
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version:

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-822090

Rainer Gemulla, Henrike Berthold, Wolfgang Lehner

Hierarchical Group-Based Sampling

Erstveröffentlichung in / First published in:

Database: Enterprise, Skills and Innovation.22nd British National Conference on
Databases. Sunderland, 05. - 07.07.2005. Springer, S. 120-132. ISBN 978-3-540-31677-0.

DOI: https://doi.org/10.1007/11511854 10

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-822090
https://doi.org/10.1007/11511854_10

Hierarchical Group-Based Sampling

Rainer Gemulla, Henrike Berthold, and Wolfgang Lehner

Dresden University of Technology
Database Technology Group

{gemulla,henrike.berthold,lehner}@inf.tu-dresden.de

Abstract. Approximate query processing is an adequate technique to
reduce response times and system load in cases where approximate re-
sults suffice. In database literature, sampling has been proposed to evalu-
ate queries approximately by using only a subset of the original data. Un-
fortunately, most of these methods consider either only certain problems
arising due to the use of samples in databases (e.g. data skew) or only
join operations involving multiple relations. We describe how well-known
sampling techniques dealing with group-by operations can be combined
with foreign-key joins such that the join is computed after the generation
of the sample. In detail, we show how senate sampling and small group
sampling can be combined efficiently with the idea of join synopses. Ad-
ditionally, we introduce different algorithms which maintain the sample
if the underlying data changes. Finally, we prove the superiority of our
method to the naive approach in an extensive set of experiments.

1 Introduction

As a result of rising computation and storage capacities, data acquisition has
become simpler and more versatile. The amount of information stored on a wide
range of different media has increased tremendously during the past years [1].
Data warehouse systems integrating different databases are capable of persis-
tently storing this surge of information. However, it is rather difficult to ex-
tract knowledge from these voluminous databases, since the respective database
queries usually suffer from long runtimes. Often an approximate but fast answer
is the better alternative, e.g. to support interactivity. Sampling is a widely used
technique which balances query result accuracy and response time.

The well-known simple random sampling (SRS) selects a fixed-sized random
subset of a relation such that every possible subset has the same probability
of being drawn. Approximate query evaluation using SRS assumes that the un-
derlying data is uniformly distributed. In order to circumvent this restriction
and to extend SRS to multiple relations, several techniques have been proposed.
However, they only address either data distribution or join processing. We show
how to combine sampling techniques developed to accurately answer group-by
queries [2, 3] with the well known technique of join synopses [4] for foreign-key
joins.

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Related Work. The New Jersey Data Reduction Report [5] provides an over-
view of approximate query processing in general. Database-specific sampling
techniques can be divided into two classes: online sampling, which computes the
sample at query execution time, and offline sampling, which pre-computes the
sample and materializes it in the database. Obviously, by using offline sampling
it is possible to spend more effort in the computation of the sample in order
to increase the accuracy of approximate results. However, the sample has to be
maintained if the data is modified.

The method of online aggregation [6] belongs to the former of the two classes
mentioned above. The main idea is to present the user with iteratively refined
approximate results for aggregation queries. However, most sampling techniques
generate the sample offline in order to deal with data skew (e.g. non-uniformly
distributed value frequencies). Reservoir sampling [7, 8] allows the computation
of a sample of predefined size. ICICLES [9], developed by Ganti et. al., attempts
to generate and maintain a sample tailored to the actual query workload. The
outlier indexing [10] detects outliers within the data and uses this knowledge for
sample computation.

The main problem of bringing together sampling and join is the fact that
these two operations do not commute. For two relations R1 and R2, it holds in
general:

SRS(R1 �� R2) �= SRS(R1) �� SRS(R2)

Therefore, it is not possible to compute a sample of a join by only using the
samples of the participating relations [11]. Fortunately, in the common case of
an N:1-relationship as appearing in star and snowflake schemes the situation is
less difficult, because it is possible to sample at least one of the involved relations:

SRS(R1 ��N :1 R2) = SRS(R1) ��N :1 R2

This property is the foundation of join synopses [4] which pre-calculate samples
over foreign-key relationships. With the help of this technique, expensive joins
are avoided at query execution time (sec. 2.1).

Typically, data is not uniformly distributed. This data skew causes enor-
mous problems if sampling is not applied carefully. For instance, the small group
problem appears: if the values of the grouping attributes are not uniformly dis-
tributed with regard to their frequency, groups consisting of only a few tuples
appear infrequently in the sample and, thus, contribute to the approximate re-
sult infrequently. Group-based sampling techniques such as senate sampling [2]
and small group sampling [3] deal with this problem.

