄ is an N partial realization
of the input-output map of Σ. The presented algorithm has
polynomial computational complexity and does not involve
the explicit computation of the Hankel matrix as in [21].

In the sequel, the image (column space) of a real matrix M
is denoted by im(M) and rank(M) is the dimension of im(M).
We will start with presenting the following definitions.

Definition 5 ((Partial) Unobservability subspace): For an
LSS Σ, and N ∈N define the N step unobservability subspace
as

ON(Σ) =
⋂

v∈Q∗,|v|≤N,q∈Q

ker(CqAv).

If Σ is clear from the context, we will denote ON(Σ) by ON .
It is not difficult to see that O0 =

⋂
q∈Q ker(Cq) and for any

N > 0, ON =O0∩
⋂

q∈Q ON−1Aq. From [25], [17], it follows
that Σ is observable if and only if ON(Σ) = {0} for all N ≥
dimΣ−1.

Definition 6 ((Partial) Reachability space): For an LSS
Σ, define the N step reachability space as follows:

RN(Σ) = Span{im(AvB̃) | v ∈ Q∗, |v| ≤ N}, (7)

where B̃=
[
x0,B1,B2, · · · ,BD

]
. If Σ is clear from the context,

we will denote RN(Σ) by RN .
It is easy to see that R0 = im(B̃) and RN = im(B̃) +
∑q∈Q AqRN−1, for N > 0. It follows from [17], [25] that Σ is
span-reachable if and only if dimRN = n for all N ≥ n−1.

Theorem 2 (One sided moment matching (columns)):
Let Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) be an LSS
realization of the input-output map f , P ∈ Rn×r be a full
column rank matrix such that

RN(Σ) = im(P).

If Σ̄=(p,m,r,Q,{(Āq, B̄q,C̄q)|q∈Q}, x̄0) is an LSS such that
for each q ∈Q, the matrices Āq, B̄q,C̄q and the vector x̄0 are
defined as

Āq = P−1AqP, B̄q = P−1Bq, C̄q =CqP, x̄0 = P−1x0,

where P−1 is a left inverse of P, then Σ̄ is an N-partial
realization of f .

Proof: See [3].
Using a dual argument, the following result can be proven.

Theorem 3 (One sided moment matching (observability)):
Let Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) be an LSS
realization of the input-output map f , W ∈ Rr×n be a full
row rank matrix such that

ON(Σ) = ker(W )

Let W−1 be any right inverse of W and let Σ̄ =
(p,m,r,Q,{(Āq, B̄q,C̄q)|q ∈ Q}, x̄0) be an LSS such that for
each q ∈ Q, the matrices Āq, B̄q,C̄q and the vector x̄0 are
defined as

Āq =WAqW−1, B̄q =WBq, C̄q =CqW−1, x̄0 =Wx0.

Then Σ̄ is an N-partial realization of f .
Finally, by combining the proofs of Theorem 2 and

Theorem 3, the following can be shown.
Theorem 4 (Two sided moment matching): Let

Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) be an LSS
realization of the input-output map f , V ∈ Rn×r and
W ∈ Rr×n be respectively full column rank and full row
rank matrices such that

RN(Σ) = im(V ), ON(Σ) = ker(W ) and rank(WV ) = r.

If Σ̄=(p,m,r,Q,{(Āq, B̄q,C̄q)|q∈Q}, x̄0) is an LSS such that
for each q ∈Q, the matrices Āq, B̄q,C̄q and the vector x̄0 are
defined as

Āq =WAqV (WV )−1, B̄q =WBq, C̄q =CqV (WV )−1, x̄0 =Wx0,

then Σ̄ is a 2N-partial realization of f .
Now, we will present an efficient algorithm of model

reduction by moment matching, which computes either an
N or 2N-partial realization Σ̄ for an f which is realized
by an LSS Σ. First, we present algorithms for computing
the subspaces RN and ON . To this end, we will use the
following notation: if M is any real matrix, then denote by
orth(M) the matrix U such that U is full column rank,
rank(U) = rank(M), im(U) = im(M) and UTU = I. Note



that U can easily be computed from M numerically, see
for example the Matlab command orth. The algorithm for
computing RN is presented in Algorithm 1 below. By duality,

Algorithm 1 Calculate a matrix representation of RN ,
Inputs: ({Aq,Bq}q∈Q,x0) and N
Outputs: P ∈ Rn×r such that rank(P) = r, im(P) = RN .

P :=U0, U0 := orth
[
x0, B1, . . . , BD

]
.

for k = 1 . . .N do
P := orth(

[
U0, A1P, A2P, . . . , ADP

]
)

end for
return P.

we can use Algorithm 1 to compute ON , the details are
presented in Algorithm 2.

Algorithm 2 Calculate a matrix representation of ON
Inputs: {Aq,Cq}q∈Q and N
Output: W ∈Rr×n, such that rank(W )= r and ker(W )=ON .

Apply Algorithm 1 with inputs ({AT
q ,C

T
q }q∈Q,0) to obtain

a matrix P.
return W = PT.

