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DONSKER THEOREMS FOR DIFFUSIONS: NECESSARY
AND SUFFICIENT CONDITIONS

BY AAD VAN DER VAART AND HARRY VAN ZANTEN
Vrije Universiteit

We consider the empirical proce§s of a one-dimensional diffusion
with finite speed measure, indexed by a collection of functifhsBy the
central limit theorem for diffusions, the finite-dimensional distributions of
G; converge weakly to those of a zero-mean Gaussian random pr8cess
We prove that the weak convergen@e = G takes place it® () if and
only if the limit G exists as a tight, Borel measurable map. The proof relies
on majorizing measure techniques for continuous martingales. Applications

include the weak convergence of the local time density estimator and the
empirical distribution function on the full state space.

1. Introduction and main results. Let X be a diffusion process on an open
interval I = (I,r) C R, that is, a strong Markov process with continuous sample
paths, taking values ifi. Denote the corresponding laws B¥, :x € I'} so that
Xo = x under B. Assume as usual th& is regular on/, meaning that for all
x,y €I it holds that R(ry, < oo) > 0, wherer, = inf{r: X, = y}. Under this
condition, the scale function and the speed measure of the diffusionX are
well defined. The scale function is a continuous, strictly increasing function from
onto R, which implies in particular that the diffusion is recurrent. The speed
measure is a Borel measure that gives positive mass to every open intefval in
(cf. 9, 11, 24, 25]).

We will assume throughout that the speed measuras finite, that is,
m(I) < oo. We denote the normalized speed measurecly m/m(I), and the
distribution function corresponding o by F. The finiteness afi implies that the
processX is in fact positive recurrent, and is the unique invariant probability
measure. Hence, by the ergodic theorem, it a.s. holds that

%fotﬂxu)dwflfdu

for f € L(w). Itis well known that under the stated conditions, the diffusion also
obeys a central limit theorem. It states that for every function L1(11) we have
the weak convergence

(1.1) ﬁ(% fot F(X,) du —/Ifdu) — N(O,T(f, )
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ast — oo, provided that the asymptotic variance

r(f ) =am) | ( [ roman - re [ f(y)u(dy)>2dS(X)

is finite (see, e.g., [17]). Using the Cramér—Wold device, it is easy to obtain the
multidimensional extension of this result. For every finite number of functions
fi, ..., fa € LY(w), we have

1 pt
;/0 fl(Xu)dM—/IfldM
N .

%/O fd<Xu)éu—/Ifddu

0 I'(f1, A - T fa)
: Nd E ’ E T . E ’
0 C(fa, f1) -+ T(fa, fa)
where the asymptotic covariancEsf;, f;) are defined by

w2 L'(f. 8) =4m(1)f1(/lx Fudy) - F(x)/lf(y)'u(dy))

x ( [ eoman - Feo [ g(y)u(dy)) ds(x),

and the varianceB( f;, f;) are assumed to be finite.

In this paper we investigate the infinite-dimensional extension of the central
limit theorem for diffusions. We let the functiofiin (1.1) vary in an infinite class
of functions £, and derive necessary and sufficient conditions under which the
weak convergence takes place uniformly®nMore precisely, lefF < L(u) be
a class of functions and define for each 0 the random mafs; on by

(1.3) thzﬁ(%/(th(Xu>du—/[fdu).

The mapG, is called the empirical process indexed®yIf sup;c & [ | f|d i < oo,

the random mafis; is a (not necessarily measurable) random map in the space
£°°(F) of uniformly bounded functiong: # — R, equipped with the uniform
norm |Izllec = SUPses I2(f)I [see (1.6)]. We say that the clags is a Donsker
classif the random map$s;, converge weakly i (¥) to a tight, Borel measur-
able random elemerdt of £°(F).

Since weak convergence if*°(F) to a tight Borel measurable limit is
equivalent to finite-dimensional convergence and asymptotic tightness (see [1, 6],
or, e.g., [29], Theorem 1.5.4), the multidimensional central limit theorem implies
that the limitG must be a zero-mean, Gaussian random process indexé&d by



1424 A. VAN DER VAART AND H. vaN ZANTEN

with covariance function € fGg = I'(f, g). Hence¥ can be Donsker only if
there exists a version of the Gaussian prodedbat is a tight Borel measurable
map into £>°(¥). By general results on Gaussian processes this is equivalent
to existence of a version d& whose sample paths are uniformly bounded and
uniformly continuous or¥ relative to the natural pseudo-metig thatG induces

n ¥, given by

d2(f,g) =EGf —Gg)>.

(In other words, the clas$ is a GC-set in the appropriate Hilbert space, in the
sense of Dudley [5] or [6]. Also cf. [8], or Example 1.5.10 of [29].) Surprisingly,
the existence of the limit process is also sufficient#oto be Donsker. In contrast
with the situation for i.i.d. random elements no additional (entropy) conditions that
limit the size of the clas§ are required.

It also turns out that the processé&s themselves possess bounded and
dg-continuous sample paths as well, whence the weak convergence actually takes
place in the spac€,(F,dg) of bounded,dg-continuous functions orF (cf.
Theorem 1.3.10 in [29]).

THEOREM 1.1. Suppose that # isbounded in L1(1). Then # is Donsker if
and only if the centered, Gaussian random map G on ¥ with covariance function
EG fGg given by (1.2) admits a bounded and d-uniformly continuous version. In
that case, for every x € I,

G 25G  inCy(F.dg)ast — oo.

In fact, we can prove a more general result. Sikds a regular diffusion, it has
continuous local time&l, (x) :t > 0, x € I) with respect to the speed measure
For every integrable functiogi the occupation times formula says that

t
(1.4) /0 F(Xu) du = fl FOLxm(dx).

This means that we can write the empirical process as

Gif =i [ f(x)( lh(x) — %)m(dx)

There is no special reason to look only at integrals of this specific type. With the
same effort we can consider general integrals of the form

vi [ ( x) — <1>>”dx)

wherea is an arbitrary signed measure dywith finite total variation||A||. In this
manner, we obtain a uniform central limit theorem for general additive functionals.
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So letA be a collection of signed measures bnNVe define the random maps
H, on A by

H,x = ﬁ/l(%zt(x) — %))\(dx).

Slightly abusing terminology, we calll, the empirical process indexed by the
class A. By the multidimensional central limit theorem, the finite-dimensional
distributions ofH; converge weakly to those of a Gaussian, zero-mean random
mapH on A with covariance function

4
(1.5) EHAHY = oy /1 (AL, x] = F)AD)) (v, x] = F(x)v(D)) ds(x).

As before, the Gaussian random mé&p induces a natural pseudo-metric
d%(x, v) = E(HA — Hv)? on the class\.

If the total variations of the signed measures are uniformly bounded, that is,
sup.ca lIAll < oo, then, for every fixed,

SUpPJIA|l < oo a.s.

1
(1.6) sup|HtA| </tsup l,(x) -
t rEA

xel (I)
HenceH, is arandom map into the spa€® (A), and we can ask whether the weak
convergence dfl; to H takes place if* (A), with a tight, Borel measurable limit
process. If this is the case, we call the collectiora Donsker class. Again, the
existence of the limiting process, which is obviously necessary, is also sufficient.
As before, by general results on Gaussian processes the existence can be translated
into the existence of a version of the Gaussian proéks$lkat has bounded and
dg-uniformly continuous sample paths.

THEOREM 1.2. Suppose that sup ., [|A]| < oo. Then A is Donsker if and
only if the centered, Gaussian random map H on A with covariance function (1.5)
admits a bounded and dy-uniformly continuous version. In that case, for every
xel,

H, 25 H  inCy(A, dig) a5t — oo.

