33 research outputs found

    Lying about the Valence of Affective Pictures: An fMRI Study

    Get PDF
    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception

    Mood Induction in Depressive Patients: A Comparative Multidimensional Approach

    Get PDF
    Anhedonia, reduced positive affect and enhanced negative affect are integral characteristics of major depressive disorder (MDD). Emotion dysregulation, e.g. in terms of different emotion processing deficits, has consistently been reported. The aim of the present study was to investigate mood changes in depressive patients using a multidimensional approach for the measurement of emotional reactivity to mood induction procedures. Experimentally, mood states can be altered using various mood induction procedures. The present study aimed at validating two different positive mood induction procedures in patients with MDD and investigating which procedure is more effective and applicable in detecting dysfunctions in MDD. The first procedure relied on the presentation of happy vs. neutral faces, while the second used funny vs. neutral cartoons. Emotional reactivity was assessed in 16 depressed and 16 healthy subjects using self-report measures, measurements of electrodermal activity and standardized analyses of facial responses. Positive mood induction was successful in both procedures according to subjective ratings in patients and controls. In the cartoon condition, however, a discrepancy between reduced facial activity and concurrently enhanced autonomous reactivity was found in patients. Relying on a multidimensional assessment technique, a more comprehensive estimate of dysfunctions in emotional reactivity in MDD was available than by self-report measures alone and this was unsheathed especially by the mood induction procedure relying on cartoons. The divergent facial and autonomic responses in the presence of unaffected subjective reactivity suggest an underlying deficit in the patients' ability to express the felt arousal to funny cartoons. Our results encourage the application of both procedures in functional imaging studies for investigating the neural substrates of emotion dysregulation in MDD patients. Mood induction via cartoons appears to be superior to mood induction via faces and autobiographical material in uncovering specific emotional dysfunctions in MDD

    Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening

    Get PDF
    Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI). Faces expressing emotions (sad/happy/neutral) were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV) syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing

    Differential effect of quetiapine and lithium on functional connectivity of the striatum in first episode mania

    Get PDF
    Mood disturbances seen in first-episode mania (FEM) are linked to disturbed functional connectivity of the striatum. Lithium and quetiapine are effective treatments for mania but their neurobiological effects remain largely unknown. We conducted a single-blinded randomized controlled maintenance trial in 61 FEM patients and 30 healthy controls. Patients were stabilized for a minimum of 2 weeks on lithium plus quetiapine then randomly assigned to either lithium (serum level 0.6 mmol/L) or quetiapine (dosed up to 800 mg/day) treatment for 12 months. Resting-state fMRI was acquired at baseline, 3 months (patient only) and 12 months. The effects of treatment group, time and their interaction, on striatal functional connectivity were assessed using voxel-wise general linear modelling. At baseline, FEM patients showed reduced connectivity in the dorsal (p = 0.05) and caudal (p = 0.008) cortico-striatal systems when compared to healthy controls at baseline. FEM patients also showed increased connectivity in a circuit linking the ventral striatum with the medial orbitofrontal cortex, cerebellum and thalamus (p = 0.02). Longitudinally, we found a significant interaction between time and treatment group, such that lithium was more rapid, compared to quetiapine, in normalizing abnormally increased functional connectivity, as assessed at 3-month and 12-month follow-ups. The results suggest that FEM is associated with reduced connectivity in dorsal and caudal corticostriatal systems, as well as increased functional connectivity of ventral striatal systems. Lithium appears to act more rapidly than quetiapine in normalizing hyperconnectivity of the ventral striatum with the cerebellum

    Sex differences in the functional connectivity of the amygdalae in association with cortisol

    Get PDF
    Human amygdalae are involved in various behavioral functions such as affective and stress processing. For these behavioral functions, as well as for psychophysiological arousal including cortisol release, sex differences are reported.Here, we assessed cortisol levels and resting-state functional connectivity (rsFC) of left and right amygdalae in 81 healthy participants (42 women) to investigate potential modulation of amygdala rsFC by sex and cortisol concentration.Our analyses revealed that rsFC of the left amygdala significantly differed between women and men: Women showed stronger rsFC than men between the left amygdala and left middle temporal gyrus, inferior frontal gyrus, postcentral gyrus and hippocampus, regions involved in face processing, inner-speech, fear and pain processing. No stronger connections were detected for men and no sex difference emerged for right amygdala rsFC. Also, an interaction of sex and cortisol appeared: In women, cortisol was negatively associated with rsFC of the amygdalae with striatal regions, mid-orbital frontal gyrus, anterior cingulate gyrus, middle and superior frontal gyri, supplementary motor area and the parietal–occipital sulcus. Contrarily in men, positive associations of cortisol with rsFC of the left amygdala and these structures were observed. Functional decoding analyses revealed an association of the amygdalae and these regions with emotion, reward and memory processing, as well as action execution.Our results suggest that functional connectivity of the amygdalae as well as the regulatory effect of cortisol on brain networks differs between women and men. These sex-differences and the mediating and sex-dependent effect of cortisol on brain communication systems should be taken into account in affective and stress-related neuroimaging research. Thus, more studies including both sexes are required

    Get Aroused and Be Stronger: Emotional Facilitation of Physical Effort in the Human Brain

    Full text link

    Same or different? Neural correlates of happy and sad mood in healthy males

    No full text
    Emotional experience in healthy men has been shown to rely on a brain network including subcortical as well as cortical areas in a complex interaction, which may be substantially influenced by many internal personal and external factors such as individuality, gender, stimulus material and task instructions. The divergent results may be interpreted by taking these considerations into account. Hence, many aspects remain to be clarified in characterizing the neural correlates underlying the subjective experience of emotion. One unresolved question refers to the influence of emotion quality on the cerebral substrates. Hence, 26 male healthy subjects were investigated with functional magnetic resonance imaging during standardized sad and happy mood induction as well as a cognitive control task to explore brain responses differentially involved in positive and negative emotional experience. Sad and happy mood in contrast to the control task produced similarly significant activations in the amygdala-hippocampal area extending into the parahippocampal gyrus as well as in the prefrontal and temporal cortex, the anterior cingulate, and the precuneus. Significant valence differences emerged when comparing both tasks directly. More activation has been demonstrated in the ventrolateral prefrontal cortex (VLPFC), the anterior cingulate cortex (ACC), the transverse temporal gyrus, and the superior temporal gyrus during sadness. Happiness, on the other hand, produced stronger activations in the dorsolateral prefrontal cortex (DLPFC), the cingulate gyrus, the inferior temporal gyrus, and the cerebellum. Hence, negative and positive moods reveal distinct cortical activation foci within a common neural network, probably making the difference between qualitatively different emotional feelings
    corecore