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Abstract 

 

An examination of saliency and sensor planning strategies in robotic visual search, 

using a practical robot, is presented. This thesis is concerned with the incorporation of 

saliency in visual search and the development of sensor planning strategies for search. 

The saliency model is a mixture of two schemes that extracts visual clues regarding the 

structure of the environment and object specific features. The sensor planning methods, 

namely Greedy Search with Constraint (GSC), Extended Greedy Search (EGS) and 

Dynamic Look Ahead Search (DLAS) are approximations to the optimal solution for 

the problem of object search, as extensions to the previous solutions of Ye and Shubina. 

Experiments were conducted to evaluate the proposed methods and measure their 

performance with respect to variations in the size, configuration and setting of the 

environment. The experiments highlighted that by using saliency computation within 

visual search, a performance improvement up to 75% can be attained in terms of the 

number of actions taken to complete the search. Consequently, the time and energy 

consumption of the system is reduced significantly 

As for the planning strategies, the GSC algorithm achieved the highest detection 

rate for the target object in various situations. It also had the best efficiency in the sense 

that it incurred the least cost to explore every percentage of the search environment.   
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1   Introduction 

 

1.1  Motivation 

The ability to search for an object is a crucial part of any autonomous mobile robot 

whose tasks involve environment manipulation, item detection or social interactions. 

In a typical search environment, the configuration as well as the location of the target 

of interest that we are searching for, may vary. This means, it is not possible to 

memorize each environment setup and the potential target location, especially if the 

number of objects increases. Therefore, a framework is required to direct a robot within 

any unknown environment to search for a known object whose location is not known 

prior to the search. 

While searching for an object within a cluttered environment, acquiring a single 

image of the environment, regardless of what viewpoint, usually does not suffice for 

detecting the target. In such an image, the target might be occluded by other objects or 

be too far distance to be recognized due to poor resolution, or be completely not in the 

image at all. These limitations necessitate a search agent to acquire multiple images 

from the environment and analyze the scene from different viewpoints in order to find 

the object.  

The above discussion points to the need for an object search strategy which 

comprises the following two components: first, viewpoint selection that involves 
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selecting a location, navigating through the environment and configuring the sensory 

apparatus to capture an image, and second, analyzing the image to detect the target 

object. 

Using a brute force approach to examine all possible viewpoints would certainly 

suffice for a solution, but it might not be computationally and mechanically feasible. 

Given the limitation of resources available to a practical robot, it is necessary to design 

a system to minimize the cost of search by an efficient selection of viewpoints while 

maximizing the chance of finding the target.  

Analyzing the sensory information captured throughout the process is also crucial 

in object search. This data can simply be processed by applying a recognition algorithm 

to detect the object of interest or further be evaluated to guide the later stages of the 

search if the target is not found.   

 

1.2  Previous Work 

1.2.1 Object search strategies 

The straightforward approach to object search is to look toward every possible view 

point within an environment. This is achieved by moving a camera to take images of 

parts of the environment that are not previously seen. Of course, such a brute force 

approach would suffice for a solution, but it is both computationally and mechanically 

prohibitive.  
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In an early version of visual search, Garvey [1] put forward the notion of indirect 

search. In this approach, a search domain is limited to those areas that have some form 

of spatial relationship with the object of interest. For instance, if the objective is to find 

a telephone, the locations of interest would be tables or desk surfaces, where there is a 

higher chance that the phone is placed on. Garvey divides the task of object search into 

two phases: first, the goal is to identify an intermediate object spatially related to the 

target, which typically can be detected with a lower resolution and a wider field of view; 

the search is then restricted only to those regions specified by the spatial relationship. 

The idea of indirect search is put into practice by Aydemir et al. [2] in which they 

characterize an object’s presence within an environment in the form of probability 

distributions. These distributions are controlled by a set of predefined spatial 

relationships between the target and intermediate objects. The task of search then is to 

choose an action sequence that maximizes the chance of detecting the target. For 

instance, a policy generated by the algorithm to search for a book looks like this: “Go 

to room 1, search for a small bookcase, search for the book on the bookcase, …”.    

Gobelbecker et al. [3] extend Aydemir et al.’s work by using a more generic 

representation of objects’ relations within the search environment. In this work, the 

belief system of the target’s presence with respect to intermediate objects encompasses 

two forms of knowledge: conceptual knowledge, which relates the category of one 

object to another, e.g. food items are found in kitchens, and instance knowledge, which 
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connects one specific object to another such as the cereal box is in room 2. This 

knowledge is updated after each instance of the search.  

To further minimize a search space, Kunze and Hawes [4] use a more detailed 

description of objects’ relations that they term as Qualitative Spatial Relations (QSRs). 

They categorize objects into groups of static and dynamic objects. Intuitively, the static 

objects are those with relatively fixed location (e.g. a desktop PC or printer) that are 

used as landmarks to locate dynamic objects (such as a keyboard or cup). Then, a 

directional relation is used to specify the configuration of a search region. For example, 

keyboard is “in front of” monitor, “left of” cup.   

Indirect search algorithms, nevertheless, suffer from two common issues. The 

detection of intermediate objects is not necessarily easier than the actual target of 

interest. The search for an intermediate object is only viable if it is easier to be 

recognized or some forms of prior knowledge regarding its location are available to the 

search agent. More importantly, if the spatial relation between objects does not hold, 

indirect search fails to locate the target.  

 

1.2.2 Active search for a 3D object 

It is argued that an active vision approach is best suited for object search [5]. In contrast 

to simply receiving a series of prerecorded images, a search agent should actively 

control its sensory inputs and image acquisition process with respect to the task at hand. 

In the context of search, the target’s presence might be ambiguous from a point of view 
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e.g. due to occlusion by another object. Thus, to reduce occlusion, the sensor can be 

moved to a different position to capture additional images from a different point of view.  

In [6], Wilkes and Tsotsos introduce the concept of active object recognition in 

which a camera is mounted on a robot arm with a mobile base. The mobility of the 

system is used to position the camera at a standard viewpoint in regard to the object of 

interest. From this perspective, recognition takes place matching the target image with 

a two-dimensional pattern learned beforehand by an algorithm.  

Dickinson et al. [7] propose a similar active approach. Given an ambiguous view of 

an object, their algorithm determines whether there is a more discriminating view of an 

object. If this is the case, it changes the direction of the camera to capture that view.  At 

the end, it specifies the visual events such as appearance of object features that are 

encountered while moving the camera to the new viewpoint. 

Alternatively, in [8] the pose of an unknown object is altered with respect to a 

camera using a humanoid robot arm. Each view of the object is characterized by a 

probability distribution indicating how much information that viewpoint contributes to 

recognizing the object. The task of recognition is then defined as selecting a sequence 

of viewpoints that minimizes the entropy of detecting the object.    

1.2.3 Search for an object in 3D environment 

Despite the previously described approaches, in practical applications, the task of 

object search heavily relies on human involvement. Search and rescue operations in 
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hazardous environments are examples of such applications in which the process of 

search is either fully controlled by a human operator [9] or autonomy is minimally 

involved for undertaking trivial tasks such as sensor adjustments or motion control [10, 

11]. The exploration applications are no exception. In the well-known NASA robot, 

Curiosity, only the task of navigation is performed autonomously by the rover [12]. 

In [13], Fukazawa et al. define object search as the process of generating the 

shortest path that covers an entire environment. This path is followed by the robot to 

search for the target object. To create an exploration path, the environment is divided 

into a grid of potential locations. The distance between locations is based on the sensing 

area of the camera used in the search. A path then is produced to pass through the center 

of each cell in the shortest path.    

Tovar et al. [14] employ a dynamic tree structure to model an unknown 

environment. Constructed by laser sensors, this visibility tree corresponds to a 

connected planar environment specifying an optimal path. 

 A multiple target search approach is introduced by Lau et al. [15] in which a robot 

searches for objects within a known environment. They divide the search space into 

distinct regions and use an adjacency matrix to portray the connections between them. 

The prior knowledge of the environment changes with the size of the environment or 

the number of the objects. Taking into considerations the cost associated with each 
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action, here, the task is to determine a sequence of operations to find the targets while 

minimizing the expected time of the search.  

In the context of assistive robotics, Mehdi and Berns [16] use a probabilistic 

approach to characterize household environments to search for the elderly.  An 

environment is divided into sub-regions each holding the probability distribution of the 

target’s presence, defined in the form of a-priori knowledge. During the search process, 

the probability values are adjusted with respect to the cost of moving to each location 

from the current positon of the robot.  Simulation results are presented to show the 

performance of the system using a Harr cascade classifier to detect the human subjects.  

Ye [17] tackles the problem of object search in unknown environments. He 

describes the problem of search as maximizing the probability of detecting an object 

within a predefined cost constraint. In his work, only the exterior boundaries of the 

search place are known in advance and no assumption is made regarding the internal 

setting of the environment. He uses a uniform probability distribution defined on an 

occupancy grid to characterize the search environment corresponding to the likelihood 

of the target’s presence at each location. The task of search is then to select the 

viewpoints that maximize the probability of detecting the target while minimizing the 

cost. After each unsuccessful detection of the target, the probability of regions observed 

by the robot are appropriately adjusted. Ye demonstrates the performance of this model 

using a mobile robot equipped with laser range finders and a monocular camera. 
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Shubina and Tsotsos [18] show an implementation of the above algorithm on a 

practical robot only using a stereo camera. At each point of the search, a pan-tilt unit is 

used to set the direction of the camera to a candidate viewpoint capturing an image of 

the environment. The image is analyzed by the application of a recognition algorithm 

to identify the object of interest. If the target is not found, the probability of that 

viewpoint, within the effective field of the recognition algorithm (the 3D spatial region, 

where the recognition algorithm can detect the target), is lowered to zero and 

redistributed to the remaining unseen regions. The robot continues the same process 

until the object is found. 