Outline. The remainder of the paper is organized as follows. Section 2 provides
an overview of fundamental techniques which deal with sampling, join and group-
by. Additionally, we introduce the concept of a foreign-key tree which orders
relations into a hierarchy (thus the name), and we explain a naive combination
approach. In sections 3 and 4, we introduce algorithms superior to the naive
one. Section 5 presents an extensive experimental evaluation. Finally, a summary
concludes the paper in section 6.

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

2 Sampling, Join and Group-by

This section briefly introduces sampling techniques for join operations as well
as group-based sampling. The new concept of foreign-key trees serves as the
foundation for the combination of these techniques.

2.1 Join Synopses

Acharya et. al. combine sampling and

Fig. 1. F.k. graph (left) & tree (right)

foreign-key joins by creating so-called
join synopses [4]. The foreign-key re-
lationship of a relation R1 with for-
eign key fk to a relation R2 is denoted
R1 →fk R2. The symbol ⇒ denotes the
transitive closure of →, and ⇒∗ the re-
flexive transitive closure. A foreign-key
graph visualizes → over a schema (cf.
Fig. 1, left). Every node represents a relation (and vice versa), every edge models
a foreign-key relationship. The example shows a relation A which has two foreign
keys fk1 and fk2 to relation B, i.e., A references B twice.

A join R1 �� R2 is a foreign-key join (FKJ) with source relation R1, if
the join condition compares a foreign key of R1 with the primary key of R2

(R1 → R2) for equality. The result of the FKJ consists of the primary key of the
source relation, and the foreign keys of all involved relations. If it is joined with
additional relations by using one of its foreign keys, another FKJ with the same
source relation is created – thus, there is always exactly one source relation,
which is used as a starting point. Between a relation R and an FKJ with source
relation R, there is a 1:1-relationship. Informally, the FKJ looks up foreign keys
in the respective relations and extends each tuple of the source relation by the
result. A simple example scenario is shown in Figure 2. On the right, the result
of the FKJ Emp �� Dep �� Loc is presented.

In the following, we assume that the foreign-key graph is free of cycles. In
this case, a maximum foreign-key join (MFKJ) can be determined for every
relation. It is free of redundancy; for example, it eliminates joins like A ��fk1

B ��fk1 . . . ��fk1 B (cf. Fig. 1, left). We introduce foreign-key trees to model such
maximum foreign-key joins.

Fig. 2. Example scenario and maximum foreign-key join

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Definition 1. The foreign-key tree tree(R) of a relation R is made up of a root
node r with associated relation rel(r) = R. For each foreign-key relationship of
type R →fk S, the foreign-key tree of S is connected to r with the edge r →fk

tree(S).

Figure 1 (right) shows the foreign-key tree (FKT) of relation A. There is an
N:1-relationship between nodes and relations. The MFKJ consists of one join
operation per edge of the foreign-key tree. In detail, each node is joined with the
MFKJ of its successors1. The MFKJ Jmax (A) of relation A is given by:

Jmax (A) = A ��fk1 (B ��fk3 (C ��fk5 D) ��fk4 D)
��fk2 (B ��fk3 (C ��fk5 D) ��fk4 D)

The join synopsis of a relation R resembles a random sample of Jmax (R).
Due to the 1:1-relationship of tuples in R and Jmax (R), it is possible to sample
R before executing the join, i.e., the sample U = SRS(R) is computed and af-
terwards, it joined with all the relations of the FKT, yielding Jmax (U). This is
crucial for the practicability of the method, since the complete MFKJ is very ex-
pensive to obtain. If a join synopsis is created for every relation of a schema, it is
possible to approximately answer all queries with FKJs by using the appropriate
synopsis.

2.2 Senate Sampling

Senate sampling [2] attacks the problem of sampling small groups; it ensures
that all groups appear in the sample. This is achieved by assigning the same
amount of space in the sample to each group. Therefore, it is necessary that all
potential grouping attributes are already known in advance. Furthermore, the
number of the non-empty groups has to be smaller than the size of the sample.
Thus, it is guaranteed that for every group there is at least one tuple reserved
in the sample.