Theorem 1.1 is indeed a special case of Theorem 1.2, §ipfe= H; A , where
Afr(dx) = f(x)m(dx).

The theory of majorizing measures provides necessary and sufficient conditions
for the existence of bounded amf-uniformly continuous Gaussian processes
on A in terms of the geometry of the pseudo-metric sp@cefy). See [7, 27], and
Chapters 11 and 12 of [16]. We shall use this theory to prove our main theorem.
Conversely, we can use it to deduce the following analytic characterization of the
Donsker property.

If (Y,d) is a pseudo-metric space, we denoteByyy, ¢) the closed ball around
y of d-radiuse.
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COROLLARY 1.3. Suppose that sup c, [IA]| < co. Then A is Donsker if and
only if there exists a Borel probability measure v on (A, dyg) such that

| =0
'mfﬁff \/ v(BdHa %

ProOF Combine Theorem 1.2 with Theorems 11.18 and 12.9 of [16].

In general, the majorizing measure condition is less stringent than the metric
entropy condition introduced by Dudley [5]. However, the latter is often easier to
work with in concrete cases. Therefore, it is useful to give a sufficient entropy
condition for A to be Donsker. If(Y, d) is a pseudo-metric space, we denote by
N (e, Y,d) the minimal number of closed balls afradiuse that is needed to
coverY.

COROLLARY 1.4. Suppose that supc, 1Al < co. Then the class A is
Donsker if

o
/ V9I0gN (e, A, dy) de < 0.
0

In view of definition (1.5) the covering numb@t(e, A, d) is the L2(s)-cove-
ring number of the class of functions

x> A, x]— F(x)A(]), reEA.

These functions are of uniformly bounded variation and hence the full class,
with the elements ofA of uniformly bounded variation, possesses a finite
L?(Q)-entropy integral for any finite measuge (See, e.g., [29], Theorem 2.7.5.)
Unfortunately, this observation is useless in the present situation, as under our
conditions the measure defined by the scale functios unbounded. Under
appropriate bounds on the tails of the envelope function of the class, it is still
possible to exploit the fact that the functions are of bounded variation by a
partitioning argument, as in Corollary 2.7.4 of [29]. Alternatively, for spegial

we can use the preceding corollary in combination with VC-theory. However, the
best results are obtained through direct application of Theorem 1.2, as this allows
to exploit the fine properties of Gaussian processes. We illustrate this in Section 2
by several examples of interest.

The Donsker theorem is based on approximation by a continuous local
martingale and an analysis of local time. In Section 3 we present a uniform
central limit theorem for continuous local martingales under a majorizing measure
condition. This extends a result by Nishiyama [22], and is of interest on its
own. In Section 4 we recall the necessary results on local time. Following these
preparations the final section gives the proofs of the main results.
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Let us remark that because of the use of local time, our approach is limited to the
one-dimensional case. In higher dimensions one has to resort to different methods,
using for instance the generator of the diffusion to relate the empirical process to
a family of local martingales. This approach was followed (for general stationary,
ergodic Markov processes) by Bhattacharya [3] to obtain a functional central limit

theorem for
1 pnt
ﬁ/o (f(XL»du - fdu>,

where f is one fixed function; > 0 andn — oo. Itis not clear, however, whether
necessary and sufficient conditions can be obtained in this way.

The notationa < b is used to denote that < Cb for a constantC that is
universal, or at least fixed in the proof.

2. Examples. In this section we consider four special cases of Theorem 1.2.

2.1. Diffusionlocal time. The first example is a uniform central limit theorem
for diffusion local time. The space of continuous functions on a compadt SeR,
endowed with the supremum norm, is denoted1gy).

THEOREM?2.1. Supposethat [; F2(1— F)?ds < oo. Then, for all x € I and
compact J C I,

(- ) 2o

in C(J), where G is a zero-mean Gaussian random map with covariance function
4
EG(x)G :—/11 = F)(1g, ) — F)ds.
OG0 = 1( o — F) Ay, — F)ds

PROOF We apply Corollary 1.4 withA = {5, :x € J}, where g, is the
Dirac measure concentratedxatThe integrability of the functio2(1 — F)? is
equivalent to the finiteness of the covariance function of the [iniTo verify the
entropy condition, observe that the pseudo-mefribat is induced by on A is
given byd(éx, 8,) = /Is(x) — s(y)|. It follows that the spaceéA, d) is isometric
to (s(J),+/]-]). Sinces(J) is compact, this implies that the entropy condition
of Corollary 1.4 is satisfied. Hence, we have weak convergendéiy), and
therefore also it (J), since diffusion local time is continuous in the space variable
(see Section 4).

We remark that the weak convergence of the normalized local time process,
as in the preceding theorem, cannot be extended to uniformity on the entire state
spacd . By the continuous mapping theorem, uniform weak convergente {i)
would imply weak convergence of the sup-norm to a finite limit. But since the
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functionx — I;(x) vanishes outside the range@f; : 0 < s < t), which is strictly
within I a.s., we have a.s.

1 1 Ji
V(G i)z i

which would lead to a contradiction.

On the other hand, we can construct a version of the limit proGesgth
continuous (but not necessarily bounded) sample paths on the entire state space.
Then the procesg/t(l;/t — 1/m(I)) indexed byl converges td5 relative to the
topology of uniform convergence on compacta. [To construct a versiGhwith
continuous sample paths dnfirst construct an arbitrary versidn indexed by a
countable dense subsgtc 7. In view of the entropy bound obtained in the proof
of Theorem 2.1 the modulus of continuity $Yp;n¢: s—s<s |G(s) — G(7)| of the
restriction of this process to a given compdoat / converges to zero in mean as
8 | 0. Thus up to a null set the proceGsis uniformly continuous on bounded
subsets of its (countable, dense) index set. We can extend it by continuity to the
whole state spacg]

For later reference we note that, given the integrability of the function
F2(1— F)?, there exist positive constants, c» such that, for alk € 1,

(2.1) c1(14 s (0)]) < EG?(x) < ca(1+ Is(x)]).

Because the functionis unbounded, this too shows that there is no versid@ of
with bounded sample paths.

2.2. Empirical process indexed by functions. In this section we give a
sufficient condition for the weak convergence of the empirical process (1.3)
indexed by a general clags of functions. This covers many concrete examples.
However, for special classes of functions, such as indicators in the line, the result
can be improved, as illustrated in the next sections.

Let (1+ 4/[s]) dF denote the measure with density+ /]s|) relative toF.

THEOREM 2.2. Suppose that [; F2(1 — F)?ds < oo. Then every class of
functions # € L1((1+ /s ) d F) that satisfies the entropy condition

/OOO ViogN (e, 7, L1+ /ls]) dF)) de < o

is Donsker.

PrROOF In view of the occupation times formul&, f = /1 [, f(l/t —
1/m(I))dm. Therefore, a version of the limit proced$ must be given by
Hf = [ fGdm, for G the limit process of the diffusion local time process
obtained in Theorem 2.1. Becaugéf|(1 + /|s|) dm < oo by assumption and
EIG| < 1+ /Js| by (2.1), this process is indeed well defined. It is easily shown
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that this proces8l is a mean-zero process with the correct covariance structure,
whence it suffices to check that it possesses a version with bounded and uniformly
continuous sample paths.

Now

2 2
E(Hf —Hg)?> = =(E|Hf — Hg|)* < (/ | f —g|Ede) )
T

In view of (2.1) the intrinsic metridy ( f, g) is bounded above by a multiple of the
LY((1+ /Ts]) dm)-norm of f — g. Hence the existence of the appropriate version
of H follows from [5]. O

EXAMPLE 2.3. As a particular example, we may take any VC-claswith
an envelope functiofi such that

/IIF(x)(1+ V]s(x)])dm(x) < oo.

