191 research outputs found

    Donsker theorems for diffusions: Necessary and sufficient conditions

    Get PDF
    We consider the empirical process G_t of a one-dimensional diffusion with finite speed measure, indexed by a collection of functions F. By the central limit theorem for diffusions, the finite-dimensional distributions of G_t converge weakly to those of a zero-mean Gaussian random process G. We prove that the weak convergence G_t\Rightarrow G takes place in \ell^{\infty}(F) if and only if the limit G exists as a tight, Borel measurable map. The proof relies on majorizing measure techniques for continuous martingales. Applications include the weak convergence of the local time density estimator and the empirical distribution function on the full state space.Comment: Published at http://dx.doi.org/10.1214/009117905000000152 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Effective dynamics using conditional expectations

    Full text link
    The question of coarse-graining is ubiquitous in molecular dynamics. In this article, we are interested in deriving effective properties for the dynamics of a coarse-grained variable ξ(x)\xi(x), where xx describes the configuration of the system in a high-dimensional space Rn\R^n, and ξ\xi is a smooth function with value in R\R (typically a reaction coordinate). It is well known that, given a Boltzmann-Gibbs distribution on x∈Rnx \in \R^n, the equilibrium properties on ξ(x)\xi(x) are completely determined by the free energy. On the other hand, the question of the effective dynamics on ξ(x)\xi(x) is much more difficult to address. Starting from an overdamped Langevin equation on x∈Rnx \in \R^n, we propose an effective dynamics for ξ(x)∈R\xi(x) \in \R using conditional expectations. Using entropy methods, we give sufficient conditions for the time marginals of the effective dynamics to be close to the original ones. We check numerically on some toy examples that these sufficient conditions yield an effective dynamics which accurately reproduces the residence times in the potential energy wells. We also discuss the accuracy of the effective dynamics in a pathwise sense, and the relevance of the free energy to build a coarse-grained dynamics

    Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces

    Full text link
    Nonlinear non-Gaussian state-space models arise in numerous applications in statistics and signal processing. In this context, one of the most successful and popular approximation techniques is the Sequential Monte Carlo (SMC) algorithm, also known as particle filtering. Nevertheless, this method tends to be inefficient when applied to high dimensional problems. In this paper, we focus on another class of sequential inference methods, namely the Sequential Markov Chain Monte Carlo (SMCMC) techniques, which represent a promising alternative to SMC methods. After providing a unifying framework for the class of SMCMC approaches, we propose novel efficient strategies based on the principle of Langevin diffusion and Hamiltonian dynamics in order to cope with the increasing number of high-dimensional applications. Simulation results show that the proposed algorithms achieve significantly better performance compared to existing algorithms

    Quantifying Uncertainty with a Derivative Tracking SDE Model and Application to Wind Power Forecast Data

    Full text link
    We develop a data-driven methodology based on parametric It\^{o}'s Stochastic Differential Equations (SDEs) to capture the real asymmetric dynamics of forecast errors. Our SDE framework features time-derivative tracking of the forecast, time-varying mean-reversion parameter, and an improved state-dependent diffusion term. Proofs of the existence, strong uniqueness, and boundedness of the SDE solutions are shown under a principled condition for the time-varying mean-reversion parameter. Inference based on approximate likelihood, constructed through the moment-matching technique both in the original forecast error space and in the Lamperti space, is performed through numerical optimization procedures. We propose another contribution based on the fixed-point likelihood optimization approach in the Lamperti space. All the procedures are agnostic of the forecasting technology, and they enable comparisons between different forecast providers. We apply our SDE framework to model historical Uruguayan normalized wind power production and forecast data between April and December 2019. Sharp empirical confidence bands of future wind power production are obtained for the best-selected model.Comment: 28 pages and 11 figure

    MCMC methods for functions modifying old algorithms to make\ud them faster

    Get PDF
    Many problems arising in applications result in the need\ud to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the unknown function. We describe an approach to modifying a whole range of MCMC methods which ensures that their speed of convergence is robust under mesh refinement. In the applications of interest the data is often sparse and the prior specification is an essential part of the overall modeling strategy. The algorithmic approach that we describe is applicable whenever the desired probability measure has density with respect to a Gaussian process or Gaussian random field prior, and to some useful non-Gaussian priors constructed through random truncation. Applications are shown in density estimation, data assimilation in fluid mechanics, subsurface geophysics and image registration. The key design principle is to formulate the MCMC method for functions. This leads to algorithms which can be implemented via minor modification of existing algorithms, yet which show enormous speed-up on a wide range of applied problems

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Data assimilation in slow-fast systems using homogenized climate models

    Full text link
    A deterministic multiscale toy model is studied in which a chaotic fast subsystem triggers rare transitions between slow regimes, akin to weather or climate regimes. Using homogenization techniques, a reduced stochastic parametrization model is derived for the slow dynamics. The reliability of this reduced climate model in reproducing the statistics of the slow dynamics of the full deterministic model for finite values of the time scale separation is numerically established. The statistics however is sensitive to uncertainties in the parameters of the stochastic model. It is investigated whether the stochastic climate model can be beneficial as a forecast model in an ensemble data assimilation setting, in particular in the realistic setting when observations are only available for the slow variables. The main result is that reduced stochastic models can indeed improve the analysis skill, when used as forecast models instead of the perfect full deterministic model. The stochastic climate model is far superior at detecting transitions between regimes. The observation intervals for which skill improvement can be obtained are related to the characteristic time scales involved. The reason why stochastic climate models are capable of producing superior skill in an ensemble setting is due to the finite ensemble size; ensembles obtained from the perfect deterministic forecast model lacks sufficient spread even for moderate ensemble sizes. Stochastic climate models provide a natural way to provide sufficient ensemble spread to detect transitions between regimes. This is corroborated with numerical simulations. The conclusion is that stochastic parametrizations are attractive for data assimilation despite their sensitivity to uncertainties in the parameters.Comment: Accepted for publication in Journal of the Atmospheric Science
    • …
    corecore