Saidi et al. [19] improve the probability reallocation in Ye’s search model by 

including the effect of occlusion within an environment. If there exists an obstacle that 

blocks the field of view, the probability distribution of the target’s locations for the 

regions behind the obstacle is lowered as the chance of detecting the target beyond that 

point is smaller. 

In the aforementioned search models, the scope of exploration is limited to the 

ability of a robot to detect the target within its effective field of view (the range within 

which a recognition algorithm is able to detect an object). This can be wasteful in the 

sense that any sensory information acquired from beyond the range of detection is 

discarded as they play no role in identifying the object of interest. 
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1.2.4 Saliency and visual search 

Tsotsos and Shubina [20] argue that the use of attentive mechanisms optimizes the 

search processes inherent in vision. One factor that directs the attention of an agent to 

a particular point in a scenery is its visual saliency. Such visual saliency can be generic, 

corresponding to the areas that stand out with respect to their surroundings due to the 

possession of distinctive features [21]. Saliency also can be task driven meaning that 

the parts of a scene relating to specific features of interest are considered as salient [22].  

In a social robotic application, Butko et al. [23] exploit the use of saliency to 

identify the motions corresponding to those of human subjects. This helps the social 

robot to orient its head toward the faces providing a natural feeling of interactions with 

them. They report that a simple use of saliency doubled the success rate of the camera 

to capture the images of people to 70% up from 35%.    

Orabona et al. [24] use saliency as a means to recognize an object using a humanoid 

robot. They begin by transforming an input image into three separate opponent color 

channels, each in turn is used to identify the edges within the scene. The resulting edge 

maps are combined and quantized to form a conspicuity map of the environment. To 

recognize the object of interest, the saliency results are biased by calculating the 

Euclidean distance in the color opponent space, between the average color of the target 

and the salient locations. They only presented few examples of the algorithm 

performance without any validation in an actual search scenario. 
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In [25], saliency is used for the purpose of navigation and localization for a mobile 

robot in outdoor environments. A series of low level features are extracted from an 

input image consisting of color, intensity and orientation in three separate channels. 

Then, through the application of a cross-scale center surround difference procedure 

[26], salient locations are identified for each channel and combined forming a saliency 

map of the environment. To estimate the position of the robot, SIFT features are 

extracted from the salient locations and matched for consecutive images. In addition, 

the saliency results are compared against a trained database of the object’s instances to 

identify the next destination for the robot to move to.   

Robert et al. [27] propose the use of saliency for the fast detection of trees aiming 

to help an aerial robot to navigate its way through forested environments. A conspicuity 

map is built by estimating optical flow during the robot’s transition and measuring the 

motion parallax. This helps the robot to distinguish the trees from their background 

regions and plan its trajectory.   

1.2.5 Sensor planning strategy for object search 

Ye and Tsotsos [28] comment on the tractability of object search and prove that it 

belongs to NP-hard class of problems. They introduce a greedy approach as an 

approximate solution to the problem. In this method, the search process is divided into 

two stages of “where to look next” and “where to move next”. In the first step, the robot 

searches its surroundings until some threshold is reached indicating that a new location 
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should be searched. In the second step, the robot chooses a new destination that has the 

highest chance of detecting the target, and then, moves there to resume the search. This 

process continues until the object is found.  

In [29], the authors employ a similar heuristic approach. The actions available to 

the search agent at any time are represented by their utilities given by dividing the 

probability values of performing each operation by the time of their applications. The 

algorithm greedily selects one or more actions at a time that yield the highest utilities. 

In practice, the resources available to conduct a search are limited. This can be the 

robot’s battery energy used in the search or the allowable time for conducting the search 

e.g. in search and rescue missions. The scarcity of resources imposes a constraint on 

object search processes. Solely relying on a greedy algorithm does not suffice for a 

solution to optimize a search process with respect to a cost constraint. The greedy 

approaches locally select the next best action with no look ahead and lack a global view 

of the entire process to determine the consequence of executing each action on the 

overall efficiency of search.  

Aydemir et al. [2] use an exhaustive search method to select the sequence of 

policies that yield the lowest cost. The cost of each action depends on the motion of the 

robot to perform that task. The value of each action is defined by a non-uniform 

probability distribution at the start of the search and is updated after each instance of 

search. The authors propose the selection of 3 to 5 actions at a time and assume the 
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intermediate probability values are constant which significantly reduces the complexity 

of selecting the actions.  

In this work, no actual recognition algorithm is presented and detection tasks are 

undertaken using simple Quick Response (QR) codes. Moreover, the authors do not 

specify the criterion for the termination of search and omit to mention the effect of cost 

constraints on the selection of policies.  

Lau et al. [15] use a dynamic programming technique. They define operations that 

search particular locations within the environment, and the cost of each operation is the 

time it takes the robot to move to that location traveling along the shortest path 

available. The algorithm then selects the sequence of actions that yields the highest 

probability value in the shortest time, i.e. it minimizes the overall cost of the search 

regardless of any predefined constraints.  

The authors simplified the task of search in the following ways: the environment is 

fully known and assumed obstacle free, and the probability values of each location are 

considered fixed, which reduces the complexity of the search significantly. In practice, 

there are both static and dynamic obstacles that need to be considered when selecting 

an action to perform. Lau et al. show that the processing time for generating an optimal 

sequence is around 20s for an environment with 14 regions and point out that for larger 

environments the problem is intractable. They also only present simulation results in 

which the environment is fully known.  
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1.3 Contributions 

This thesis contributes two extensions to the work of Shubina [30] and the original 

object search formulation of Ye [17]. In these methods, the ability of a robot to find a 

target is limited to its recognition’s effective field of view. If we identify clues 

regarding the target’s location in ranges above the field of view, we can guide the robot 

to the locations of higher importance and as a consequence improve the process of the 

search. 

     Our first contribution is a novel use of saliency to spot the image regions that likely 

contain the object of interest and use them in the form of indirect search clues without 

the need for any prior knowledge of the environment or spatial relations between the 

objects. For this purpose, we combine two methods of saliency: the AIM algorithm 

[31] that identifies the interest points corresponding to the physical structure within the 

environment and Histogram Backprojection [32], which pinpoints the regions with the 

highest similarity to the target in terms of its RGB color distributions.  

The saliency results generated by AIM generally correspond to those image regions 

with a higher chance of including the object such as tables or shelves that stand out 

within their surroundings. Then, through a top down approach, we distinguish between 

these structures by increasing the importance of the ones that also include similarities 

to the target. With respect to these saliency responses, the probability distributions of 
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the corresponding occupancy grid regions are enhanced, inducing the robot to search 

those areas earlier then otherwise.  

The second contribution of this work is in the area of sensor planning strategies. In 

the original formulation of object search [17], Ye defines the task of search as 

maximizing the probability of detecting the target within a predefined cost constraint. 

However, due to the NP-hardness of the problem and the intractability of its exact 

solutions, Ye uses a greedy approach. In his approach, actions are selected one at a time 

and the overall constraint of the search is not considered. Hence, this question remains 

open: how should a robot select its operations to maximize the chance of detecting an 

object with respect to a predefined cost constraint?     

To address this problem, we propose three sensor planning strategies, namely 

Greedy Search with Constraint (GSC), Extended Greedy Search (EGS), and Dynamic 

Look Ahead Search (DLAS). The first two approaches are similar to Ye’s algorithm, 

with some modifications to take into account the overall cost constraint. The GSC 

algorithm relies on saliency information to select the best action at each point of the 

search. Once a percentage of the search constraint (e.g. time) is reached, it chooses 

actions with the highest chance of detecting the target regardless of their costs.  EGS, 

on the other hand, generates a sequence of search operations blindly at the start of the 

search. To produce a sequence, it greedily selects the next best action within a given 
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cost constrain. The saliency information are taken into considerations only if there is a 

need to regenerate an action sequence during the search.  

The DLAS algorithm uses a dynamic pruning technique to globally optimize the 

search. It performs a multi-step look ahead procedure and selects the arrangement of 

operations that maximizes the chance of detecting the target. The accuracy and 

processing time of DLAS can be changed by setting the maximum number of steps for 

the method to look ahead. 

In order to evaluate the performance of the proposed methods, experiments are 

conducted within actual 3D environments of various sizes and configurations. The 

search agent is implemented on a Pioneer 3, a four-wheeled differential drive mobile 

robot. The source of sensory input is a Point Grey Research Bumblebee 2 stereo 

camera, which is used for estimating disparity in the environment, detecting and 

locating obstacles and to recognize the object of interest. The camera is mounted on a 

Directed Perception pan-tilt unit responsible for changing the gaze of the camera to 

desired directions.  

The experiments are divided into two sets. First experiments are conducted to 

measure how much improvements can be achieved using saliency. To do so, two 

greedy search approaches with and without saliency are conducted in various 

environments with different configurations.  In these experiments the robot and a target 
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are placed in random positions and the performance of each method is measured in 

terms of the number of actions performed and the time it takes to conclude the search. 