Then the covering numbe¥ (¢ OF, ¥, L1(Q)) is bounded byC(1/¢)Y for V + 1

the VC-index of the clas§ and C a constant depending ovi only, and any

o -finite measure) such thatQF < co. (See, e.g., Theorem 2.6.7 in [29], where

it is clear from the proof that the result extends daefinite measures).) In
particular, the entropy condition of the preceding theorem is satisfied, and hence
F is Donsker.

EXAMPLE 2.4. Another example is given by the collection of all monotone
functions f: I — [0, 1]. Because this has a finite entropy integral for any finite
measure, this class is Donskerfjf/[s[|dF < oco.

ExaAMPLE 2.5. A third example is given by the collection of all functions
1 —[0,1] with | f(x) — f(»)] < |x — y|* for somea > 1/2 in the case that
I is compact. This class has entropy relative to the uniform norm bounded above
by a multiple of(1/¢)Y/* and hence satisfies the entropy condition of the preceding
theorem iff; J/[s[dF < oo.

Using the approach of Corollary 2.7.4 of [29], this can be extended to
unbounded state spage= R under the condition that for some< 2/3

o0

Z(/j<|x|sj+1(1 * M)dﬂx))p =

j=1

Analogy with the case of empirical processes for independent observations
suggests that the class will remain Donsker if this holdsfer 2/3, but we have
not investigated this.
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2.3. Local time density estimator. Suppose that the invariant probability
measure: has a locally bounded densifywith respect to a measureon /. Then
it follows from the occupation times formula (1.4) that the empirical meagure
defined by

1 t
p(B) =" /0 15(Xa) du,

has the (random) density

oy = DL

with respect ta. In the statistical literature this densify is often called the local
time estimator off; see, for example, [4]. b is the Lebesgue measure én
and f is continuous, thery; is simply the derivative of the empirical distribution
function.

Kutoyants [14] and Negri [19] studied the statistical properties of the local
time estimator for regular diffusions dd that are generated by certain stochastic
differential equations. In particular, for the special class of diffusions he consid-
ered, Kutoyants [14] showed that the normalized differeyicef; — f) converges
weakly to a Gaussian limit, uniformly on the whole state spack this section
we complement and generalize their results, giving precise conditions for general
regular diffusions.

The finite-dimensional distributions qfz( f; — f) converge weakly to those of
the centered, Gaussian random nivith covariance function

EH(x)H(y) = 4m(I) f (x) £ () /, (Lpery = F)(Lpy.ry — F)ds,

provided that these covariances are finite. The following theorem gives necessary
and sufficient conditions under which this finite-dimensional convergence can be
extended to uniform convergence, on compacta or on the full state $pReeall

that we assume throughout th&is bounded on compact subsets/ of

THEOREM 2.6. (i) We have V1 (f; — f) é H in £°°(J) for every compact
JCIlandxelifandonlyif [, F?(1— F)?ds < .

(i) Wehave 1 (f; — f) L Hin £2°(1) for every x € I if and only if H admits
aversion such that H(x) — O almost surelyasx |l or x 1 r.

PROOF Because/t(f; — f) = f+/t(;/t — 1/m(I)), a version of the limit
processH of \/t(f; — f) can be defined al = fG, for G the limit process of
the local time process appearing in Theorem 2.1. In the following we use a version
H = fG obtained from a version @& with continuous sample paths on the entire
state spacé.
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Foranyx e 1,
EH?(x) = 4m(I) f?(x) (f F?ds + 1- F)st).
(,x] (x,r)
Therefore, the conditior), F?(1 — F)2ds < oo is equivalent to the finiteness
of EH?(x) for somex with f(x) > 0 (and then for alk € ), whence the condition
is certainly necessary.

(i) Since f is locally bounded, the maff°(J) — £°°(J) defined byz — fz
is continuous for the uniform norm. Becausés a tight Borel measurable element
in £%°(J), sois the procesd = fG. Thus the assertion follows from Theorem 2.1.

(i) From (2.1) it follows that BI?(x) = f2(x)EG?(x) is bounded orf only if
the functionf2s is bounded. Becauséx) — oo asx approaches the boundary
of I, it follows that in this casg (x) — 0 at the boundary of.

Because the sample paths> I, (x) of local time vanish fox near the boundary
of the state space and f(x) — 0 asx tends to this boundary, the sample paths
of the process/t(f; — f) tend to zero at the endpoints &f If /1(f; — f)
converges to a tight limiH in £°°(7), then the sample paths &f must tend to
zero at the boundary points also, as can be seen, for instance, from an almost sure
construction. Thus the condition in (ii) is necessary.

To prove sufficiency, it suffices to show that there exists a versioH ttat
is a tight, Borel measurable map inéé°(I). Let J,, be an increasing sequence
of compact intervals withv,, + 7, and letH,,, = fG1,, be the process indexed
by I with sample paths equal t¢G on J, and equal to zero outsidé,,.
Because the restriction otz to J, is a tight, Borel measurable map into
C(J) C £°(J,,) andH,, is the image of this restriction under the continuous
map z — fz1,, from £°°(J,) to £°°(I), the procesdH,, is a tight, Borel
measurable map int6> (7). The processl = fG as constructed in the first part
of the proof is separable, because it posseggesniformly continuous sample
paths on every (Euclidean) compact intervat 7, which is dyg-totally bounded
by tightness ofH. This implies that this version of the limit process satisfies
Sup.¢,, IH(x)| — 0 almost surely, as — oo, as does the version @i in the
statement of (ii). Consequently,

Sup|H,, (x) — H(x)| < sup [H(x)| — O,
xel x¢Jm
almost surely. We conclude that the proc#kss the almost sure limit i€ (1)
of a sequence of tight, Borel measurable maps At¢7). This implies thatH is
itself also a tight, Borel measurable map idf8(7), in view of the lemma below.
]

The following lemma gives an easily verifiable sufficient condition for the
convergence of/t(f; — f) on the entire state space, which is necessary under
a mild regularity condition.
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COROLLARY 2.7. Suppose that [, F?(1 — F)?ds < oo. Then if the function
£2(x)|s(x)|loglog|s(x)| = 0 asx — [ or x — r, the convergence
Px
Vilfi = f)=>H
takes placein £°°(1) for every x € I. If thefunction f2s ismonotone near / and r,
then these conditions are also necessary.

PrROOF We first prove sufficiency. Lef be the limit process in Theorem 2.1,
H = fG and letW be a two-sided Brownian motion, emanating from zero.
By the preceding theorem, it suffices to show that the sample patid of
converge to zero at the boundary points/ofObserve that B (x) — G(y))? =
(4/m(I1)EW(s(x)) — W(s(y)))? for all x,y € I. Moreover, by (2.1), we have
EG?(x) < EW?(s(x)) for x such thatjs(x)| is bounded away from 0. It follows
that fory > x € I close enough te,

E(HI(x) — H(y))?
—E(f")G(x) — fFOMG())?
< (f() = FO)’EGA) + fAMEGK) — G(»)?
S (f@) = FOINZEWZ(s(x) + f2(0)E(W(s(x) — W(s(y))?
= () — fO))’EWZ(s(0)) + fANEW(s () — W(s(y))?
—2f(f () = FO)EW(s()W((5 (1) — W(s(x))
= E(f()W(s(x) — FOMWs (),

by the independence of the Brownian increments. If we defiige) = 0 and
fr)W(s(r)) = 0, then the process&s and fW o s are continuous irL.? at r,
ass(x) f2(x) — 0 asx 1 r by assumption. Consequently, under this extension
of the index set the inequality in the display remains validfoy € [xo, ], for
sufficiently largexop. It follows that

E sup|H(x)| <E sup (H(x)—H(y))

X=x0 X0=X,y=r
<2E sup H(x) <2E sup (f(x)W(s(x))),
X0=x=r XQ=X=r

by Slepian’s lemma. By the law of the iterated logarithm for Brownian motion
and the condition ory, we have thatf (x)W(s(x)) — 0 almost surely as 1 r.
Therefore, the median of the variables sup_, | f (x)W(s(x))| converges to zero

asxg 1 r. As a consequence of Borell’s inequality the mean of a supremum of a
separable Gaussian process is bounded above by a multiple of the median and
hence the right-hand side of the preceding display converges to zero. We conclude
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that the sequence sup, |H(x)| converges to zero in mean, and by monotonicity
also almost surely, for — r. Similar reasoning applies far— 1.