The sampling process requires one scan of the relation. For each group, the
algorithm creates an independent reservoir [7], i.e. a temporary relation usually
stored in main memory. At any time, the reservoir contains a random sample of
all tuples of its group. If m groups have been seen so far, the size of each reservoir
is limited to sg = n

m tuples with n being the sample size. Therefore, each first
occurrence of a group yields to a decrease of the size of all reservoirs. After all
tuples have been processed, the reservoirs are written into a single sample table.

By using the senate sample, group-by queries can be answered approximately
and without losing any group. However, the procedure has some inherent dif-
ficulties: it is often the case that the number of groups is too high because of
the consideration of all potential grouping attributes and, thus, no useful sample
can be generated. Alternatively, it is possible to compute multiple samples, each
1 In the following, the term “node” is used synonymously for the relation associated

with it; e.g., the tuples of a node a refers to the tuples of the relation A assigned to
that node, actually

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

for a subset of the grouping attributes. Furthermore – if we limit the number of
grouping attributes – small groups contain usually far less tuples than they have
space in the sample. As a result, parts of the sample remain unused.

2.3 Small Group Sampling

Another approach to solve the small-group problem has been developed by Bab-
cock et.al. and is called small group sampling (SGS, [3]). It generates multiple
sample tables and selects an adequate subset of them at query evaluation time.
The basic idea of SGS is to create a so-called small group table (SGT) for each
attribute of the base relation. These small group tables include all tuples which
have a rare value in the respective attribute. Therefore, the SGTs of a query’s
grouping attributes consist of tuples belonging to small groups. Additionally, a
random sample of the base relation is generated. In general, this base sample
covers tuples which belong to large groups.

The user has to define three parameters for the generation of the small group
sample. First, the base sampling rate r (0 < r ≤ 1) determines the size n of the
base sample in dependency of the number N of the tuples in the base relation
(n = N · r). Second, if an attribute has more than τ distinct values, no SGT is
generated. Therefore, τ is used to determine which attributes are likely to appear
in a group-by clause. Finally, the small group fraction f defines the upper size
limit of an SGT (nSGT ≤ N · f). Only the most rare attribute values appear in
the SGT. Thus, f implicitly draws the line between rare and frequent.

The computation of the SGS consists of two phases, each requiring one table
scan. First, a histogram is generated for each attribute. With their help, it is
possible to decide which values are rare. In the second phase, this knowledge
is used to generate the base sample and the SGTs. At query processing time,
the base sample and the SGTs of the respective grouping attributes are used
for approximate query evaluation. All tuples of groups which consist of at least
one rare value in a grouping attribute are completely covered by an SGT – their
aggregate is calculated exactly. All other groups are served by the base sample
and evaluated approximately.

Dependencies between attributes may cause the SGS to miss some groups.
Often, small groups which consist of frequent values only are not represented in
the sample. But in contrast to senate sampling, the grouping attributes do not
have to be known in advance and, thus, a small group sample is designed for
arbitrary grouping attributes. However, the parametration is quite difficult. Ad-
ditionally, functional dependencies between attributes lead to redundant SGTs,
e.g., the SGT of an attribute country name is likely to be equal to that of the
attribute country code.

2.4 Naive Combination

By combining join synopses and group-based sampling, we are able to answer
queries with foreign-key joins and/or group-by approximately. It is not mean-
ingful to simply use the MFKJ of a senate or small group sample, since thereby

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

only attributes of the source relation would be considered as potential grouping
attributes. Alternatively, the complete MFKJ of the source relation could be
calculated and sampled afterwards. This naive approach is not feasible in most
cases due to its high computation costs. Instead, we introduce new algorithms
called hierarchical senate sampling (HSEN) and hierarchical small group sam-
pling (HSGS), which result in samples identical to that of the naive approach
but which are more efficient to obtain. Therefore, we show how to pull sampling
before the join as done for join synopsis computation.

3 Hierarchical Senate Sampling

HSEN requires the FKT of the source relation as its input. Unlike in regular
senate sampling, grouping attributes are defined at node level. Therefore, it is
possible to assign different grouping attributes to relations that appear more
than once within the tree. Throughout the paper, we use the scenario shown
in Figure 2 as an example. Note that the foreign-key graph and the foreign-key
tree of Emp are equal. Futhermore, let Loc.Location and Dep.Name be grouping
attributes. In the following, we describe the computation of HSEN, which is
divided into two phases.