The second set of experiments are aimed to compare the performance of proposed 

sensor planning techniques. The algorithms were evaluated using three cost functions 

including, the time of search, battery consumption of the system and the distance 

travelled by the robot.  

  

1.4 Thesis outline 

This thesis comprises six chapters. Chapter 1 discusses our motivation and reviews 

some previous related work. Chapter 2 revisits some of the methodologies and concepts 

proposed in the work of Ye on object search. Chapter 3 introduces the saliency mapping 

technique used in our work and its application to visual search. Chapter 4 describes the 

development of sensor planning strategies. Chapter 5 details the experimental results 

of the proposed work. Chapter 6 summarizes the thesis and recommends some future 

directions.  

  



17 

 

2  Visual Search in an unknown 3D Environment 

 

As mentioned earlier, the starting point of this thesis is on the work of Yiming Ye [17] 

and the later extension by Shubina [30] on sensor planning and object search. As a 

result, in this chapter we briefly review some of the concepts introduced in their works 

with their mathematical formulations as a guide for the remainder of this thesis. Section 

2.1 describes the formulation of object search introduced by Ye. Section 2.2 provides 

a sensor planning strategy to conduct the search.  

 

2.1 Object Search in an Unknown Environment 

2.1.1 Problem Statement 

Assume we want to search a 3D environment Ω with known boundaries without any 

prior knowledge of its internal configuration. The search environment is tessellated 

into non-overlapping cubic elements, 𝑐𝑖, 𝑖 = 1,2, … , 𝑛 forming an occupancy grid. The 

search agent action is defined by 𝒇 = 𝒇(𝑆(𝜏), 𝑎) in Ω, where 𝑆(𝜏) is the camera 

configuration. 𝑆(𝜏) is determined by the camera position (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐), the direction of 

its viewing axis (𝑝𝑎𝑛, 𝑡𝑖𝑙𝑡) in degrees of visual angle with respect to the origin, and 

solid viewing angle (𝑤, ℎ) represent the width and height of the camera’s solid viewing 

angle in radians at time 𝜏, and 𝑎 is the recognition algorithm used to analyze the image. 
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The probability of the center of the target being located in cubic element 𝑐𝑖 at time 

𝜏 is 𝒑(𝑐𝑖, 𝜏). The value within this distribution varies according to our prior knowledge 

of the target’s presence. In the absence of data, when 𝜏 = 0,  a uniform probability 

distribution is considered as default. Similarly, the probability that the target is outside 

of the search environment at time 𝜏 is given by 𝒑(𝑐𝑜𝑢𝑡, 𝜏), and, 

 
𝒑(𝑐𝑜𝑢𝑡, 𝜏) +  ∑ 𝑝(𝑐𝑖, 𝜏)

𝑛

𝑖=0

= 1. 

 

(2.1) 

The function on Ω is a function 𝒃(𝑐𝑖, 𝒇) that gives the conditional probability of 

detecting the target, given that the target is centered at 𝑐𝑖, and 𝒇 is a search operation. 

𝒃(𝑐𝑖, 𝒇) is equal to zero, if any of the following conditions occur: the center of cube 𝑐𝑖 

is outside of the image; the cube is occluded or too far or too near the camera; or the 

recognition algorithm, 𝑎, fails to detect the target. Excluding these conditions, the value 

of 𝒃(𝑐𝑖, 𝒇) is determined based on the ability of the recognition algorithm to detect the 

target with respect to factors such as the object’s orientation and the distance of the 

camera from 𝑐𝑖. 

The probability of detecting the target by applying operation 𝒇 = 𝒇(𝑆(𝜏), 𝑎), given 

𝑆(𝜏) = (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐, 𝑝𝑎𝑛, 𝑡𝑖𝑙𝑡, 𝑤, ℎ), can be calculated by     

 𝑷Ψ𝐟
(𝒇) = ∑ 𝒑(𝑐𝑖, 𝜏𝒇)𝒃(𝑐𝑖, 𝒇) ,

ci∈Ψ𝒇

 (2.2) 
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where 𝜏𝒇 denotes the time just before  𝒇 is applied and Ψ𝒇 is the influence range of 

action 𝒇 corresponding to the cubic elements within the effective field of view of the 

camera, that are not occluded, i.e. regions within which the recognition algorithm can 

detect the target.  

Let 𝑶Ω be the set of all possible operations on region Ω and 𝑭 = {𝒇1, 𝒇2, … , 𝒇𝑘} be 

the ordered set of the operations (effort allocation) applied during the search given 𝒇𝑖 ∈

𝑶Ω . The probability of detecting the target by applying an effort allocation 𝑭 is given 

by 

  𝑃[𝑭] =  𝑃(𝒇1) + [1 − 𝑃(𝒇1)]𝑃(𝒇2) + ⋯

+ {∏[1 −  𝑃(𝒇𝑗)]

𝑘−1

𝑗=1

}  𝑃(𝒇𝑘),

 

(2.3) 

where 𝑃(𝒇1) is the probability that first action detects the target and [1 − 𝑃(𝒇1)]𝑃(𝒇2)  

is the probability that first action fails to detect the target but the second action does, 

and so on.  

The application of each operation incurs a cost, given by the total time or energy 

needed for altering the state of the hardware according to 𝒇, capturing an image of the 

search environment, analyzing it by the recognition algorithm and updating the  

probability distribution values. Ye [17] defines the total cost of effort allocation 𝑭 as 

follows: 
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 𝑇[𝑭] = ∑ 𝒕(𝒇)

𝑓∈𝐹

 (2.4) 

where 𝒕(𝒇) is the cost of operation 𝒇.  

Suppose 𝐾 is the total time (or energy) available to perform the search, then we can 

define the task of search as finding an effort allocation 𝑭 ⊂ 𝑶Ω that can satisfy 𝑇(𝑭) ≤

𝐾while maximizing 𝑃[𝑭]. In this manner, the actions are selected that yield the highest 

utility value (described in details in Section 2.2.1). 

 

2.2  Conducting the Search 

Based on the above formulation, Ye [17] proves that the sensor planning task for object 

search is NP-hard in terms of processing time. Due to the intractable nature of the 

problem, Ye proposes a heuristic greedy approach and argues that it would suffice as a 

good approximation to the solution. 

Because of the fact that the cost of moving the robot during the search is usually 

significantly greater than the cost of changing the camera direction at any stationary 

position, Ye divides the task of search into two stages of “where to look next” and 

“where to move next”. 
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2.2.1 Where to look next 

At this stage, the robot is in a stationary position and the goal is to select an operation 

𝒇 = 𝒇(𝑝, 𝑡, 𝑤, ℎ, 𝑎) that yields the highest utility given by 

  

𝑬Ψf
(𝒇) =

∑ 𝒑(𝑐𝑖, 𝜏𝒇𝑐𝑖∈Ψ𝑓
)𝒃(𝑐𝑖, 𝒇)

𝑡(𝒇)
 , 

 

(2.5) 

where Ψ𝑓 is the influence range of operation 𝒇 and 𝑡(𝒇) is the cost of applying action 

𝒇.  Given the similarity of actions’ costs, Ye further simplifies the process at this stage 

by only considering the numerator part of (2.5).  

If the target is not found after performing an operation, the probability distributions 

of the cubic elements are updated as follows: 

   
𝒑(𝑐𝑖, 𝜏𝒇+) =

𝒑(𝑐𝑖,𝜏𝒇) (1− 𝒃(𝑐𝑖,𝜏𝒇))

𝒑(𝑐𝑜𝑢𝑡,𝜏𝒇)+ ∑ 𝒑(𝑐𝑗,𝜏𝒇)(1−𝒃(𝑐𝑗,𝜏𝒇))𝑛
𝑗=1

,        𝑖 = 1, … , 𝑛, 𝑜𝑢𝑡  

 

(2.6) 

where 𝜏𝒇+ is the time after 𝒇 is applied and 𝒑(𝑐𝑜𝑢𝑡, 𝜏𝒇+) is the probability that the target 

is outside of the image at the time 𝜏𝒇+. Intuitively, if operation 𝒇 fails to detect the target, 

the probability of the influence range decreases while those of the other regions increase. 

The process of action selection and application continues until the “covering 

probability” of all remaining operations, 𝑃𝑟𝑜𝑏Ψf
= ∑ 𝒑(𝑐𝑖)𝑐𝑖∈Ψ𝑓

 where falls below 
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some threshold, Θ𝑚𝑜𝑣𝑒 at the stage in which the robot considers to move to a new 

location. In this formulation 𝑝(𝑐𝑖) refers to the target probability represented at cubic 

element 𝑖. 

 

2.2.2 Where to move next 

The new destination of the robot is decided according to two criteria: the new location 

should be reachable and has a high probability of providing an appropriate viewpoint 

for detecting the target. Given that the height of the camera is fixed and the robot only 

moves horizontally, the new position is only within the vertices of the 2D grid. 

Alternatively if a robot is capable of changing its height of view, it would not be limited 

considering the search space is defined 3D. 

     The probability of each location 𝑗 is calculated by 𝑃𝑟𝑜𝑏Ψj
= ∑ 𝒑(𝑐𝑖)𝑐𝑖∈Ψ𝑗

 , where 

Ψ𝑗 is the region within the union of all effective fields of view at position 𝑗. After 

selecting a new location, the robot moves there. If the robot detect an obstacle in the 

candidate location, it selects a new one. 