Now assume thaf?(x)s(x) | 0 asx 1 r. Then f is also decreasing near
Furthermore, foy > x,

4
E(G(y) - Gx))G(x) = “aD / Lix,y) (L) — F)ds <O.
We conclude that, fop > x sufficiently close to-,
E(H(y) — H(X))Z =E(f(0)G(x) - f(y)G(y))2
> FODZE(G() — G))*+ (f () — £(x))°EGA(x)

> F2(s(y) — s(x)).

Let x,, be such that(x,) = ¢". Thens(x,) — s(xm) > s(x,) (L — e 1) for n > m,
whence for sufficiently large: andn > m,

E(H(x,) — Hxn))® 2 £2(0n)s(xn) =: a2,

and hencely (xg, x;) 2 az, for all n < k,l < 2n. So the pointsc,, x,41, ..., X2,
areay,-separated, and Sudakov’s inequality implies that

E sup |H(xg)| 2 az,v10gn 2 az,+/log 2n.
n<k<2n
If H(x) — O almost surely as 1 r, then the left-hand side tends to zero, and we
conclude that:?logn — 0 asn — oco. Together with the monotonicity of2s this
implies the necessity of the right tail condition. The condition on the left tail can
be seen to be necessary in the same way,.

LEMMA 2.8. Let X,,, X :Q — D be maps from a complete probability space
(2, &, P) into a complete metric space D. If X,, isBorel measurable and tight for
every n, and d(X,, X) — 0 in outer probability, then X is Borel measurable and
tight.

PrRoOOF The mapX is Borel measurable, because the convergence in outer
probability implies the existence of a subsequence that converges almost surely.
The pointwise limit of a sequence of Borel measurable maps into a metric space is
itself Borel measurable.

If P*(d(X,, X) > 8) — 0 for every$ > 0, then there exists a sequerize| 0
such that Pd(X,, X) > §,) — 0. Hence given some > 0 we can find a
subsequence; < np < --- such that F’(d(an,X) > Oy;) < €27/ for every
j € N. By the tightness of(,, for a fixedn, we can find a compact séf, with
P(X, ¢ K,) <e27".

The setC = (N, Ky, "/ where K® = {x:d(x,K) < 8}, is totally bounded. If
this were not the case there would he- 0 and a sequencgx,,} C C with
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d(xm, x,) > n for everym # m’. Fix j such that 4,, <n. There existdy,} C
Ky, with d (X, ym) < Sn; for every m, and by compactness d{’,,j this has
a converging subsequence. The tail of the sequapcevould be in a ball of
radius 3,; around the limit, which contradicts the constructior{.gf}. ThusC is
totally bounded, and hence its closure is compact.

If X, € K,, for everyn and d(Xn;, X) < 0, for every j, thenX € C. We

concludethatBX ¢ C) <2¢. O

2.4. Empirical distribution function. Let J be an arbitrary subset df. The
empirical proces$s; indexed by the class of functiors = {1 :x € J} is the
restriction of /1(F; — F) to J, whereF; is the empirical distribution function,
defined by

1 t
=7 /O L0 (Xa) du.

Kutoyants [13], Negri [18] and Kutoyants and Negri [15] studied this object for a
certain class of stochastic differential equations. In particular, Negri [18] proved
that for these particular modelgs (F; — F) converges weakly to a Gaussian limit,
uniformly on the entire state space. We extend their results to general regular
diffusions and obtain necessary and sufficient conditions in terms of the scale
function and stationary distribution.

In our general setting, it follows from the classical central limit theorem that
the finite-dimensional distributions af7(F; — F) converge weakly to those of a
centered, Gaussian random nidpvith covariance function

EH(x)H(y) = 4m (1) /I(F(u Ax)—Fw)Fx)(Funy) — Fu)F(y))dsu).

For uniform weak convergence we can give a necessary and sufficient integrability
condition, analogous to the preceding result for the local time estimator.
By the occupation times formula (1.4)

Fix)— F(x)= /(1 ](l,/t —1/m(I))dm.
,X

This suggests that a version of the limit procEsis given by the procesE(x) =

Ji* Gdm for G the limit process of the diffusion local time process obtained in

Theorem 2.1. In the proof of the following theorem it is seen that this integral is

indeed well defined, in ah?-sense, and gives a versionlf

THEOREM2.9. (i)We have \/1(F, — F) é H in ¢°°(J) for every compact
JCIlandsomex e[ ifandonlyif [, F2(1— F)?ds < oo.

(i) We have /1 (F; — F) % Hin £°°(I) for somex e I if and only if H admits
aversion such that H(x) — O almost surelyasx | I or x 1 r.
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PROOFE For anyx € I, we have
EH?(x) = 4m(1)<(l - F(x))Z/lx F2ds + F?(x) fr(l - F)st>.

Therefore, the integrability of the functiaR?(1 — F)? relative tos is equivalent
to the existence of the covariance process of the limit protksk is clearly
necessary for both (i) and (ii).

If x, is such thats(x,) = ¢", then the integrability and monotonicity of
(1 — F)? nearr imply that 3, (1 — F)2(x,)(s(x,) — s(x,_1)) < co. Because
s(xn)/s(xn—1) = e, this implies tha{l — F)?(x,)s(x,) — 0. Again by monotonic-
ity of F we obtain tha{(l — F)?(x)s(x) — 0 asx 4 r. Similarly F2(x)s(x) — 0
asx | [.

The proces$s of Theorem 2.1 possesses continuous sample paths and hence
is integrable on compacts C 1. By straightforward calculations we see that, for
a<binl,

@E(/; GdF)z

b rb
= [ [ [ Qi = F@) (A0 - Fa) ds@ dFeodF )
(2.2) ¢

= (F(b) — F(a))2</a F2ds + /br(l— F)st)

+/ F(1— F(b)) — (1— F)F(a))*ds

The last integral on the right-hand side is bounded above by-F (b))2(|s(b)| +
C) + 2F?%(a)(|s(a)| + C) for a constantC [depending onf F?(1 — F)?ds].
Combined with the result of the preceding paragraph and the assumed integrability
of the function F2(1 — F)? it follows that [ Gdm — 0 in L? asa — [ and
b — r. Similarly, the same is true if both — [ andb — [, whence the integral
H() = f/’Ga’m is well defined in thel2-sense. It can be checked that it gives a
version of the limit procesHl.