3.1 Phase 1: Group Tables

Regular senate sampling determines the group of each tuple by extracting the
values of the grouping attributes. Unfortunately, this is not possible if multiple
relations are involved. Therefore, additional information has to be gathered from
the data before sampling the source relation.

Definition 2. The group table GTu of a node u contains one entry for every
tuple of u. Each of these entries consists of a primary key and a group identifier
(GID).

Thus, the group table (GT) captures the relationship between tuples and
groups (cf. Fig. 3, left), which in turn are represented by a unique group iden-
tifier (GID). With their help, the group of a tuple of the source relation can be
determined by looking up its foreign keys in the GTs of the respective referenced
nodes. The actual values of the grouping attributes are not of interest. It is suf-
ficient that tuples belonging to the same group have the same GID, and that
tuples belonging to different groups have a different GID as well.

The group table does not have to be calculated for every node. A node
is called directly grouping-relevant if at least one grouping attribute has been
defined on it. In the example, this applies to the nodes Loc and Dep. Addition-
ally, a node is called indirectly grouping-relevant if one of its successor nodes is
grouping-relevant. This holds for Dep and Emp.

The first phase of HSEN computes the GTs of all grouping-relevant, direct
successor nodes of the source relation. The algorithm starts with those nodes

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 3. Computation of the hierarchical senate sample

which do not have any grouping-relevant successor, and subsequently, proceeds
backwards along the foreign-key relationships to the root node (bottom-up).

Let u be the node currently processed and let v1, . . . , vk be its direct, group-
ing-relevant successors. The computation of GTu requires one scan of u. If k =
0, i.e. u has no successor nodes with grouping attributes, each tuple’s group
is determined by simply using the values of the grouping attributes defined
on it. A unique GID is assigned to each group. Thereby, a temporary data
structure captures the 1:1-relationship between groups and GIDs. For each tuple,
an entry consisting of its primary key and its GID is included in the GT. For
instance, Fig. 3 shows the GT of Loc. The relationship between groups and GIDs
is {(North, 1), (South, 2)}.

In order to calculate the GT of an indirectly grouping-relevant node (k > 0),
the GTs of all its direct, grouping-relevant successors must be known. For exam-
ple, GTLoc is required to calculate GTDep . In general, the procedure is identical
to the one for k = 0. However, the value of every foreign key to a successor node
is looked up in the respective group table. Afterwards, the obtained GID is used
as an additional grouping attribute. Therefore, groups generated by successor
nodes are considered, too. The complete algorithm is presented in more detail
in the full paper [12].

The GT of the node Dep is shown in the lower left of Fig. 3. For its computa-
tion, the attribute Name and the GID out of GTLoc have been used as grouping
attributes. By now, GTLoc is not needed anymore and is therefore deleted. The
first phase is finished at this point, since there is no need to calculate a GT for
the root node.

3.2 Phase 2: Sampling

The sampling of the source relation is almost identical to regular senate sampling.
The only difference is that foreign keys have to be looked up in the GT of the
respective successor node, and the obtained GID has to be used as additional
grouping attribute. Due to space restrictions, this algorithm is not presented
here.

Figure 3 (right) depicts a possible sample of size n = 3. One tuple is sampled
from each of the groups (Adm ,N), (Man ,N), and (Adm,S). Finally, the MFKJ
of this sample has to be calculated. In the full paper [12], we discuss several

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

optimizations of the algorithm presented here and describe how to maintain the
sample incrementally.

4 Hierarchical Small Group Sampling

As with senate sampling, SGS can be naively extended to multiple relations using
the MFKJ of the source relation. By proceeding hierarchically, the computation
costs are lowered noticeably and, thus, the method becomes practicable. Two
core problems have to be solved: the determination of rare values on the one
hand and of all tuples with these values on the other hand. The hierarchical
approach is structured into 3 phases: phase 1 deals with the former of the two
problems, phase 2 with the latter. In Phase 3 the base sample and the SGTs are
computed.

4.1 Phase 1: Histogram Calculation

As explained in section 2.3, the determination of rare values requires a histogram
for each attribute. If there is only one relation R, their calculation is simple.
However, if multiple relations have to be considered, it is not possible to calculate
the histograms2 of every relation separately, since the influence of the foreign
keys is lost otherwise. Instead, the number of references to every tuple has to be
considered during histogram calculation.

Definition 3. The reference table RTu⇒v contains the primary key of every
tuple of node v together with the number of tuples of node u that reference it via
foreign keys (u ⇒ v). Non-referenced tuples do not appear in the reference table.