     Once at the current position, a similar procedure as before is repeated in which the 

robot selects and searches directions with the highest probability. The look next and 

move next processes continue until either the target is detected or it is not found within 

the environment.   
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3  Saliency in Visual Object Search 

 

The range of a recognition algorithm is limited by factors such as the types of features 

used or the characteristics of the object of interest. This range is typically less than the 

range of stereo cameras within which they can measure disparity (see Figure 3.1), and 

varies according to the camera’s baseline, resolution or sensor type. For instance, in 

the work of Shubina and Tsotsos [18], the recognition algorithm is capable of detecting 

the target (Figure 5.4) within the maximum range of 2.6 meters. The stereo camera 

used in their experiments, however, has at least twice as long a range of the recognition 

algorithm to detect disparity.  

Discarding the information beyond the range of the recognition algorithm means a 

potential source of guidance is ignored. Such information can further be processed to 

identify clues regarding the target presence within the environment.  A common 

approach in visual search applications for identifying regions of interest is the use of 

saliency algorithms. A saliency map can provide one with clues regarding a target’s 

presence by highlighting the interest points, which in turn can be used to direct the 

attention of the search agent to the regions with a higher importance. 



24 

 

This chapter is organized as follows: Section 3.1 reviews vision literature to explore 

some of the common approaches to building a saliency map. Section 3.2 describes the 

AIM algorithm to construct a general saliency map. Section 3.3 explains Histogram 

Backprojection and its application to generate top down saliency. Section 3.4 shows 

the process of building the final saliency map. Section 3.5 concludes this chapter by 

demonstrating the application of saliency to visual search. 

 

      Figure 3.1: The application of an operation to the search environment. The gray 
background shows the uniform probability of the target presence, the black annulus 
denotes the range of the recognition algorithm and the green sector the disparity range 
of the stereo camera. 
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3.1  Saliency in Robotic Visual Search 

In the computer vision literature, it is a common practice to identify points of interest 

using saliency mapping techniques for the purposes of attention, recognition, 

segmentation or navigation.   

3.1.1 Bottom-up saliency 

In general, there are two classes of algorithms to construct saliency maps [33]. One 

class of algorithms measure saliency without any prior knowledge of an object or a task 

(bottom-up approach). These models are designed to identify the portions of an image 

that stand out in comparison to the rest [21, 34, 35, 36, 37, 38, 39]. 

Bottom-up saliency in particular is useful to identify structures that stand out within 

an image. Such saliency may correspond to an object of interest (e.g. in the context of 

visual search) or other physical structures that are in some form of spatial relationship 

to that object e.g. tables or shelves.  Hence, for the purpose of visual search, a bottom-

up saliency can both directly and indirectly guide the attention of an agent to a target 

of interest. 

There are two methods of building bottom-up saliency: object-based and space-

based.  
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3.1.1.1 Object-based saliency 

Object-based approaches in essence are similar to segmentation algorithms. However, 

instead of partitioning an image into regions of coherent properties, they only segment 

the salient object(s) from the background. 

Goeferman et al. [40] introduce a model that they call context-aware saliency 

detection in which the objective is not only to detect the most prominent object but also 

to contain enough of the background that convey the context. To achieve this, they 

divide an image into patches of equal size. Saliency is generated by comparing the 

Euclidean distance between the patches in terms of their RGB colors. The more unique 

a patch is, i.e. more dissimilar to other patches, the more salient it becomes. This 

saliency is further modified by taking into consideration the positional distance 

between the similar patches. This is based on the idea that the background patches tend 

to have similarity with both patches in near or far distances whereas the salient patches 

tend to be grouped up in a close proximity of each other. 

In addition, a comparison of patches is conducted in multiple scales (Gaussian 

pyramid levels). The authors believe that the background patches yield more 

similarities in the lower scales of pyramid, hence, if that is the case, the saliency value 

of those patches should be reduced accordingly. At the end, the generated saliency 

responses are adjusted by the application of a face detection algorithm. If a face is 

detected, the saliency of the corresponding pixels are increased. 
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Chang et al. [41] calculate saliency by minimizing an energy function comprising 

two forms of energy: the energy affected only by saliency and the energy affected by 

objectness. The saliency energy is obtained using the method in [40] with the difference 

of using superpixel segmentation instead of static patches.  

As for the objectness, the energy is defined by how likely a portion of an image 

contains an object. Intuitively, an object is a standalone thing with a well-defined 

boundary and different from its surroundings.  

Jiang et al. [42] identify saliency in two steps: saliency detection and shape 

extraction. In the first step, they over-segment an image by a superpixel operation at 

multiple scales. Then, the saliency of each region is computed by determining the 

difference between its color and surroundings. At the end, the results are averaged over 

all scales. 

Next, the saliency map is processed to extract shapes by finding a closed contour 

covering the salient object. For this purpose, an edge detection is performed on the 

image followed by a line fitting operation. If the objective is to find multiple objects, 

this process is repeated more than once.  

Object-based saliency methods have a number of shortcomings that makes them 

unsuitable for indoor search applications. First, these models heavily rely on 

segmentation of images, meaning that they are most effective for scenes where a 

limited number of objects are placed over a uniform background such as natural 
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images. Second, object-based saliency models are designed for identification of one or 

few objects, the number of which should be defined prior to the detection of saliency. 

In the context of visual search, the visually salient region does not necessarily 

correspond to the target of interest. In addition, it is hard to specify the number of 

salient objects for the algorithm to detect if there are many objects. 

Moreover, the object-based models are generally optimized for particular objects 

or environments, e.g. [40] is optimized for human detection and [41] works best for 

natural images. Hence, they lack the generality to be used in different visual search 

contexts. 

3.1.1.2 Space-based saliency 

Space-based (fixation) models of saliency are more generic in the sense that they 

are designed to predict human eye fixations typically measured by subjective rankings 

of interesting and salient locations or eye movement [43]. 

Itti et al. [26] calculate a bottom-up saliency using low–level image characteristics 

including color, intensity and orientation (e.g. orientation is calculated by oriented 

difference of Gaussian (DOG)).  Instead of the direct calculation of features, features 

are computed in a center-surround structure to derive the contrast of a feature to its 

surroundings. To do so, the differences between a fine and a coarse scale (Gaussian 

pyramid) for a given feature is computed. The same process repeats in eight scales for 

all features and at the end the resulting maps are cross-scale summed and normalized. 
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Hou and Zhang [44] use a sparse coding approach to decompose an image into a 

series of independent features. Then they measure the activity ratio of each feature and 

consider a feature to be salient if succeeding activations of that feature increases the 

entropy of the entire system.  

In a different representation, Hou and Zhang [45] exploit a property of natural 

images to estimate saliency. This property indicates that natural images are scale 

invariant meaning that the amplitude 𝐴(𝑓) of their average Fourier spectrum obeys a 

1/𝑓 distribution. Based on this characteristic, the authors estimated the saliency by 

identifying statistical singularities in the Fourier spectrum, i.e. the information that 

jumps out of the smooth curve corresponds to salient locations.  

In [46] a graph-based approach is introduced. The image features are generated by 

the application of difference of offset Gaussian (DOOG) filters oriented toward six 

equally spaced directions. Next, the dissimilarity of each feature with its neighboring 

features is calculated by dividing their corresponding intensity values. This forms a 

graph in which each feature is considered as a node and connected to other nodes 

through edges, the value of which is determined by the normalized (0-1) dissimilarity 

between the corresponding nodes. To compute saliency, the authors define a Markov 

chain on the resulting graph, indicating that the equilibrium distribution at each node 

would naturally accumulate mass at nodes that have high dissimilarity with their 

surroundings. 
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In a different formulation of saliency, Bruce and Tsotsos [31] decompose an image 

into independent features using the Independent Component Analysis (ICA) algorithm. 

Then, they compute the joint distribution of features along the image at each pixel. The 

information measure of each pixel is calculated which is an indicator of saliency at that 

location, i.e. the less common features in the image (more salient) yield higher 

information responses.  

3.1.1.3 Performance measure of space-based saliency models 

Measuring and comparing the performance of saliency models is a challenging task. 

These models use different techniques of decomposing images into features and 

measuring their distributions. There have been a number of attempts to quantitatively 

analyze the performance of bottom-up saliency approaches using various scoring 

techniques and datasets [43, 47]. The common approach in all these schemes of 

performance measurement is comparing the saliency results of each model against 

ground truth images. The ground truth images are binary images produced by a human 

observer who identifies those locations to which humans are more likely to fixate.  

     Despite the fact that in the comparison studies there are models that consistently 

perform better than the rest, there are still minor differences in ranking of these models 

on being applied to different datasets. For instance, in [47] 5 datasets are used for 

comparison purposes. Along the 11 space-based models of saliency analyzed in this 

study, three models had the best performance on average in all datasets including 
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graph-based visual saliency (GBVS) [46], dynamic visual attention (DVA) [44] and 

attention based on information maximization (AIM) [31]. However, the performance 

of each model varies depending on the type of datasets. For example, GBVS has the 

best performance in the dataset with multiple number of objects while AIM achieves 

the best performance in the dataset with single dominant objects.  

Given such variation in performance, we conducted our own evaluation of bottom-

up saliency models using image samples collected from test environments used for our 

search experiments. We used the area under curve (ACU) scoring scheme similar to 

[48]. In this technique, points from human fixations (ground truth) are considered 

positive, and a number of points are sampled from images, which form the negative 

set. Then the saliency map is treated as a binary classifier which separates the positive 

from negative samples. These maps are thresholded with different percentile values 

ranges from 0% (no saliency responses) to 100% (all saliency responses considered). 