() It suffices to prove that there exists a version of the limit prodéssith
sample paths that are bounded afigruniformly continuous on the compact
J c 1. In view of the preceding we have that

2 2
E(H(a)—H(b))2=;(E|H(a) H(b)|)? (/ E|G|dF)

2 2
5( sup E|G<u>|> (F(b) — F(a)

a<u<b

< L+ Is@)] Vv Is®)|)(F () — F())?,



1436 A. VAN DER VAART AND H. vaN ZANTEN

by (2.1). It follows that for every given compagtc I there exists a constant
such thatdy (x, y) < C|F(x) — F(y)| for all x,y € J. SinceF maps/J into the
compact intervalO, 1], this implies that(J, dg) has finite entropy integral and
henceH admits a version with bounded and uniformly continuous sample paths
on J. [We can also apply Corollary 1.4 to see directly tRat(F;, — F) = H in
£°(J) if J is compact.]

(i) Because the sample paths of the procesgesF; — F) tend to zero at
the boundary points af, this must be true also for the limit proceldis Therefore,
the existence of a version with this property is certainly necessary. We can
argue the sufficiency in exactly the same manner as in the proof of Theorem 2.6.

O

The following corollary gives a simple sufficient condition for the sample paths
of H to vanish at the boundary d@f as required in (ii) of the preceding theorem.

COROLLARY 2.10. Supposethat [; F2(1— F)?ds < oo. If (1— F)?(x)s(x) x
loglogs(x) — 0asx 1 r and F2(x)s(x)loglog|s(x)| — Oasx | , then the con-
vergence

Vi(F, — F) 25 1

takes place in £°°(I), for every x € I. If the functions (1 — F)2s and F2s are
monotone near » and I, respectively, then these conditions are necessary.

ProoF It suffices to show that the sample paths of the proEetsnd to zero
at the boundary points df.

Choose the sequenog such thats(x,) = e". Thens(x,)/s(x,—1) = e and
hence, form < n, with b2 = (1 — F)?(x,)s (x,),

xn n n n—1
/ 1-F?ds <Y A= F)>?@)st) = Y b2 Y b
*m k=m

k=m k=m

From (2.2) it can be seen that a multiple of the right-hand side of this equation is a
bound on EH(x,) — H(x,,))2.
By the bounds given in the preceding proof, #0b € [x;—_1, x,],

E(H(a) — H(b))* < (F(b) — F(@))?s(xy) =: €(a. b).

In particular, forx € [x,_1, x,] we have that BH(x) — H(x,))? < b2 ;. It also
follows that
bn—l

—

N(e, [xn—1, xnl, en) < N( JF(xp—1), F(x)], |- |> S

&
s (xn)
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Therefore, by Talagrand [28], for al > 0 and sufficiently large: and some
constantC,

(2.3) P( sup  (H(x) — H(xp)) > A) < e~ CHEIbE g
Xp—1=X=Xp

If b,zllogn — 0, then the series obtained by summing the right-hand side
over n is convergent for anyx > 0. In view of the definitions ofb, and
x, this is the case under the condition of the corollary. This implies that
limsup,_, o SUR,, ;<x<y, (H(x) — H(x,)) < 0 almost surely, ag — oco. By a
similar argument on the other tail we see that,sup., ., [H(x) — H(x,)| — 0
almost surely.

Given a sequence of independent zero-mean Gaussian random variables
X1, X2, ... with varX; = b2, let W, = ¥, X;. Because)_; b? < oo, the series
W, converges inL? and hence also almost surely, by the 1t6—Nisio theorem.
Thus the variable®,, form a well-defined Gaussian process a¥ig— 0 almost
surely asi — co. As noted in the preceding we have thatiFx,) — H(x,))2 <
Zz;i b,f = E(W,, — W,,)? for everyn, m € N. This inequality remains true for
m,n € NU {oco} if we setH(xo) = Woo = 0. Therefore, by Slepian’s lemma,

EsupH(xx)| <E sup (H(xx) —H(x;)) < 2E sugH(xx) < E supWy.
k>n oco>k,I>n k>n k>n

Because the sequence sup|Wx| converges to zero in probability as— oo, its
sequence of medians converges to zero. In view of Borell's inequality the same
is then true for the sequence of means. Combined with the preceding display this
shows that sugp.,, |H(xx)| converges to zero in probability, and heri€éx,) — 0
almost surely.

By combining the results of the two preceding paragraphs we see that
SUps,, IH(x)| — O almost surely. A similar argument applies to the limitif
at the left boundary of . This concludes the proof of sufficiency of the condition
for the Donsker property.

If the function(1 — F)2s is decreasing near, then 1— F(x,) < e™~/2(1 —
F(x;)) for n > m large enough and hendé(x,) — F(x,;) > (1 — F(x,))(1 —
e~1/2). From (2.2) it follows that, for > m and sufficiently largen,

E(H(x,) — H(xp))? > (F(xtn) — F(xm))? /1 " F2ds > (1= F(tn)25Com).

Arguing as in the proof of Corollary 2.7 this yields the necessity of the right tail
condition. The condition on the left tail can be seen to be necessary in the same
way. U

Because the set of indicator functions of cells in the real line is a VC-class, we
can deduce the assertion of the preceding corollary also from Theorem 2.2 under
the condition

/\/Ma’m<oo.
I
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For distribution functionsF and scale functions with regular tail behavior this
condition appears to be generally stronger than the condition of the preceding
corollary. For instance, if(x) = x and 1— F(x) = x~Y2(logx)~® for largex,

then the right tail of the integral in the preceding display is finite i 1, whereas

(1 — F)?(x)s(x)loglogs(x) — 0 asx — oo for any« > 0. More generally, we

have the following relationships between the conditions, where we state the results
for the right tails only.

LEMMA 2.11. Supposethat [, /[s]dm < oo. Then:

() [, F2(1— F)?ds < oo.
(i) (1—F)%(x)s(x) > Oasx 1r.
(iiiy 1f (1 — F)?(x)s(x) } Oasx 1 r,then (1~ F)?dslogs(x) — O.
(iv) If [2°(1— F)2dsloglogs(x) — 0,then (1 — F)?(x)s(x) loglogs(x) — O.

PROOFE By Markov’s inequality we obtain, witlX, a stationary diffusion, for
x such that (x) > 0,

1- F(x)=P(/s(X;) > s(x)) < %/xrﬁw.

In particular, the functionl — F)./s tends to zero at the right endpoint 6f
proving (ii). Then partial integration gives that, fag such that (xg) =0,
(2.4) rde L 1(1 F)d
. s == — (- S.
X0 2 X0 ﬁ

We conclude that finiteness of the two integrals in the display is equivalent.

(i) BecauseF?(1—F)? < (1—F)/4/s we obtain thayly F2(1— F)?ds < oc.
Convergence of this integral at the left endpoint a§ proved similarly.

(iii)y Define x, by s(x,) = €". Integrability of the function(1 — F)/./s at the
right end of I implies thaty", (1 — F)(x,)e"/? < co. Because the sequente—
F)(xp)e"/? is decreasing by assumption, it follows thdt— F)(x,)e"/2n — 0.
(Indeed, if Y a, < oo and a, is decreasing, themo > >} > o1, ok ay >
> 2 Lan-1, so that Bay — 0 ask — oo. It follows that suge-1, o na, <
21451 — 0, sona, — 0.) Hence,

> (A= F)?(xn)s(xn) < (L= F)(xn0)e™? Y (1= F)(xp)e"? = 0(1/no),
n=no n>ng
asng — oo. This implies that log (x,,) fxrno(l — F)2ds — 0.
(iv) With x, as before, we havél — F)2(xy0)s (Xng) < X pzno (1 — F)?(xn) X
s(x,), which is bounded above by a multipleﬁiy‘loﬂ(l — F)%ds. O
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On the other hand, it is not true in general that the condiﬁpo/mdm < 00
is stronger than the condition of Corollary 2.10 and hence the latter condition is
not necessary in general. This is also clear from the proof, which is based on the
assumption that the right-hand side of (2.3) yields a convergent series. Without
some regularity on the sequer*bf;a this does not reduce to the simple condition
as stated.

