5,202 research outputs found

    Salient object detection employing robust sparse representation and local consistency

    Get PDF
    Many sparse representation (SR) based salient object detection methods have been presented in the past few years. Given a background dictionary, these methods usually detect the saliency by measuring the reconstruction errors, leading to the failure for those images with complex structures. In this paper, we propose to replace the traditional SR model with a robust sparse representation (RSR) model, for salient object detection, which replaces the least squared errors by the sparse errors. Such a change dramatically improves the robustness of the saliency detection in the existence of non-Gaussian noise, which is the case in most practical applications. By virtual of RSR, salient objects can equivalently be viewed as the sparse but strong “outliers” within an image so that the salient object detection problem can be reformulated to a sparsity pursuit one. Moreover, we jointly utilize the representation coefficients and the reconstruction errors to construct the saliency measure in the proposed method. Finally, we integrate a local consistency prior among spatially adjacent regions into the RSR model in order to uniformly highlight the whole salient object. Experimental results demonstrate that the proposed method significantly outperforms the traditional SR based methods and is competitive with some current state-of-the-art methods, especially for those images with complex structures

    Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features

    Full text link
    TThe goal of our work is to discover dominant objects in a very general setting where only a single unlabeled image is given. This is far more challenge than typical co-localization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Location Mining (OLM), which exploits the advantages of data mining and feature representation of pre-trained convolutional neural networks (CNNs). Specifically, we first convert the feature maps from a pre-trained CNN model into a set of transactions, and then discovers frequent patterns from transaction database through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions, typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful patterns. Extensive experiments on a variety of benchmarks demonstrate that OLM achieves competitive localization performance compared with the state-of-the-art methods. We also evaluate our approach compared with unsupervised saliency detection methods and achieves competitive results on seven benchmark datasets. Moreover, we conduct experiments on fine-grained classification to show that our proposed method can locate the entire object and parts accurately, which can benefit to improving the classification results significantly

    Rapid Online Analysis of Local Feature Detectors and Their Complementarity

    Get PDF
    A vision system that can assess its own performance and take appropriate actions online to maximize its effectiveness would be a step towards achieving the long-cherished goal of imitating humans. This paper proposes a method for performing an online performance analysis of local feature detectors, the primary stage of many practical vision systems. It advocates the spatial distribution of local image features as a good performance indicator and presents a metric that can be calculated rapidly, concurs with human visual assessments and is complementary to existing offline measures such as repeatability. The metric is shown to provide a measure of complementarity for combinations of detectors, correctly reflecting the underlying principles of individual detectors. Qualitative results on well-established datasets for several state-of-the-art detectors are presented based on the proposed measure. Using a hypothesis testing approach and a newly-acquired, larger image database, statistically-significant performance differences are identified. Different detector pairs and triplets are examined quantitatively and the results provide a useful guideline for combining detectors in applications that require a reasonable spatial distribution of image features. A principled framework for combining feature detectors in these applications is also presented. Timing results reveal the potential of the metric for online applications. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    A New Computational Framework for Efficient Parallelization and Optimization of Large Scale Graph Matching

    Get PDF
    There are so many applications in data fusion, comparison, and recognition that require a robust and efficient algorithm to match features of multiple images. To improve accuracy and get a more stable result is important to take into consideration both local appearance and the pairwise relationship of features. Graphs are a powerful and flexible data structure, allowing for the description of complex relationships between data elements, whose nodes correspond to salient features and edges correspond to relational aspects between features. Therefore, the problem of graph matching is to find a mapping between the two sets of nodes that preserves the relationships between them as much as possible. This graph-matching problem is mathematically formulated as an IQP problem which solving it is NP-hard, and obtaining exact Optima only plausible for very small data. Therefore, handling large-scale scientific visual data is quite limited, necessitating both efficient serial algorithms, as well as scalable parallel formulations. In this thesis, we first focused on exploring techniques to reduce the computation cost as well as memory usage of Pairwise graph matching by adopting a heuristic pruning strategy together with a redundancy pattern suppression scheme. We also modified the structure of the affinity matrix for minimizing memory requirement and parallelizing our algorithm by employing CPU’s and GPU’s accelerated libraries. Any pair of features with similar distance from first image results in same sub-matrices, therefore instead of constructing the whole affinity matrix, we only built the sub-blocked affinity for those distinct feature distances. By employing this scheme not only saved large memory and reduced computation time tremendously but also, the matrix-vector multiplication of gradient computation performed in parallel, where each block-vector calculation computed independently without synchronization. The accelerated libraries such as MKL, cuSparse, cuBlas and thrust applied to solving the GM problem, following the scheme of the spectral matching algorithm. We also extended our work for Multi-graph imaging, since many tasks require finding correspondences across multiple images. Also, considering more graph improves the matching accuracy. Most algorithms obtain approximate solutions for solving the GM NP-hard problem, result in a weak optimal solution. Therefore, we proposed a new solver, which iteratively modified the affinity matrix and binarized the solution by optimizing the original problem with its integer constraints

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio
    • …
    corecore