Next, a true positive rate vs. false positive rate is calculated and a receiver operating 

characteristic (ROC) [49] curve is plotted for each saliency map and is averaged for all 

the dataset images. By calculating the area underneath of each curve, we can predict 

the performance of a given saliency model. A score of 1 corresponds to perfect 

prediction whereas a score of 0.5 indicates chance level. 

For evaluation purposes, we used 316 sample images with saliency maps 

thresholded by steps 5% apart, i.e. a total of 21 maps for each model. The saliency 
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models were selected based on their average performance measures in [47] namely, Itti 

[26], AIM [31], GBVS [46], DVA [44],  spectral residual approach (SRA) [45] using 

fast fourier transform (FFT) and discrete cosine transform (DCT) techniques. Figures 

3.2  and 3.3 show the ROC curves and their integral values respectively. Based on the 

ACU evaluation, AIM has the best performance measure with 0.7701. 

3.1.2 Top-down saliency 

As the name implies, the second class of saliency algorithms are those used to detect 

clues regarding specific objects (top-down approach). In this method of saliency, the 

objective is to identify portions of an image that corresponds to a specific object. Thus, 

using such methods requires some form of training prior to the process to learn features 

corresponding to those of the task at hand [22, 23, 50, 51].  

Zhu et al. [50] introduce the notion of contextual pooling. In this model, top-down 

saliency is treated as a classification problem. For training purposes, random patches 

as well as their neighbouring patches are extracted from training data to take into 

account both the object specific features and the context of the samples. Then, SIFT 

features are obtained from each patch cluster and mapped to K-dimensional codes 

forming a code book through the use of a support vector machine (SVM) model. To 

measure the saliency in a test image, through the use of a Bayesian approach, the 

probability of each pixel belonging to the object is computed. Based on the distribution 

values, pixels are labeled as the background or the object.  
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Figure 3.3: The integral values of ROC curves for each saliency model. 
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Figure 3.2: The ROC curves of the saliency models in ACU. 
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     In [51], the authors use a similar classification approach to calculate top-down 

saliency. However, top-down saliency is combined with a bottom-up saliency map to 

generate more robust results. The bottom-up saliency is generated using low level 

filters such as Difference of Gaussian (DOG) and coded into a more compact format 

using the discrete cosine transform (DCT) technique.  

To include contextual information, Yang and Yang [52] use a graphical model 

known as conditional random field (CRF). First, they train a dictionary of an object’s 

features using SIFT descriptors. Then through the use of the CRF, they determine how 

a combination of these features and their neighboring regions contribute to the presence 

of an object. The result of the CRF is a probability distribution value indicating the 

saliency of a given feature in an image. 

As it was seen in the above formulations of top-down saliency, these techniques are 

designed for classification and recognition purposes. Hence, they rely heavily on high 

level features (e.g. face) to separate an object from its background. In our visual search 

application, we intend to find object specific clues in distances above the effective 

range of our recognition algorithm, i.e. there is not enough features for recognition to 

succeed. Having this fact in mind, to generate top-down saliency results, we propose 

the use of histogram backprojection technique in which regions of interest are 

identified only based on low level features such as color. 
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3.2  Attention based on Information Maximization (AIM) 

In order to identify the general structures of interest, we employ the work of Bruce and 

Tsotsos [31], commonly known as AIM. The reason behind this is AIM’s superior 

performance in comparison to other state-of-the-art saliency methods in particular for 

natural images (refer to [43, 47] for more details). The AIM algorithm begins by 

decomposing an image into a series of distributions corresponding to independent 

features. These features are generated by the application of a basis function previously 

trained over a large number of natural samples using Independent Component Analysis 

(ICA) [53]. 

3.2.1 Independent Component Analysis (ICA) 

In this section, some principles of ICA are briefly reviewed to better understand the 

process of feature generation in AIM. For more information regarding the operation 

and formulation of ICA, see [53, 54]. 

ICA is a common technique in signal processing applications where one intends to 

identify the individual sources of a mixed signal. A known application of ICA is in the 

so-called “cocktail-party problem”. In this problem, 𝑛 people are speaking 

simultaneously at a cocktail party and their voices are recorded by some microphones. 

The objective is to separate the independent voices chattering at the party. 
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 Assume we have a random vector of 𝑛 observations 𝒙(𝑡) =

[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)] at times 𝑡 ∈ (𝑡0, 𝑡1, … , 𝑡max) each is a mixture of 𝑛 

independent sources as follows: 

   𝑥𝑗(𝑡) =  𝑎𝑗1𝑠1(𝑡) + 𝑎𝑗2𝑠2(𝑡) + ⋯ + 𝑎𝑗𝑛𝑠𝑛(𝑡), (3.1) 

where 𝑥𝑗(𝑡) denotes the mixture, 𝑠1(𝑡), … , 𝑠𝑛(𝑡) and 𝑎𝑗1, … , 𝑎𝑗𝑛 are the source elements 

and mixing coefficients respectively [55]. Putting the above notations into vector-matrix 

representation we get, 

   𝒙 = 𝑨𝒔 (3.2) 

where 𝑨 is a 𝑛 𝑥 𝑚 matrix of mixing coefficients 𝑎𝑗𝑖  for 𝑚 ≤ 𝑛,  𝒙 and 𝒔 are the 

random vectors of  the mixtures and sources respectively. 

     In the context of feature extraction, same principles are applied. Mixtures at each 

time interval 𝑡 is represented by pixels of a sample image patch. For instance, a patch 

of size 10 𝑥 10 forms a vector of 100 mixtures.  

The fundamental assumption of ICA is that the sources are non-Gaussian and 

statistically independent, i.e. information about the distribution of one source does not 

provide any information about other sources. Based on this assumption, the values of 

𝑨 and 𝒔 are estimated. Once the mixing coefficients are calculated, one can obtain the 

independent components by multiplying the inverse of 𝑨 to signal 𝑿, 

   �̂� = 𝑾𝒙 (3.3) 
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where 𝑾 can be thought as the inverse of matrix 𝑨 and �̂� is an estimation of sources 

values.  

There are numerous techniques proposed in the signal processing literature to 

estimate the values of 𝑾 and s [56]. The one used for training the AIM basis matrices 

is commonly known as infomax [57], a method inspired by the Shannon’s information 

and entropy measures [58].  

Figure 3.4: An example of decomposing a grayscale 
image (top) into independent features (bottom) using 
ICA algorithm [83]. 
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In Shannon’s theory, entropy is a measure of uncertainty which means the more 

information we have about a system, the lower the value of its entropy and 

consequently the lower the uncertainty.  In this context, uncertainty corresponds to 

independence meaning that maximum entropy implies independent signals. Based on 

this assumption, infomax attempts to extract independent sources by estimating an un-

mixing matrix that minimizes the mutual information of the sources, i.e. maximizes 

their entropy (see [57] for more details).  

 

3.2.2 Distribution and Information Measures 

The next stage in the AIM algorithm is the calculation of features’ distributions 

generated by the application of the basis function (un-mixing matrix). Using a Gaussian 

kernel density function, we define the likelihood of the features by  

     

𝑝(𝑤𝑖,𝑗,𝑘 = 𝑣𝑖,𝑗,𝑘) =
1

𝜎√2𝜋  
∑ 𝜔(𝑟, 𝑡)𝑒−(𝑣𝑖,𝑗,𝑘−𝑣𝑖,𝑠,𝑡)

2
/2𝜎2

,

∀𝑟,𝑡∈Ψ

 

 

(3.4) 

with  ∑ 𝜔(𝑟, 𝑡)∀𝑟,𝑡∈Ψ = 1, where 𝜔(𝑟, 𝑡) denotes the degree to which the coefficient   

𝜔 at coordinates 𝑟, 𝑡 contributes to the probability estimates, 𝑤𝑖,𝑗,𝑘  is the set of 

independent coefficients based on neighborhood centered at 𝑗, 𝑘, 𝑣𝑖,𝑗,𝑘 is the local 



39 

 

statistic value and Ψ is the context which the probability estimate of the coefficients of 

𝜔 is based on. 

Since features generated by ICA are independent, the joint density function of the 

features is given by 

     
𝑝(𝑤1 = 𝑣1, 𝑤2 = 𝑣2, … , 𝑤𝑛 = 𝑣𝑛) = ∏ 𝑝(𝑤𝑖 = 𝑣𝑖).  

𝑛

𝑖=1

 (3.5) 

Using Shannon’s self-information measure theory [58], the information of the 

resulting joint distribution is calculated by 

Figure 3.5: The framework of achieving information measures by application of 
AIM to a sample image using neural circuit to measure the distribution of features 
[31]. 
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𝐼(𝑊) =  − log(𝑝(𝑊)) (3.6) 

where 𝐼(𝑊) is the information measure of distribution 𝑝(𝑊). This information then 

serves as a means to detect saliency within an image. In this case, the regions with the 

highest information responses, i.e. the least common within the image, are identified 

as salient. 

3.2.3 Parameter selection and performance 

The saliency responses of the AIM information map highly fluctuate with respect to 

the changes in the kernel size used to generate local distributions, the number of 

features and environmental factors such as lighting condition. 