ExamMpPLE 2.12. Define a sequengg by logloglogloglogs (x,) = n (where
we use the logarithm at base 2), and define

1
/s(xn)+/Toglogloglogs (x,)’
Then [, /Is[dm < oo, but (1 — F)?(x,) s(x,) = (logloglog logs (x,)) L.

Because this distribution functiaof possesses flat parts, it cannot appear as the
stationary distribution of a regular diffusion. However, by moving a tiny fraction of

the total mass, we can construct a distribution with full support without destroying
the preceding properties.

1-Fx)=

Xn_1 <X <Xp.

3. Continuous martingales and majorizing measures. Let (2, F, {F},P)
be a filtered probability space. On this stochastic basis, suppose that we have a
collection M = {M?: 6 € ®} of continuous local martingale®® = (MY :t > 0),
indexed by a countable pseudo-metric sp@®ed). The quadratic d-modulus of
continuity || M |4 of the collectionM is the stochastic process defined by

(M% — MV),
IMlla;=  sup ——————
0.0 :do,y)>0 d@,¥)
Here (N) denotes the quadratic variation process of the continuous local
martingaleN .

The quadratic modulus was introduced explicitly by Nishiyama [21, 22] and
appeared already implicitly in the papers Bae and Levental [2] and Nishiyama [20].
The relevance of the quadratic modulus stems from the fact that for every time
t > 0 and every constank > 0, the random map +— M1 my, <k} iS Sub-
Gaussian with respect to the pseudo-mekfi¢. Indeed, the Bernstein inequality
for continuous local martingales (see, e.g., [26]) implies that

P(M{ Ly, <) — MY Lgaay, <k)] = x)
<P(M{ = M| = x, M4 < K)
<P(M{ — M| = x (M° —M"), < K%d%@6.v))
< 20~ W/21x?/(K2d20.9))

For random maps whose increments are controlled in this manner, the theory of
majorizing measures gives sharp bounds for the modulus of continuity. As before,
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we denote by (, ®, d) the minimal number of balls ef-radiusy that are needed
to cover®. The symbol< between two expressions means that the left-hand side
is less than a universal positive constant times the right-hand side.

LEmMmA 3.1. Forall §,x,n>0,K >1,every Borel probability measure v on
(®, d), and every bounded stopping time t,

P(sup sup MY — M| = x: [Mlla.r < K)
=T d(0,¢)<é8

K n 1
<= log ——— V
She (sgp/o Iogv(Bd(e’g)) de +36 N(n,®,d)>.

PrROOF We may of course assume that the right-hand side of the inequality
in the statement of the lemma is finite. Introduce the stopping tipe=
inf{r:|M|l4: > K}, so that the probability in the statement of the lemma is
bounded by Bsup._, X? > x), where

(3.1) x0= sup M, — M,
d@,¢¥)<sé
By Bernstein’s exponential inequality for continuous martingales we have for all
a > 0 and every finite stopping time
P(M? . — MY | > a)

TK NO

=P(|M’ ., — MY | > a; (M = M¥)yno < K2d%0, )

TKNO

< 2~ 1/2a?/(K2d%(0.9)

Hence, the random mapr— MfKM is sub-Gaussian with respect to the pseudo-

metric Kd. By formula (11.15) on page 317 of [16] this implies that forsaly > 0

1
2 EX5<K( " log— " de+ 5N ©.d) )
(3.2) o S S;Jp/(; og (B2 0.2) de +3vN(n,0,d)

where B; (&, ¢) is the ball around with d-radiuse. In particular, we see that
EX? < oo for everyt > 0. Also, for any pair@, y) and for every finite stopping
time o, by the Davis—Gundy inequality,

2
EM ., — MY )2 <EM® — M¥)ypo < K220, ).

TKNO
Thus, the coIIection{MfKM — M}l;(m ;o is a finite stopping time is bounded
in L2 and therefore uniformly integrable. This implies that the stopped local

martingaIerKM — MT‘/;(M is of class (D), which means that it is in fact a uniformly

integrable martingale (see, e.g., pages 11-12 of [10]). It is then easy to see that
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the processt® defined by (3.1) is a submartingale. Hence, by the submartingale
inequality, Rsup-, X} > x) < EX?/x. In combination with (3.2) this yields the
statement of the lemma.’

With the help of this lemma we can prove results concerning the regularity
and asymptotic tightness of collections of continuous local martingales under
majorizing measure conditions. The key condition is the existence of a pseudo-
metricd on ® for which the modulus is finite or bounded in probability and for
which there exists a probability measursuch that the integral on the right-hand
side in the preceding lemma is continuous at zero. The latter is the continuous
majorizing measure condition:

n 1
3.3 Iimsu/ log————de =0.
(3:3) 0 s o V09 v(Ba@, e “°

The first theorem deals with regularity of a given collection of local martingdles

THEOREM3.2. Suppose there exists a Borel probability measure v on (©, d)
such that (3.3) holds for a pseudo-metric d on ® for which |M|;.; < oo almost
surely. Then the random map 6 > MY is almost surely bounded and uniformly
d-continuous on .

PROOF ByLemma 3.1, there exists for everye N a positive numbes,, such
that for everyk, x > 0,

K
P( sup |Mf—M;”|zx;||M||d,sz)s -
d(0.9) <8, 4'x

For everyn, define the event

_ Y I

Ay=1{ sup |M]—M}|>_—1.
d(0.)<by 2

Then for everyK > 0 we have} P(A,; M|l < K) S K> 27" < oco. So by

the Borel-Cantelli lemma, [, infinitely oftery | M| ;. < K) =0. Since||M|| 4.~

is almost surely finite by assumption, it follows that

P(A,, infinitely often) = P(A,, infinitely often; || M |4, < oo)

< > _P(A, infinitely often; |M||4 . < K) = 0.
K

So we almost surely have that $yp,,_s, MY — M;”| < 27" for all n large
enough, which implies that the random m@p- M¢ is uniformly continuous.
Recall that under the majorizing measure condition, the pseudo-metric space
(©, d) is totally bounded (see, e.g., the proof of Lemma A.2.19 of [29]). It follows
thatd — M? is bounded with probability 1.
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Suppose now that for eache N, we have a collectiod” = {M"?:0 € ®)}
of continuous local martingales and a finite stopping tigpeon a stochastic
basis(Q", F", (¥}, P"). For eachm the local martingalea/™? are indexed by
a parametef belonging to a fixed pseudo-metric spa@eRecall that a sequence
X, of £°(®)-valued random elements is callagymptotically d-equicontinuous
in probability if for all ¢, n > 0 there exists & > 0 such that

lim supP( sup |X,(0)— X,(¥)| > 8) <n.
n—00 d©,y)=<é

Weak convergence id*(®) to a tight limit is equivalent to finite-dimensional

convergence and equicontinuity with respect to a semimétsiech that®, d) is

totally bounded (see, e.qg., [29], Theorem 1.5.7). For the random mapsM;’n’@,

finite-dimensional weak convergence will typically follow from a classical

martingale central limit theorem (cf. [10]). Using Lemma 3.1, it is straightforward

to give sufficient conditions for asymptotic equicontinuity in terms of the quadratic

modulus and majorizing measures. The next theorem extends Theorem 3.2.4

of [22], which gives sufficient conditions for asymptotic equicontinuity in terms

of metric entropy.

THEOREM3.3. Suppose there exists a Borel probability measure v on (®, d)
such that (3.3) holds for a pseudo-metric d on ® for which |M"| 4., = Op(1).
Then (©, d) is totally bounded and the sequence of random maps 6 M?f’ in
£°°(®) is asymptotically d-equicontinuous in probability.

