1,931 research outputs found

    Automated Design of Salient Object Detection Algorithms with Brain Programming

    Full text link
    Despite recent improvements in computer vision, artificial visual systems' design is still daunting since an explanation of visual computing algorithms remains elusive. Salient object detection is one problem that is still open due to the difficulty of understanding the brain's inner workings. Progress on this research area follows the traditional path of hand-made designs using neuroscience knowledge. In recent years two different approaches based on genetic programming appear to enhance their technique. One follows the idea of combining previous hand-made methods through genetic programming and fuzzy logic. The other approach consists of improving the inner computational structures of basic hand-made models through artificial evolution. This research work proposes expanding the artificial dorsal stream using a recent proposal to solve salient object detection problems. This approach uses the benefits of the two main aspects of this research area: fixation prediction and detection of salient objects. We decided to apply the fusion of visual saliency and image segmentation algorithms as a template. The proposed methodology discovers several critical structures in the template through artificial evolution. We present results on a benchmark designed by experts with outstanding results in comparison with the state-of-the-art.Comment: 35 pages, 5 figure

    Semantic Segmentation Network Stacking with Genetic Programming

    Get PDF
    Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2023). Semantic Segmentation Network Stacking with Genetic Programming. Genetic Programming And Evolvable Machines, 24(2 — Special Issue on Highlights of Genetic Programming 2022 Events), 1-37. [15]. https://doi.org/10.1007/s10710-023-09464-0---Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), AICE (DSAIPA/DS/0113/2019), UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, and by the grant SFRH/BD/137277/2018.Semantic segmentation consists of classifying each pixel of an image and constitutes an essential step towards scene recognition and understanding. Deep convolutional encoder–decoder neural networks now constitute state-of-the-art methods in the field of semantic segmentation. The problem of street scenes’ segmentation for automotive applications constitutes an important application field of such networks and introduces a set of imperative exigencies. Since the models need to be executed on self-driving vehicles to make fast decisions in response to a constantly changing environment, they are not only expected to operate reliably but also to process the input images rapidly. In this paper, we explore genetic programming (GP) as a meta-model that combines four different efficiency-oriented networks for the analysis of urban scenes. Notably, we present and examine two approaches. In the first approach, we represent solutions as GP trees that combine networks’ outputs such that each output class’s prediction is obtained through the same meta-model. In the second approach, we propose representing solutions as lists of GP trees, each designed to provide a unique meta-model for a given target class. The main objective is to develop efficient and accurate combination models that could be easily interpreted, therefore allowing gathering some hints on how to improve the existing networks. The experiments performed on the Cityscapes dataset of urban scene images with semantic pixel-wise annotations confirm the effectiveness of the proposed approach. Specifically, our best-performing models improve systems’ generalization ability by approximately 5% compared to traditional ensembles, 30% for the less performing state-of-the-art CNN and show competitive results with respect to state-of-the-art ensembles. Additionally, they are small in size, allow interpretability, and use fewer features due to GP’s automatic feature selection.publishersversionepub_ahead_of_prin

    Code Prediction by Feeding Trees to Transformers

    Full text link
    We advance the state-of-the-art in the accuracy of code prediction (next token prediction) used in autocomplete systems. First, we report that using the recently proposed Transformer architecture even out-of-the-box outperforms previous neural and non-neural systems for code prediction. We then show that by making the Transformer architecture aware of the syntactic structure of code, we further increase the margin by which a Transformer-based system outperforms previous systems. With this, it outperforms the accuracy of an RNN-based system (similar to Hellendoorn et al. 2018) by 18.3\%, the Deep3 system (Raychev et al 2016) by 14.1\%, and an adaptation of Code2Seq (Alon et al., 2018) for code prediction by 14.4\%. We present in the paper several ways of communicating the code structure to the Transformer, which is fundamentally built for processing sequence data. We provide a comprehensive experimental evaluation of our proposal, along with alternative design choices, on a standard Python dataset, as well as on a Facebook internal Python corpus. Our code and data preparation pipeline will be available in open source

    Attention and Sensor Planning in Autonomous Robotic Visual Search

    Get PDF
    This thesis is concerned with the incorporation of saliency in visual search and the development of sensor planning strategies for visual search. The saliency model is a mixture of two schemes that extracts visual clues regarding the structure of the environment and object specific features. The sensor planning methods, namely Greedy Search with Constraint (GSC), Extended Greedy Search (EGS) and Dynamic Look Ahead Search (DLAS) are approximations to the optimal solution for the problem of object search, as extensions to the work of Yiming Ye. Experiments were conducted to evaluate the proposed methods. They show that by using saliency in search a performance improvement up to 75% is attainable in terms of number of actions taken to complete the search. As for the planning strategies, the GSC algorithm achieved the highest detection rate and the best efficiency in terms of cost it incurs to explore every percentage of an environment

    Accelerated genetic algorithm based on search-space decomposition for change detection in remote sensing images

    Get PDF
    Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem, and can be solved by optimization algorithms. This paper proposes an accelerated genetic algorithm based on search-space decomposition (SD-aGA) for change detection in remote sensing images. Firstly, the BM3D algorithm is used to preprocess the remote sensing image to enhance useful information and suppress noises. The difference image is then obtained using the logarithmic ratio method. Secondly, after saliency detection, fuzzy c-means algorithm is conducted on the salient region detected in the difference image to identify the changed, unchanged and undetermined pixels. Only those undetermined pixels are considered by the optimization algorithm, which reduces the search space significantly. Inspired by the idea of the divide-and-conquer strategy, the difference image is decomposed into sub-blocks with a method similar to down-sampling, where only those undetermined pixels are analyzed and optimized by SD-aGA in parallel. The category labels of the undetermined pixels in each sub-block are optimized according to an improved objective function with neighborhood information. Finally the decision results of the category labels of all the pixels in the sub-blocks are remapped to their original positions in the difference image and then merged globally. Decision fusion is conducted on each pixel based on the decision results in the local neighborhood to produce the final change map. The proposed method is tested on six diverse remote sensing image benchmark datasets and compared against six state-of-the-art methods. Segmentations on the synthetic image and natural image corrupted by different noise are also carried out for comparison. Results demonstrate the excellent performance of the proposed SD-aGA on handling noises and detecting the changed areas accurately. In particular, compared with the traditional genetic algorithm, SD-aGA can obtain a much higher degree of detection accuracy with much less computational time

    Combining Background Subtraction Algorithms with Convolutional Neural Network

    Full text link
    Accurate and fast extraction of foreground object is a key prerequisite for a wide range of computer vision applications such as object tracking and recognition. Thus, enormous background subtraction methods for foreground object detection have been proposed in recent decades. However, it is still regarded as a tough problem due to a variety of challenges such as illumination variations, camera jitter, dynamic backgrounds, shadows, and so on. Currently, there is no single method that can handle all the challenges in a robust way. In this letter, we try to solve this problem from a new perspective by combining different state-of-the-art background subtraction algorithms to create a more robust and more advanced foreground detection algorithm. More specifically, an encoder-decoder fully convolutional neural network architecture is trained to automatically learn how to leverage the characteristics of different algorithms to fuse the results produced by different background subtraction algorithms and output a more precise result. Comprehensive experiments evaluated on the CDnet 2014 dataset demonstrate that the proposed method outperforms all the considered single background subtraction algorithm. And we show that our solution is more efficient than other combination strategies
    • …
    corecore