Notice that the computational complexity of Algorithm 1
and Algorithm 2 is polynomial in N and n, even though
the spaces of RN (resp. ON) are generated by images (resp.
kernels) of exponentially many matrices.

Using Algorithm 1 and 2, we can formulate a model
reduction algorithm, see Algorithm 3.

Algorithm 3 Moment matching for LSSs
Inputs: Σ = (p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) and N ∈ N.
Output: Σ̄ = (p,m,r,Q,{(Āq, B̄q,C̄q)|q ∈ Q}, x̄0).

Using Algorithm 1-2 compute matrices P and W such that
P is full column rank, W is full row rank and im(P) =RN ,
ker(W ) = ON .
if rank(P) = rank(W ) = rank(WP) then

Let r = rank(P) and

Āq =WAqP(WP)−1, C̄q =CqP(WP)−1,
B̄q =WBq, x̄0 =Wx0.

end if
if rank(P)≥ rank(W ) then

Let r = rank(P), P−1 be a left inverse of P and set

Āq = P−1AqP, C̄q =CqP, B̄q = P−1Bq, x̄0 = P−1x0.

end if
if rank(P)< rank(W ) then

Let r = rank(W ) and let W−1 be a right inverse of W .
Set

Āq =WAqW−1, C̄q =CqW−1, B̄q =WBq, x̄0 =Wx0.

end if
return Σ̄ = (p,m,r,Q,{(Āq, B̄q,C̄q)|q ∈ Q}, x̄0).

Theorem 2 – 4 imply the following corollary on correct-
ness of Algorithm 3.

Corollary 1 (Correctness of Algorithm 3): Using the no-
tation of Algorithm 3, the following holds: If rank(P) =
rank(W ) = rank(WP), then Algorithm 3 returns an 2N partial
realization of f = YΣ. Otherwise, Algorithm 3 returns an N
partial realization of f = YΣ.

Remark 1 (Implementation): The implementation
of Algorithm 3 in MATLAB is available from
https://kom.aau.dk/˜mertb/.

Remark 2 (Computational complexity): The memory and
run time complexity of Algorithm 3 is polynomial in N,D
and n. For details, see [3].

VI. NUMERICAL EXAMPLE

In this section, a generic numerical example is pre-
sented to illustrate the model reduction procedure. The
procedure is applied to get a reduced order approximation
to an LSS whose local modes are unstable. The origi-
nal LSS used in this case is an LSS of the form Σ =
(p,m,n,Q,{(Aq,Bq,Cq)|q ∈ Q},x0) with p = m = 1, n =
12 and Q = {1,2}. The resulting reduced order model Σ̄1
is a 1-partial realization of YΣ of order 9. The data of
Aq, Bq, Cq parameters and the initial state x0 used for
simulation are generated randomly and they are available
from https://kom.aau.dk/˜mertb/. A random switching signal
with minimum dwell time (time between two subsequent
changes in the switching signal) of 0.1 and a random input
signal u(t) with uniform distribution is used for simulation.
The simulation time interval is t = [0,3]. For N = 1, an
approximation LSS of order 9 whose Markov parameters
indexed by the words of length at most 1 are matched
with the original LSS Σ is acquired, i.e the original LSS
Σ is approximated by a 1-partial realization Σ̄1. Note that
the precise number of matched Markov parameters is equal
to the number of words in the set Q∗ of length at most
N = 1, which is in this case 3. The output y(t) of the
original system Σ and the output ȳ(t) of the reduced order
system Σ̄1 are simulated with the parameters given for 500
random switching sequences and input trajectories. For each
simulation, the responses of the original and reduced order
LSSs are compared with the best fit rate (BFR) (see [14],
[27]) which is defined as

BFR = 100%max
(

1− ‖y(·)− ȳ(·)‖2

‖y(·)− ym‖2
,0
)

where ym is the mean of y and ‖·‖2 is the `2 norm. Even
though the BFR is defined for output sequences rather than
functions with the domain R+, we could still apply it,
since y and ȳ were obtained by computing a numerical
solution of the LSS, and as a result they are both defined
on a discretization of the time axis, i.e., y and ȳ are arrays
containing the output values in the sampled time instances.
For this example, the mean of the BFRs for 500 simulations
is acquired as 79.0518%; whereas, the best acquired BFR is
90.8013% and the worst is 62.7846%. The outputs y(t) and
ȳ(t) of the most successful simulation are shown in Fig. 1.
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Fig. 1. The response y(t) of the original LSS Σ of order 12 and the response
ȳ(t) of the reduced order approximation LSS Σ̄1 of order 9.

VII. CONCLUSIONS

A moment matching procedure for model reduction of
LSSs has been given. It has been proven that with this
procedure, as long as a certain criterion is satisfied, it is
possible to acquire at least one reduced order approximation
to the original LSS whose first some number of Markov pa-
rameters are matched with the original one’s. The procedure
is based on constructing matrices whose image or kernel
is the partial reachability or unobservability subspaces of
an LSS respectively. Since we do not explicitly compute
the Hankel matrices, the computational complexity does
not increase exponentially with the number of moments to
be matched, which is particularly important for large scale
systems.
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