PrOOF The total boundedness @B, d) is a direct consequence of the
existence of a majorizing measure. See, for example, the proof of Lemma A.2.19
of [29].

Let the random magX, on © be defined byX,(0) = Mﬁn"’. Then for every
K=>0

P( SUp [Xn(0) — Xu(y)] > e)

d©.y)<s

<P(SUP 1X,(0) = X, ()] = &3 1M o, < K )+ (M s, > K).
d©,y)=<s
Now if n > 0 is given, we can first choosg large enough to ensure that
limsupR|M" |4, > K) < n/2. Lemma 3.1 implies that for this fixefl, we
can choose & > 0 such that the first term on the right-hand side is less th@n
O

The preceding theorems do not use the full power of Lemma 3.1, because they
use the control ire of the local martingales — Mf’e, but not the control in
the time parameter. In the following theorem we use the lemma to establish a
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majorizing measure condition for the asymptotic tightneség[0, 7] x ®) of
random maps of the forrt, 6) — M,"’Q, for fixed T € (0, c0).

We make the same assumptions as in the preceding theorem, and in addition
assume that for every fixetle ©® the sequence of process(e\s!["g 0<r<T)
is asymptotically equicontinuous in probability relative to the Euclidean metric
on [0, T]. By the martingale central limit theorem, this is certainly true if
the sequence of quadratic variation processe$-?) converges pointwise in
probability to a continuous function (which is then the quadratic variation process
of the Gaussian limit process).

THEOREM3.4. Supposethere exists a Borel probability measure v on (©, d)
such that (3.3) holds for a pseudo-metric 4 on ® for which | M"| 4., = Op (D).
Furthermore, assume that, for every fixed 6 € ®, the sequence of processes
(Mt"’@ :0 <t < T) isasymptotically equicontinuous in probability relative to the
Euclidean metric. Then the sequence of random maps M" is asymptotically tight
in the space £°°([0, T'] x ®).

PROOF By the majorizing measure condition (3.3) the $etis totally
bounded unded. If 04, ..., 0,, is ad-net over® ands, ¢ € [0, T'], then for alli

M2 — M0 < M2 — M 42 sup (M — M.
0<t<T

Hence

sup  sup M —mY|
|s—tl<y d(0,¥)=<6

< sup sup (IMM0— MmO Mt — M)
ls—t]<y d(O.9)<8

<max sup |M™% — M™% +3 sup sup M — MV
L |s—t|<y 0<t<T d(,¢¥)<s
Fix e,n > 0. Extending the argument in the proof of Theorem 3.3, we can show
that there exist8 > 0 such that

(3.4) lim supP( sup sup MM — MMV > s) <.
n— 00 0<t<T d(@,¢¥)<é

For thiss = (e, n) there exists a finité-netéy, ..., 6,, over® (wherem depends

on ). By the assumption of asymptotic equicontinuity of the processesM,”’g,

there existy =y (n,m, 01, ..., 6,) such that

IimsupP( sup |Ms”’9i — Mt”’e"l > s) < E, i=1...,m.
m

n—oo IS—I\<J/
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Combining the preceding displays we see that

m
IimsupP( sup  sup MM — MMV~ 48) <> T <o
n—00 ls—t|<y d(0,¥)<é i m

Thus for the given paiKe, n) we have found a paity, §) of positive numbers
such that this holds. Because the probability on the left-hand side is increasing in
y andg, the bound remains true if we replageor § by the smaller of the two.
This implies that the sequence of proces&gsis asymptotically equicontinuous
in probability relative to the product of the Euclidean metric[Gn7'] and the
pseudo-metrie on ®, and hence it is asymptotically tight ([29], Theorem 1.5.7).

O

In the preceding theorem we can also use an arbitrary pseudo-metric for which
the interval [0, T] is totally bounded (and this could be permitted to depend
on 0), rather than the Euclidean metric. However, because the local martingales
t—> M,"’Q are continuous relative to the Euclidean metric by assumption, this
apparent generalization would not make the theorem more general: the necessary
continuity of the limit pointsz — MY would imply that the equicontinuity
necessarily also holds relative to the Euclidean pseudo-metric. For simplicity of
the statement we have used the Euclidean metric throughout.

4. A limit theorem for diffusion local time. In this section we collect some
classical and some less well-known facts about diffusion local time. We shall need
these in the proof of Theorem 1.2. As in the Introduction,Xebe the regular
diffusion on the open intervdl. A central result in the theory of one-dimensional
diffusions is that diffusions in natural scale are in fact time-changed Brownian
motions; see, for instance, [25] or [11]. In our setting, we have that under P
it holds thats(X;) = W,, whereW is a Brownian motion that starts k{x), and
7, is the right-continuous inverse of the procesdefined by

A= /I LY (s(y)m(dy).

Here LY = (L) (y):t > 0,y € R) is the local time ofW. It follows from this
relation that the local timg (y) of X with respect to the speed measursatisfies
lLi(y) = LZ’(S(y))-

This time-change representation of diffusion local time shows that with
probability 1, the random functiom — [;(y) can be chosen continuous and has
compact support. In particular, it holds thigh|lcc = sup,¢; /:(y) < oo almost
surely. In [30] it is shown that in fact|l;||.oc = Op(t) ast — oo. For the sake
of easy reference, we include a proof of this fact. We need the following lemma.
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LEmMmA 4.1. For every x € I we have, for Z standard normally distributed
and r — oo,
T P, 1

- = 55
12 m2(1)Z?

PROOF The processA defined above is a continuous additive functional
of W, and sincen is finite, it is integrable. By Proposition (2.2) in Chapter XIII
of [24], it follows that

1
(4.1) N Lo m(n)LE(0),

whereL? is the local time of a Brownian motioR that starts in 0. The process
7 is the right-continuous inverse df, so for everyt, T > 0 it holds thatr; < T if
and only if Ay > ¢. By (4.1), it follows that, for every > 0,

Tt 1 1
Px (t_z < Z) = PX(AIZZ > t) = Px (ﬁAtzz > ﬁ)

=Py (020> %)

S
— \nm2@Bop2 =)

To complete the proof we use the well-known fact t('laf(O))2 has axlz—distribu—
tion (see [12], Theorem 3.6.17 and Problem 2.8.2).

THEOREM4.2. For every x € I wehave ||/;]|c = Op, (1) 8St — 00.

PROOF  Let us writea, = 11|/, ||oo. We have to prove that, is asymptoti-
cally tight forr — co. By the time-change relation, we have for@allb > 0

1 w
Py (0ot > a) =Py (ZS:J(E)) ;Lz2(r,/z2) (z) > a>

1 w Tt
<P gm0 >e) + 2 (3> 0).
By the scaling property of Brownian local time (see Exercise (2.11) in Chapter VI
of [24] and note thaW is a Brownian motion starting at(x)) it holds under R

that

sup }Lfgu(z) 2 sup Lf(z _:(X)> =supLj (z),

zeR,u<b zeR,u<b zeR
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whereL? is the local time of a standard Brownian motiBr(starting in 0). So we
find that for alla, b > 0

(4.2) P.(a; > a) <P, (supL;f(z) > a) P, (:—; > b>.

zeR
The proof is finished upon noting that— Lf(z) is bounded (because continuous
with compact support), almost surely and:2 is asymptotically tight. [

5. Proof of Theorem 1.2.

5.1. Reduction to the natural scale case. Let us first show that it suffices to
prove the theorem for diffusion¥ that are in natural scale (i.e., for which the
identity function is a scale function). The diffusidh= s(X) is in natural scale
(see, e.g., Theorem V.46.12 of [25]), and we have the relations

m:mYos, ltzltyos, F=FYos,
between the local timé!, speed measure:’ and stationary distributiorF’Y
of Y, and the local timég, speed measura and stationary distributio# of X.
Moreover,

EHY (% o s HHY (v 0 s™1) = EHAHV.