For example, Fig. 4 (upper left part) shows the reference table RTEmp⇒Dep ,
which captures the number of references of every tuple in Dep. For instance,
the department with the number 3 is referenced four times. Subsequently, the
reference table is used for histogram calculation. Let w be the root node of the
FKT. Then, the reference table RTw⇒v is required for the computation of the
histograms of a node v. The reference count is used as a weight for each tuple.
For instance, the tuple (3,Adm, 1) of Dep is counted four times.

The computation of histograms and reference tables is done simultaneously.
In fact, the RT of a node v equals the (weighted) histogram of the foreign key
attributes of its predecessor x, that is, the reference table RTw⇒v is computed
together with the histograms of x. Since the root node w has no predecessor,
its histograms and reference tables to successor nodes are computed first and
without any weighting. Subsequently, the FKT is traversed top-down. For each
tuple of a node v, its primary key is looked up in the reference table RTw⇒v,
and the obtained reference count is used as tuple weight, i.e. as scale factor.
Therefore, the histograms are identical with those of the respective attributes in
the MFKJ Jmax (rel(w)). Please refer to the full paper [12] for a more detailed
description of this algorithm.
2 The histogram of the attribute i of node u is denoted Hu,i

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 4. Phase 1 and 2 of the computation of the hierarchical small group sample

After processing a node u, RTw⇒u is not needed anymore and therefore
deleted. Furthermore, all histograms are restricted to rare values, i.e. iteratively,
the most frequent value is removed until the number of tuples represented by the
histogram does not exceed the upper size limit anymore. All remaining tuples
will be included in the SGT later on (cf. sec. 2.3). Attributes with more than τ
distinct values or without any rare values do not require a histogram anymore.

In the left of Figure 4, the first phase of hierarchical small group sampling
is illustrated. In the example, the maximum number of distinct values is set
to 2, the upper size limit of an SGT to 3. Therefore, only the histograms of the
attributes Dep.Name and Loc.Location remain.

4.2 Phase 2: Key Sets and Assignment Sets

An SGT has to be generated for each attribute for which there is a non-empty
histogram remaining after the first phase. Now, we have to determine which
tuples of the source relation have to be included in which SGTs. Thus, the
restricted histograms are converted step by step to so-called key sets (KS, per
attribute), which consist of the primary keys of all tuples with rare values.

Definition 4. The key set Lu
u,i of a histogram Hu,i contains the primary keys

of all tuples of u, whose value of the attribute i appears in the histogram.

Since the restricted histograms contain rare values only, this applies to the
key sets, too. All histograms but those of the root node have to be converted
to key sets according to definition 4. Thereby, the FKT is traversed bottom-up
and a second table scan is performed at every node with at least one non-empty
histogram. Figure 4 (right) shows the key sets LLoc

Loc,Loc. and LDep
Dep,Name for the

example scenario. According to these key sets, the location with primary key 2
as well as the departments with primary keys 1 or 4 have a rare value in the
attribute Location and Name respectively (cf. Fig. 2).

Additionally, when processing a node v the key sets of its direct successor
nodes have to be converted to the primary keys of v.

Definition 5. Let v, u, and x be three nodes in the foreign-key tree with v �= u
and v → u ⇒∗ x, and assume that Lu

x,i is known. Then, the key set Lv
x,i contains

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

the primary keys of all tuples from v, whose foreign keys to u appear in the key
set Lu

x,i.

To summarize, the key set Lv
x,i contains all those primary keys of v which

lead to rare values of the attribute i of node x. The key sets of the leaf nodes
(covered by definition 4) are used as a starting point. In this case, v and x refer
to the same node. For instance, it holds Dep → Loc ⇒∗ Loc in the example
scenario. Therefore, the key set LLoc

Loc,Loc. is converted to LDep
Loc,Loc. according to

definition 5. It contains the primary keys of all tuples of Dep whose foreign key
to Loc is present in the key set LDep

Loc,Loc.. In other words, the department with
the primary key 4 leads to a rare value in the Loc.Location attribute.

An assignment set (AS, per node) integrates all the key sets of a specific
node.

Definition 6. The assignment set Mu
L of a node u consists of the key sets Lu

u,i

of all restricted histograms Hu,i. If u has the direct successor nodes v1, . . . , vk,
Mu

L additionally contains all key sets out of Mv1
L , . . . , Mvk

L converted to primary
keys of u according to definition 5.