3.2.3.1 Kernel size 

Given that a basis matrix is multiplied by each local patch of an image to extract 

features, it is obvious that increasing the size of the kernel increases the dimension of 

the matrices multiplied together, and as a result, the processing time rises (Figure 3.6).  

Moreover, altering the kernel size also has a direct impact on the saliency responses 

of AIM. Although the output of the conspicuity map highly depends on the content of 

the image, as a general rule, the bigger the kernel size be, the higher the chance that 

larger salient structures are detected within the image. Figure 3.7 demonstrates the 

effect of the kernel size on the saliency results using AIM.  The algorithm is fully 

parallelized on a 12 core 2.1GHz Intel processor. 
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It is apparent that in the saliency responses generated by the small kernels of size 

52 and 72 square pixels, the small components such as floor’s texture have the highest 

intensity As the size of the kernel increases, the saliency drifts away from the smaller 

objects toward the bigger ones. For instance, in the saliency map with the kernel size 

of 312 square pixels, the stairs at the back of the room have the highest response while 

the smaller objects such as the colorful toys are much less salient.  
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Figure 3.6: The relationship between the kernel size of a basis matrix and the 
processing time of building the AIM saliency map.  
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Figure 3.7: The application of AIM to a sample image using the basis matrices of 
various sizes. a) is the original image, and b-g) are information maps generated by 
AIM with the kernel sizes of 5, 7, 11,15, 21, and 31 square pixels respectively. 
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3.2.3.2 The number of features 

The AIM saliency model also behaves differently by changing the number of features. 

Clearly, the processing time is directly correlated with the dimensionality of basis 

matrices because their number of rows are equal to the number of features. Figure 3.8 

illustrates the relationship between the processing time and the number of features used 

to create an AIM saliency map. The same processor as before is used with the patch 

size of 21 square pixels. The number of features also influences the saliency responses 

of AIM. In fact, using ICA to generate the features of interest, each individual pixel is 

treated as an individual source of information. This means that using more features 

reduces the sensitivity of the model to correspond to meaningful shapes but rather to 
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Figure 3.8: The relationship between the processing time of generating the AIM 
saliency map and the number of features used.  
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individual pixel intensities or minor structures. Using a small number of features also 

is inefficient because there is a higher chance of accidental similarity among features 

for different objects, and consequently, generating similar saliency responses in spite 

of the variation in the scene. 

Figure 3.9 shows the changes in the behavior of AIM using a varying number of 

features. In the case of using only 7 features, the resulting map is fairly generic as it 

shows uniform responses with low intensities on the majority of the image.  By 

increasing the number of features, the saliency responses become more specific for 

individual objects until reaching a certain threshold at which they are drift away to 

textureless patterns within the image such as walls.  

In addition to the type of the basis matrix used in AIM, the environmental factors 

such as lighting conditions or the objects’ distances from the camera greatly alter the 

saliency results. Without any attempt to generalize the effect of each factor, Figure 3.9 

demonstrates some of their impacts on the conspicuity outcomes. 

3.2.3.3 Thresholding the saliency map 

For the purpose of visual search, we are only interested in the highest saliency 

responses not the entire map. One way to focus on the highest responses is through 

static thresholding of the results in which the saliency responses below a fixed value 

(often set empirically) are discarded. 
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Figure 3.9: A sequence of the AIM saliency maps using a various number of 
features. a) is the original image, and b-g) are the saliency maps using 7, 25, 69, 163, 
251, and 478 features respectively. 
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This method is inadequate because given the dependency of the saliency responses to 

elements such as the environment’s configuration, the distance of objects to the camera 

and viewing angle, a fixed threshold value would not correctly reflect saliency. 

A dynamic approach known as percentile thresholding is used to remove the low 

salient points. The 𝑝𝑡ℎ percentile is a value below which 𝑝 percentage of the data falls 

[59]. These authors compute an index of observation using  𝑛 observations, 

𝑥1, 𝑥2, … , 𝑥𝑛 . First, the observations are sorted in an ascending format, thus 𝑥1 has the 

lowest value and 𝑥𝑛 the highest. Then they calculate the index of observation 𝑥𝑖 for the 

percentile value 𝑝 by 

    
𝑖 =

𝑛. 𝑝

100
+ 0.5 (3.7) 

where 𝑖 presents the index of observation 𝑥𝑖. If 𝑖 is an integer, 𝑥𝑖 is the 𝑝𝑡ℎ percentile 

value, otherwise they interpolate as follows: 

    
𝑥𝑖𝑛𝑡 = (1 − 𝑓)𝑥𝑘 + 𝑓𝑥𝑘+1 (3.8) 

where 𝑥𝑖𝑛𝑡 is the interpolated value, and 𝑘 and 𝑓are the integer and fractional parts of 

𝑥𝑖. 
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3.2.3.4 The limitations of AIM 

The application of ICA to decompose the image of interest into independent features 

imposes a number of limitations on the performance of AIM. The basis functions 

trained by ICA do not account for the color distributions of objects, i.e. features 

generated for two identical objects with different colors might be the same. It is also 

challenging for ICA to learn the object specific features within natural environments 

due to the variations in scale, orientation and lighting conditions.  

Moreover, ICA considers each pixel value of an image as a source of information. 

This means, it is not feasible to train the system over all the individual features of an 

object. For instance, in the case of a RGB patch of size 212 pixels, there will be a total 

of 21𝑥21𝑥3 = 1323 features. Applying such a basis matrix to a typical image of size 

640x480, we will have a feature space of 1323𝑥620𝑥460 pixels. Using a smaller 

subset of features, however, creates similar basis functions for different objects, which 

makes it challenging to train a basis matrix for a specific object. 

Despite such limitations, AIM perfectly satisfies our initial objective to identify 

general physical structures that likely correspond to regions such as shelves, tables or 

any other surfaces with a high chance of containing the object of interest. 
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a) 

  
 b) 

 

Figure 3.10: The effects of the environmental factors on the saliency responses of 
AIM. Each AIM generated saliency uses a basis matrix with the kernel size of 21 square 
pixels with 25 features. a) Lighting changes within the search environment. On the left 
from the top to bottom, natural lighting, direct lighting and ceiling lighting and on the 
right, the saliency responses of each image. b) A drawer with random objects on the 
top with different distances from the camera. On the left, from the top to bottom, the 
original image with the drawer’s distance of 1m, 2m, 3m and 5m. On the right side, 
the resulting saliency responses. 
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3.3 Histogram Backprojection (HB) 

The saliency map presented in the previous section does not include clues relating to 

the target.  There are variety of ways to achieve this based on the characteristics of an 

object such as shape, color or orientation. In this work, only the target’s color 

distribution is considered. 

To identify similarities of an object’s colors within an environment, an algorithm 

commonly known as Histogram Backprojection (HB) [32] is employed. First, the HB 

method requires an object template in order to establish its color distributions. 

 

3.3.1 Template extraction  

In order to reduce false saliency responses, it is important to use an object template that 

has minimal background information. One can attain this by cropping the object from 

an image manually. This method is neither efficient in terms of timing nor suitable for 

online applications in which we intend to show an instance of the object that is not 

previously known to a system. 

A clustering technique based on Gaussian Mixture Model (GMM) [60] is used to 

segment the target of interest from its background. In this method, the object and 

background colors are represented by a multivariate density function and the goal is to 

estimate the parameters of each distribution in the form of a GMM. In this manner, 
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care should be taken to use templates with a uniform background color, preferably 

distinguishable from those of the object.  

A GMM probability distribution takes the form 

      
𝑝(𝑥|Θ) = ∑ 𝛼𝑖𝑝𝑖(𝑥|𝜃𝑖)

𝑚

𝑖=1

, (3.9) 

where 𝑚 is the number of mixtures  and Θ = (𝛼1, … , 𝛼𝑚, 𝜃1, … , 𝜃𝑚) are the parameters 

from which 𝛼𝑖 ≥ 0 denotes the mixing coefficient (weight) of each mixture such that 

∑ 𝛼𝑖
𝑚
𝑖=1 = 1, and 𝜃𝑖 = (𝜇𝑖, 𝐶𝑖) where 𝜇𝑖 and C𝑖 refer to the mean and covariance of 

normal distribution  𝑝𝑖 respectively. The distribution of each mixture is given in the 

form of a 𝑑 dimensional Gaussian as follows: 

    
𝑝𝑖(𝑥|𝜇𝑖, σ𝑖) =

1

(2𝜋)
𝑑
2  |𝐶𝑖|

1
2

𝑒−
1
2

(𝑥−𝜇𝑖)𝑇C𝑖
−1(𝑥−𝜇𝑖)

  . 

 

(3.10) 

Let 𝑥𝑖 be an image RGB patch. The objective is to find the maximum likelihood 

estimate (MLE) of all the mixture parameters of Θ, 

    

log(𝐿(Θ|𝑥)) = log ∏ 𝑝(𝑥𝑖|Θ)

𝑁

𝑖=1

= ∑ log (∑ 𝛼𝑗𝑝𝑗(𝑥𝑖|𝜃𝑗)

𝑚

𝑗=1

) .

𝑁

𝑖=1

 

 

(3.11) 

The Expectation Maximization (EM) algorithm is employed to estimate the 

parameters. EM consists of two steps, the Expectation or E-step and the Maximization 
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or M-step. In the E-step, 𝑝𝑖,𝑗  is calculated, which corresponds to the probability of 

sample 𝑖 belonging to mixture 𝑗 using currently available parameters (initial values are 

set randomly) 

    
𝑝𝑖,𝑗 =

𝛼𝑗𝑝𝑗(𝑥|𝜇𝑗 , C𝑗  )

∑ 𝛼𝑘 𝑝𝑘(𝑥|𝜇𝑘 , C𝑘   )𝑚
𝑖=1

 . 

