488 research outputs found

    Statistical structures for internet-scale data management

    Get PDF
    Efficient query processing in traditional database management systems relies on statistics on base data. For centralized systems, there is a rich body of research results on such statistics, from simple aggregates to more elaborate synopses such as sketches and histograms. For Internet-scale distributed systems, on the other hand, statistics management still poses major challenges. With the work in this paper we aim to endow peer-to-peer data management over structured overlays with the power associated with such statistical information, with emphasis on meeting the scalability challenge. To this end, we first contribute efficient, accurate, and decentralized algorithms that can compute key aggregates such as Count, CountDistinct, Sum, and Average. We show how to construct several types of histograms, such as simple Equi-Width, Average-Shifted Equi-Width, and Equi-Depth histograms. We present a full-fledged open-source implementation of these tools for distributed statistical synopses, and report on a comprehensive experimental performance evaluation, evaluating our contributions in terms of efficiency, accuracy, and scalability

    Optimizing Sample Design for Approximate Query Processing

    Get PDF
    The rapid increase of data volumes makes sampling a crucial component of modern data management systems. Although there is a large body of work on database sampling, the problem of automatically determine the optimal sample for a given query remained (almost) unaddressed. To tackle this problem the authors propose a sample advisor based on a novel cost model. Primarily designed for advising samples of a few queries specified by an expert, the authors additionally propose two extensions of the sample advisor. The first extension enhances the applicability by utilizing recorded workload information and taking memory bounds into account. The second extension increases the effectiveness by merging samples in case of overlapping pieces of sample advice. For both extensions, the authors present exact and heuristic solutions. Within their evaluation, the authors analyze the properties of the cost model and demonstrate the effectiveness and the efficiency of the heuristic solutions with a variety of experiments

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    A Sample Advisor for Approximate Query Processing

    Get PDF
    The rapid growth of current data warehouse systems makes random sampling a crucial component of modern data management systems. Although there is a large body of work on database sampling, the problem of automatic sample selection remained (almost) unaddressed. In this paper, we tackle the problem with a sample advisor. We propose a cost model to evaluate a sample for a given query. Based on this, our sample advisor determines the optimal set of samples for a given set of queries specified by an expert. We further propose an extension to utilize recorded workload information. In this case, the sample advisor takes the set of queries and a given memory bound into account for the computation of a sample advice. Additionally, we consider the merge of samples in case of overlapping sample advice and present both an exact and a heuristic solution. Within our evaluation, we analyze the properties of the cost model and compare the proposed algorithms. We further demonstrate the effectiveness and the efficiency of the heuristic solutions with a variety of experiments

    Hierarchical Group-Based Sampling

    Get PDF
    Approximate query processing is an adequate technique to reduce response times and system load in cases where approximate results suffice. In database literature, sampling has been proposed to evaluate queries approximately by using only a subset of the original data. Unfortunately, most of these methods consider either only certain problems arising due to the use of samples in databases (e.g. data skew) or only join operations involving multiple relations. We describe how well-known sampling techniques dealing with group-by operations can be combined with foreign-key joins such that the join is computed after the generation of the sample. In detail, we show how senate sampling and small group sampling can be combined efficiently with the idea of join synopses. Additionally, we introduce different algorithms which maintain the sample if the underlying data changes. Finally, we prove the superiority of our method to the naive approach in an extensive set of experiments
    corecore