It follows that the classA is Donsker forX if and only if the classA o st =
{ros~1:1 € A} is Donsker forY. So if we have proved the theorem for diffusions
in natural scale, we can apply it to the diffusiBn= s(X) and the clasa o s~ 1 to
prove it for a diffusionX that is not in natural scale.

In the remainder of the proof we therefore assume #has in natural scale.
The proces« is then an ergodic diffusion in natural scale on the open intdrval
Therefore, we must have= R (see, e.g., Theorem 20.15 of [11]). Moreover, the
fact that the state space is open implies tias a local martingale (cf., e.g., [25],
Corollary V.46.15). We also note that for diffusions in natural scale on an open
interval, the diffusion local timé (x) with respect to the speed measure coincides
with the semimartingale local time &f (see [25], Section V.49).

5.2. Asymptotic eguivalence with uniform weak convergence of continuous
local martingales. In this section we show that the weak convergence of the
empirical procesdH, is equivalent to the weak convergence of a normalized
£°(A)-valued continuous local martingale. Sinde is now in natural scale,
we havel = R. For everyx € R, define the functionsr, and IT, on R by
Ty = 2(1[x,oo) — F)and

y
M (y) = /y 1 () du,
0
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where yg is an arbitrary, but fixed point ifR. The functionr, is the difference
of two increasing functions, and hende, is the difference of two convex
functions. Moreover, we have the relatia(b) — 7. (a) = v(a, b] for all a < b,
wherev is the signed measune= 2(5, — 1) on R, and$, denotes the Dirac
measure concentrated at So by the generalized Itd formula (see, e.g., [24],
Theorem VI.1.5, or [25], 45.1)

t
M, (X,) — T, (Xo) = fo 7o (X)) d X, + L fR L ()v(dy).

It follows from the definition ofv and the occupation times formula (1.4) that

L / L ()v(dy) = 1, (x) — / LORy) =l (x) — ——1,
2 R t t R t t (I)

so that, undergD

T — = 00 - @) [ (X dx
- - — ——| 7 .
t m(R) p t x(Z o x(Ay u
If we integrate this identity with respect tadx) and use the stochastic Fubini
theorem (see [23], Theorem 1V.45), we see that the empirical prdéesan be
decomposed as

1
(5.1) H;A =R, ,(A) — —=M}

Vi

under R, whereM” is the continuous local martingale defined by
t
(5.2) M}= 2/ h(X,)dX, — with by (x) = A, x] — F(x)Aa),
0

andR;,(A) =t~Y/2 [ (M, (X,) — M, (z))*(dx). The next step is to show that the
R ;-term vanishes uniformly ii, so that we only have to deal with the martingale
part of H,. The functionsr, are bounded in absolute value by 2, so we have the
pointwise inequalityIT,| < IT for everyx, whereIl is a function that does not
depend onx. It follows that

1
I, (X I, < —(IT(X I1 .
sup tl (X1) — My (2)] ﬁ( (X)) +1(2))
Consequently, we have

SUP|R:, ()] = SUDIIKII—(H(Xz) + 11(2)).
rEA «[

The right-hand side converges to 0 in probability, since the laW,afonverges in
total variation distance to the stationary measui@s: — oo, whatever the initial
law (see, e.g., [25], Section 54.5).
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5.3. Continuity of the empirical process. In this section we prove that the
empirical process igy-continuous. Observe that we halier = [; ¢; (x)A(dx),
with

1 1
¢[(X) = ﬁ(;lt(x) — W)

Since the random functian— I; (x) is almost surely continuous and has compact
support, the random functiog, is bounded and continuous with probability 1.
Note also that by the occupation times formula (1¢4)satisfies

1 rt
/1¢r(X)m(dx):$/o 1du — /t =0.

Hence, thedp-continuity of the empirical process is a consequence of the
following lemma.

LEMMA 5.1. Let ¢ be a continuous function on I with compact support and
¢ =v — [¥du. Thenif A, and A are signed measures with ||A, || bounded and
dg (A, A) — 0, it holds that

/ () (dx) — / 6 ()A(dx)
I 1

asn — oQ.

PrOOF Definewa, = 1,(I) — A(I). Since the total variation of the signed
measures.,, is uniformly bounded by assumption, the sequesgés bounded.
Hence, it has a converging subsequence,osay~> «. Observe that the conver-
gencedy (A, A) — 0 implies that:” has a further subsequeneésuch that

A (1, x] — FO) A (1) — AL, x] — F()A)

for almost every € I [recall thatX is now in natural scale, so thatx) = x]. So
there exists a dense sbtC [ such that for alk € D

A (L x] = Ay (L x] = F(X) Ay (1) + F () A (1)
— A, x] = FAU) + F(x) (@ + A1) = A, x] + a F(x).

Sinceyr is compactly supported and continuous, we can approximate it uniformly
by functionsi,, of the formr,, = 311 14, ;.ap i 01¥ (@im) TOF @m0 < am1 <

.-+ < ay.m finite partitions of the support af. The preceding display shows that
for every fixedm, asn — oo,

/ Y () (d) — f Y (M) + / Y () ().
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By the uniform approximation as — oo, this is then also true foy in the place
of ¥,,,. Consequently,

/ (XA (dx) = / W () hr(dx) — A (1) / vdp
1 1 1
- /1 Y OMdx) + o / Y0 dx) — (@ + (D) / ¥ () (d)

- /1 $()A(dx).

This completes the proof.(]

5.4. End of the proof. We can now finish the proof of Theorem 1.2. That the
existence of a bounded adg-uniformly continuous version of the Gaussian limit
H is necessary forn to be Donsker follows from the general theory of weak
convergence to Gaussian processes.

For the proof of the converse, suppose that such a bounded and uniformly
continuous versiofil exists. By Theorem 12.9 of [16], this implies that there exists
a Borel measure on (A, dy) such that

n 1
53 Iimsu/ log—————de =0.
®3) 101 Jo \/ O B Gen) °

It follows that (A, dry) is totally bounded (see, e.g., the proof of Lemma A.2.19
of [29]), and therefore separable. Hence, since the empirical prddess
dg-continuous, we may assume thais countable.

By the considerations in Section 5.2, it suffices to show that the random maps
H/ defined byH/A = r~Y2M} converge weakly tdd, where M* is the local
martingale given by (5.2). By the ergodic theorem ([9], Section 6.8), we have

1
t

= (MA MYy, f By (X)hy (X,) d(X / Iy ()Y (0l (x) dx

as ey / By (x)hy (x) dx = EHAHY

ast — oo. So by the martingale central limit theorem, the finite-dimensional
distributions ofH; converge weakly to those &. Now pick an arbitrary sequence
a, — oo and apply Theorem 3.3 to the local martingal¢é” defined by

1
Mll’l,)u — M}u

\/a ant’
and the stopping time, equal to 1. Then in view of (5.3), all that remains to be
shown is that| M"||4;,1 = Op(1). Since

1 4 1
M= M), = /R (1) = o)1y, () 5 = [ o @B G-,

dn
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we have

1/an)(M* — M"),
1M1, 0= sup N o

1
< | )
dyg(x,v)>0 d]ﬁ[()\, V) ~ a, H an Hoo

By Theorem 4.2 it holds thdl,, [|oc = Op(ay), so indeed||M" |z, 1= Op(1).
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