Thus, all key sets of the assignment set Mu
L contain primary keys of u only.

In the example scenario, there are two AS: MLoc
L = {LLoc

Loc,Loc.} and MDep
L =

{LDep
Dep,Name , L

Dep
Loc,Loc.} (cf. Fig. 4). The computation of an AS requires the AS of

all successor nodes. This is the reason why the FKT has to be processed bottom-
up. Note that after the assignment set of a node u has been created, neither its
histograms nor the assignment sets of its successors are needed anymore. Please
refer to the full paper [12] for further details.

Only the assignment sets of the direct successors of the root node are the
output of the second phase. Subsequently, they are used to sample the source
relation.

4.3 Phase 3: Sampling

Just as with regular SGS, the source re-

Fig. 5. Phase 3 of HSGS

lation is scanned once to compute the
base sample and the SGTs. For each
attribute of the source relation, the as-
signment of tuples to SGTs is done with
the help of its histogram. For all other
attributes, the assignment sets are used,
that is, for each direct successor node
v the respective foreign key of the cur-
rent tuple is extracted and looked up
in every key set Lv

x,i within Mv
L. If it is present in there, the current tuple is

copied to the SGT of attribute i of node x. For example, only the tuples with
department number 1 or 4 are included in the SGT of Dep.Name (Fig. 5) since
LDep

Dep,Name contains the keys 1 and 4 only.

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 6. DB size & computation costs Fig. 7. Sampling rate & computation costs

Finally, the MFKJ of the base sample and the SGTs has to be computed.
Since a tuple may appear in more than one sample table, it is worth computing
the join before writing the sample tables in order to avoid unnecessary effort.
Again, the discussion of several optimizations as well as sample maintenance is
postponed to the full paper [8].

5 Evaluation

The hierarchical sampling techniques have been prototypically implemented and
compared to the naive approach. The database (IBM UDB v8.1) has been ad-
dressed by a Java middleware, in which the sampling techniques have been inte-
grated. The naive techniques have been implemented by using a view, and the
hierarchical techniques have been implemented as described in the previous sec-
tions. The test system has been an AMD AthlonTMXP 3000+ with 2 GB main
memory. All tests have been executed with the TPC-D benchmark [13] and arti-
ficially skewed data. The size of the processed data is expressed by a scale factor.
The relations Nation and Region have been excluded, since they only contain
few tuples and do not scale. The skewness of the data has been simulated by a
Zipf distribution with Zipf factor z. The Zipf factor z = 1 represents a uniform
data distribution. A higher value of z yields more skewed data.

For an evaluation of the quality of the hierarchical senate sample, we used
Customer .Nationkey and Part .Type as grouping attributes. The sampling rate
has been 5%, the Zipf factor z = 1.5. Figure 6 compares the computation time of
the sample and the main memory requirements. For large amounts of data, the
hierarchical approach requires about 40% of the time the naive approach takes.
The main memory requirements are almost identical for both approaches, even
though the hierarchical approach uses additional data structures. The reason
lies in the different use of the temporary reservoirs: on the one hand, they only
consist of tuples from the source relation (hierarchical); on the other hand, these
tuples are joined with all referenced relations in advance, and thus, become much
bigger (naive).

Figure 7 depicts the influence of the sampling rate on the computation time
and the memory requirements. The scale factor 0.1 has been used. The hierar-
chical approach accelerates the naive approach by a constant amount, i.e. it is

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 8. Data skew & accuracy Fig. 9. Approximate computation costs

mostly independent from the sample size. However, the naive approach needs
considerably more main memory with increasing sampling rates.

The same measurements have also been done for hierarchical small group
sampling. The results are almost identical. The only difference is the fact that
small group sampling needs considerably less main memory space both in the
naive and the hierarchical variant, but requires more computation time instead.
Due to space restrictions, these results are not shown in here.

As can be seen in Figure 8 (left), group-based sampling decreases the amount
of non-recognized groups considerably. A grouping by Customer .Nationkey and
Supplier .Nationkey has been done, the scale factor has been set to 0.1, and the
metrics from [3] have been used. For a uniform data distribution (z = 1), all
three sampling techniques offer comparable quality. But with increasing data
skew, simple join synopses (HSRS) lose almost all small groups, while the HSGS
only misses a few. The higher the data skew, the fewer middle-sized groups
exist and the better small group sampling works. Finally, the HSEN recognizes
all groups. It draws an advantage from the fact that it knows the grouping
attributes in advance. The accuracy of the different techniques (cf. Figure 8,
right) is evaluated similarly. For each group, the average revenue (price minus
discount) has been calculated. Its root mean square error is shown in the figure.