 

(3.12) 

At the second step or M-step, the mixture parameters are refined by 

 

𝛼𝑗 =
1

𝑁
∑ 𝑝𝑖,𝑗

𝑁

𝑖=1

, 𝜇𝑗 =
∑ 𝑝𝑖,𝑗𝑥𝑖

𝑁
𝑖=1

∑ 𝑝𝑖,𝑗
𝑁
𝑖=1

, 

C𝑗 =  
∑ 𝑝𝑖,𝑗(𝑥𝑖 − 𝜇𝑗)(𝑥𝑖 − 𝜇𝑗)

𝑇𝑁
𝑖=1

∑ 𝑝𝑖,𝑗
𝑁
𝑖=1

. 

(3.13) 

 

Alternatively, the E-step and M-step can be applied in a reverse order depending 

on the availability of data at the time of calculation (see [60] for more details). After 

calculating the distribution of the background colors, their values are replaced by the 

color black (RGB value 0) (Figure 3.11). 

3.3.2 Backprojection 

A 3D RGB histogram of the object’s template is created, ignoring the color black as it 

is used for the template background.  
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     Let ℎ(𝐶𝐿) be the histogram function that maps color 𝐶𝐿 = (𝑅, 𝐺, 𝐵) to a bin of 

histogram 𝐻(𝐶𝐿) generated based on object’s template 𝑇𝜃. We can perform 

backprojection of the object over an image as follows:   

    
∀ 𝑥, 𝑦: 𝑏𝑥,𝑦 ≔ ℎ(𝐼𝑥,𝑦,𝑐𝑙

′ ), (3.14) 

where 𝑏 is the grayscale backprojected image, and 𝐼′ is normalized image 𝐼(see Figure 

3.12). 

Figure 3.11: The application of the EM algorithm to separate the objects foreground 
from the background. 
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3.3.2.1 Image Normalization  

The performance of HB is limited in applications where images are captured in variety 

of conditions.  In practice, an object’s template is created independent of the physical 

environment in which it will be searched. However, throughout the search process 

using a mobile robot, the object’s colors might be perceived differently depending on 

the distance of the robot to the target, reflection, illumination changes and even in some 

cases the type of sensor used. As a result, a direct projection of the template’s colors 

would fail to accurately identify the target in the majority of situations.  

Figure 3.12: The Histogram Backprojection results of four samples. The saliency 
results from the top to bottom refer to the object templates from the left to right. 
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One way of addressing the issue of illumination changes, is to normalize the images 

of interest. A simple but effective technique is pixelwise normalization [61], in which 

every pixel’s color values 𝑟𝑘, 𝑔𝑘 and 𝑏𝑘 are normalized by  

    
𝑟𝑘′ =

𝑟𝑘

𝑠𝑘
 ,           𝑔𝑘′ =

𝑔𝑘

𝑠𝑘
, 𝑏𝑘′ =

𝑏𝑘

𝑠𝑘
  

 

(3.15) 

where 𝑟′, 𝑔′ and 𝑏′ denote the normalized color values and 𝑠𝑘 = 𝑟𝑘 + 𝑔𝑘 + 𝑏𝑘 is the 

intensity of each pixel. Normalization also can be achieved channelwise,  

    
𝑟𝑘′ =

𝑟𝑘

∑ 𝑟𝑖
𝑛
𝑖=1

 , 𝑔𝑘′ =
𝑔𝑘

∑ 𝑔𝑖
𝑛
𝑖=1

, 𝑏𝑘′ =
𝑏𝑘

∑ 𝑏𝑖
𝑛
𝑖=1

  

 

(3.16) 

where 𝑛 is the total number of pixels in each channel.  

Swain and Ballard [32] proposed an alternative approach to normalization. They 

used what so called the three opponent color axes technique to isolate the intensity of 

an image in a separate channel, which in turn will be coarsely indexed to reduce the 

effect of lighting. In this model channels are defined as follows: 

    𝑟𝑔𝑘 = 𝑟𝑘 − 𝑔𝑘,      

   𝑏𝑦𝑘 = 2 ∗ 𝑏𝑘 − 𝑟𝑘 − 𝑔𝑘,    

𝑤𝑏𝑘 = 𝑟𝑘 + 𝑔𝑘 + 𝑏𝑘  

 

(3.17) 



55 

 

where 𝑟𝑔, 𝑏𝑦 and 𝑤𝑏 are the three color axes. Figure 3.13 shows the result of each 

normalization technique on a number of sample templates.  

3.3.2.2 Color Indexing  

Although normalization reduces the effect of illumination changes, it certainly is not 

sufficient for backprojection. The color (hue) of an object also may change in regard 

to lighting’s color, the surface reflection of other objects or shadow.  

To resolve this issue, the histogram of templates ought to be indexed. i.e. a range 

of colors  is considered for each bin other than using the specific number of colors (e.g. 

0-255 in the case of 8 bit RGB). Here, care should be taken not to set the index values 

too high so that each bin includes too many colors, or too little that with the smallest 

Figure 3.13: The normalization of the sample templates using different techniques. 
From the top to bottom: the original templates, pixelwise normalization, channelwise 
normalization, and the three opponent color axes. 
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changes in the environment conditions such as lighting, HB fails to identify the object 

of interest.  

Figure 3.14 shows the effects of the index size on the final output of the HB map. 

In this example, the images are pixelwise normalized and thresholded to only reflect 

the highest salient points. As can be seen, by increasing the size of the color index, the 

saliency becomes more specific up to a point that the algorithm fails to detect the target. 

These images also highlight the potential issues with merely relying on color 

distributions especially in the cases where there is a similarity between the object, e.g. 

the cup, and the environment’s color distributions. 

3.4 Building the Final Saliency Map  

The final saliency map is produced by merging the AIM and HB conspicuity maps.  

For this purpose, a binary mask of the AIM saliency responses is created. This mask is 

then applied to the original image to extract the RGB values corresponding to the 

interest points identified by AIM, 

    𝐼𝜽 = 𝐼𝜃 × 𝑀(𝒙, 𝒚), 

{
𝑀(𝒙, 𝒚) = 1          𝑖𝑛𝑓𝑜(𝒙, 𝒚) > 𝒑

 𝑀(𝒙, 𝒚) = 0            𝑒𝑙𝑠𝑒,                   
 

(3.18) 

where 𝑖𝑛𝑓𝑜() refers to the information map generated by AIM. 
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Figure 3.14: The HB saliency results using different index sizes. The images are 
pixelwise normalized and thresholded using a 8-bit value, 60. a) is the image of the 
environment, b) are the object templates and c-g) the HB generated saliencies with index 
sizes  16, 32, 64,128 and 256 respectively. 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
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where 𝐼𝜃 is the original image captured through camera configuration 𝜃 , 𝑖𝑛𝑓𝑜(𝒙, 𝒚) is 

the information map resulted from AIM, 𝑀(𝒙, 𝒚) is the binary mask and 𝒑 denotes the 

percentile threshold. Image 𝐼𝜃, is used to produce the HB saliency through the 

projection of an object’s template. Then, the result is integrated with the AIM 

conspicuity map, each contributing 60% and 40% to the final saliency results 

respectively.  These values are set empirically to ensure that the saliency responses of 

each model are not exaggerated. 

 

3.5 Applying Saliency to Visual Search  

The resulting saliency map is used to increase the probability distribution of those 

regions that have a higher chance of detecting the target. By relying on a stereo camera, 

the depth of each point is calculated to determine its 3D coordinates within the 

environment. Those points that fall within the range of the recognition algorithm (the 

effective field of view) are discarded, otherwise based on their perceptual saliency, the 

probability distribution of the target’s presence is increased. Figure 3.15, shows the 

process of generating and applying saliency to visual search.  
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3.6 Summary 

In this chapter, we explained two techniques for building saliency maps. The AIM 

algorithm is used to extract general interest points within an environment that have a 

higher chance of corresponding to structures that are in spatial relation to a target of 

interest. These points can play the role of indirect clues by guiding a search agent to 

the regions of a higher importance.  

Figure 3.15: The process of applying saliency to the robotic visual search. 
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The second method is Histogram Backprojection (HB). HB is used to identify the 

interest points relating to the object of interest rather than the environment’s structure. 

The combination of these two methods modifies the probability distributions of the 

target’s presence, allowing the search agent to make more informed decisions when 

selecting an action.  
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4  Sensor Planning Strategies with Predefined Constraints 

 

Recalling the concept of search from Chapter 2, the goal of object search is to find a 

sequence of operations that maximizes the probability of detecting the target within a 

predefined cost constraint. Ye [17] introduces an approximate solution to the problem 

using a greedy approach that maximizes the probability of detecting the target at any 

time when an operation is selected. Shubina and Tsotsos [18]  extend this work by 

adding the cost of each operation in terms of the distance traveled by the robot. This 

cost is used to determine the utility of the next best location for the robot to move to. 

In the above greedy approaches, the cost of each action is only considered locally, 

meaning that among all the possible operations, they determine what the next best 

operation that maximizes the value of an action. The cost is only included to compute 

the utility of an action. These methods do not consider the possibility of a larger scale 

optimization approach. This is particularly important to maximize the chance of finding 

a target within a given cost constraint. 