Figure 9 (left) depicts the speed increase by approximate query processing
with a sample size of 5% (logarithmic scale units). A scale factor of 0.1 has been
used. The response time of join synopses and hierarchical group-based techniques
is identical. On average, it is about 2.5% of the time required to compute the
exact answer. As can be seen in Figure 9 (right), the sampling rate has a linear
effect on the response time of an approximate query, relative to the one of an
exact query.

6 Summary

We have shown how to efficiently combine foreign-key joins and group-based
sampling. The resulting samples can be used to approximately answer queries,
in which a relation and the relations referenced by it via foreign-key relationships
are joined and/or in which groupings appear. It is not necessary to access the
base data; all the required information is present in the sample.

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Our approaches can also be applied to other sampling techniques. For exam-
ple, with the help of reference tables, the outliers detected by outlier indexing
can be determined more efficiently.

Acknowledgement

This work has been supported by the German Research Society (DFG) under
LE 1416/3-1.

References

1. University of California at Berkeley: How much Information? (2003)
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/.

2. Acharya, S., Gibbons, P., Poosala, V.: Congressional Samples for Approximate
Answering of Group-By Queries. In: Proc. ACM SIGMOD. (2000) 487–498

3. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate
query processing. In: Proc. ACM SIGMOD. (2003) 539–550

4. Acharya, S., Gibbons, P., Poosala, V., Ramaswamy, S.: Join synopses for approx-
imate query answering. In: Proc. ACM SIGMOD. (1999) 275–286

5. Barbará, D., DuMouchel, W., Faloutsos, C., Haas, P., Hellerstein, J., Ioannidis,
Y., Jagadish, H., Johnson, T., Ng, R., Poosala, V., Ross, K., Sevcik, K.: The New
Jersey Data Reduction Report. IEEE Data Eng. Bull. 20 (1997) 3–45

6. Hellerstein, J., Haas, P., Wang, H.: Online Aggregation. In: Proc. ACM SIGMOD.
(1997) 171–182

7. Vitter, J.: Random Sampling with a Reservoir. ACM Transactions on Mathemat-
ical Software 11 (1985) 37–57

8. Gemulla, R., Lehner, W.: On Incremental Maintenance of Materialized Offline
Samples (2005) Submitted for publication.

9. Ganti, V., Lee, M., Ramakrishnan, R.: ICICLES: Self-Tuning Samples for Approx-
imate Query Answering. In: The VLDB Journal. (2000) 176–187

10. Chaudhuri, S., Das, G., Datar, M., Motwani, R., Narasayya, V.: Overcoming
Limitations of Sampling for Aggregation Queries. In: Proc. ICDE. (2001) 534–544

11. Chaudhuri, S., Motwani, R., Narasayya, V.: On Random Sampling over Joins. In:
Proc. ACM SIGMOD. (1999) 263–274

12. Gemulla, R., Berthold, H., Lehner, W.: Hierarchical Group-based Sampling
(2005) Full version available at http://wwwdb.inf.tu-dresden.de/files/team/

gemulla/files/hgs-fullversion.pdf.
13. Transaction Processing Performance Council: TPC-D Benchmark Version 2.1.

(1998) http://www.tpc.org.

Final edited form was published in "Database: Enterprise, Skills and Innovation. 22nd British National Conference
on Databases. Sunderland 2005", S. 120-132, ISBN 978-3-540-31677-0

https://doi.org/10.1007/11511854_10

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Hierarchical Group-Based Sampling
	1 Introduction
	2 Sampling, Join and Group-by
	2.1 Join Synopses
	2.2 Senate Sampling
	2.3 Small Group Sampling
	2.4 Naive Combination

	3 Hierarchical Senate Sampling
	3.1 Phase 1: Group Tables
	3.2 Phase 2: Sampling

	4 Hierarchical Small Group Sampling
	4.1 Phase 1: Histogram Calculation
	4.2 Phase 2: Key Sets and Assignment Sets
	4.3 Phase 3: Sampling

	5 Evaluation
	6 Summary
	References

	ADP1DCA.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Rainer Gemulla, Henrike Berthold, Wolfgang Lehner