 Another aspect for potential improvement of Ye’s sensor planning strategy 

concerns thresholding the utility of a location with a fixed value before moving to 

another one. If the robot perceives an area of a greater importance in another location, 

it is limited to finish searching its current location before deciding to move to the next, 
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i.e., searching its current location must continue until some threshold is reached 

regardless of what is present at other locations. 

Setting the threshold itself is also challenging. In [18], the authors define the 

threshold value empirically based on the parameters of search such as the resolution of 

the search (the size of cubic elements holding the probability distributions), the 

recognition algorithm’s effective field of view, or other factors that affect the search 

process. In practice, some of these elements may change prior to search, which then 

would require conducting evaluative experiments to estimate a reasonable threshold 

value. In addition, throughout the search there might be different methods of analysing 

an image to be used. For instance, an agent may be instructed to detect a table and then 

search for a cup on top of it. The algorithms to perform these tasks are not necessarily 

the same, each having its own characteristics. As a result having a fixed threshold to 

accommodate different tasks in this context may not suffice for a good search 

algorithm. 

The aforementioned deficiencies in the previous sensor planning strategies point 

strongly to the need for a more general approach. First, such a technique first should 

have a global approach towards sensor planning by acting according to the constraints 

within which we intend to conduct the search such as available time or the battery 

energy of the robot. Second, the model should be free of any predefined parameters 
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that limit the performance of the search agent in employing different methods for 

detecting an object. 

The contribution of the work presented in this chapter is twofold. First, we expand 

on the complexity of object search mentioned in [17], and then we formalize the 

problem in an attempt to define some global optimization technique to solve the 

problem with respect to a constraint. Section 4.1 shows the complexity of object search. 

Section 4.2 reviews a variety of the knapsack problems and their similarities to object 

search. Section 4.3 details the practical limitations of object search.  Section 4.4 surveys 

some of the common techniques of solving the knapsack problem. Section 4.5 proposes 

some novel approaches to sensor planning for object search with a constraint. 

 

4.1 The complexity of object search 

Ye and Tsotsos [62, 28, 63] perform a complexity analysis of object search and prove 

that this problem belongs to 𝑁𝑃 class (later in this section, we comment on the 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 of the problem). 

It is difficult to extract any regularities in the problem of object search as described 

in Chapter 2, primarily due to the presence of intermediate probability distributions 

which are being changed after the application of each operation. To add further 

perspective to the problem of search, Ye further simplifies the search process at the 
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current location of the robot. He proposes to only update the probability of the regions 

within the sensed sphere (the region around the robot with a radius equal to the size of 

the recognition algorithm’s effective field of view) at a time the robot is searching its 

current position. This means the probabilities of the remaining locations are updated 

when the robot moves to a new destination.  

With respect to the above assumptions and restricting the actions in a way that no 

two actions share influence ranges (i.e. the recognition algorithm’s effective field of 

view), Ψ𝑓𝑖
∩ Ψ𝑓𝑗

= 0 for 𝑖 ≠ 𝑗, 𝑃[𝑭] can be redefined as follows: 

` 𝑃[𝑭] =  ∑ 𝑝(𝒇𝑖, 𝜏0)

𝑛

𝑖=0

. (4.1) 

According to (2.4) and  constraint 𝑇(𝑭) ≤ 𝐾, where 𝐾 is the total time available to  

conduct the search, the problem of object search can be reduced to the KNAPSACK 

problem in which the objective is to maximize a value (probability distributions) while 

not exceeding a capacity (𝐾). Based on this interpretation, the problem of object search 

is showed to be NP-hard.  

Alternatively, one can transform the optimization problem into an equivalent 

decision problem by imposing a lower limit on 𝑃[𝑭]. In this case, the problem of object 

search is defined as finding an effort allocation 𝑭 such that 𝑇(𝑭) ≤ 𝐾 and 𝑃[𝑭] ≥ 𝑀. 

By this definition, the problem belongs to 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 class. In practice, however, 
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it is hard to set the 𝑀 value, therefore, we treat object search as an optimization problem 

in this work.  

 

4.2 The KNAPSACK problem  

In order to formulate a sensor planning algorithm for object search with a cost 

constraint, we follow the same reasoning as Ye and reduce the object search problem 

to the KNAPSACK problem [64]. Here, however, we intend to generalize this idea to 

select a sequence of actions to maximize the probability of detecting an object with a 

given constraint.  

     Recalling the KNAPSACK problem, we have 𝑛 items with 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 (𝑝) and 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑤) and we want to place a subset of items in a knapsack of 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑐). In 

this manner, we want to maximize the profit of the selected subset while its overall 

weight should not exceed the capacity of the knapsack.   

     Recalling from (2.3), let 𝑂Ω be the set of all possible operations on Ω and 𝑭 =

{𝑓1, 𝑓2, … , 𝑓𝑘} an ordered set of actions performed during the search. To fit into a similar 

description of KNAPSACK, we consider 𝑂Ω as the set of all items available to pick 

from, and probability 𝑝(𝑓)  and cost 𝑡(𝑓) as the profit and weight of each item 

respectively.  Here, the capacity is defined in terms of the cost constraint 𝑲 and 

maximization is constrained by 𝑇[𝑭] ≤ 𝑲  where 𝑇[𝑭] is the total cost of subset 𝑭. 
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4.2.1 Variation of KNAPSACK 

In order to formulate a solution to our problem, we first need to know which category 

of the KNAPSACK problem, object search belongs to. Perhaps the most common case 

of the KNAPSACK problem is the 0-1 knapsack problem. This problem arises when 

the objective is to maximize the value of 𝑛 objects while there is only one instance of 

each allowed, 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

 ,  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑐,  

𝑥𝑗 = 0 𝑜𝑟 1 ,   𝑗 = 1, … , 𝑛. (4.2) 

A special case of this problem also exists where the goal is to select a subset of 

weights closest to the capacity of the knapsack [64]. 

The number of knapsacks may vary. In the 0-1 Multiple Knapsack Problem [65], 

there are a total of 𝑚 knapsacks with capacities 𝑐1, 𝑐2, … , 𝑐𝑚. Similar to the 0-1 

knapsack problem, the aim is to maximize the value of items subject to each item 

selected must be put in all 𝑚 knapsacks. Another special case of the problem is the 

bounded knapsack problem [66] that considers a limited number of each item. If there 

is no limit on the number of items to use, this problem transforms into an unbounded 

knapsack problem [67]. 
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Maximizing the profit while having more than one weight (cost) is addressed in 

Multidimensional Knapsack Problem [68]. In the cases where 𝑥 is not an integer, the 

problem becomes a Fractional Knapsack Problem [69]. 

There are other variation of the KNAPSACK problem, which are beyond of the 

scope of this thesis including the Temporal Knapsack Problem [70], Interactive 

Knapsack problem [71], Dynamic and Stochastic Knapsack Problem [72], Partially 

Ordered Knapsack [73], Static Stochastic Problem [74], and Change Making 

Problem [75]. 

In the object search problem, each operation is independent and unique. The process 

of action selection is binary, i.e. an operation is either selected or not. Each action is 

only selected once given the probability (profit) of the action is reduced to zero once 

selected. Given this definition, the problem of object search with a single constraint 

can be regarded as a 0-1 knapsack problem as follows: 

` 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃[𝑭] =  ∑ 𝑝(𝒇𝑗)

𝑛

𝑖=0

𝑥𝑗 , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇[𝑭] =  ∑ 𝑡(𝒇𝑗)

𝑛

𝑖=0

𝑥𝑗 ≤ 𝑲. 

𝑥𝑗  ∈ {0, 1} ,  𝑗 = 1, 2, … , 𝑛 (4.3) 
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It is important to note that if we intend to use multiple constraints for the search 

(e.g. time and energy consumption), a multidimensional knapsack would be a more 

adequate choice.  

 

4.3 The practical limitations of optimizing object search 

Thus far, in every definition of the KNAPSACK problem, the profit and weight of each 

item are known in advance and constant, and the order of selecting the objects does not 

alter the final result. This is with the exception of the stochastic knapsack problem in 

which one component of the problem is not completely known in advance or may be 

subject to change.  

In practice, only the constraint of search is known and constant throughout the 

process. Depending on the order of choosing actions, the value and cost of each 

operation changes. This implies that two sets of identical operations with different 

orders may result in dissimilar values and costs. 

Assume we want to perform two operations 𝑓1 = (𝑆1, 𝑎) and 𝑓2 = (𝑆2, 𝑎) with the 

probabilities of detecting a target 𝑝(𝑓1) and 𝑝 (𝑓2), where  𝑆𝑗 is the camera’s 

configuration parameters and  𝑓𝑗 is the action for 𝑗 = 1, 2. We assume that the number 

of cubic elements in 𝑓𝑗’s effective field of view is given by 𝜓𝑗. 

Lemma 1 
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   𝑝(𝑓1 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) + 𝑝(𝑓2 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 | 𝑓1 ≠ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) =

 𝑝(𝑓2 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) + 𝑝(𝑓1 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 | 𝑓2 ≠ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) (4.4) 

If  𝜓1 = 𝜓2 𝑎𝑛𝑑 𝜓Ω > 𝜓1 + 𝜓2. 

Proof 

The probability of each action is given by  

 𝑝(𝑓) =
ψ𝑓

ψΩ
  

where Ω is the search space and ψ𝑓1
∩ ψ𝑓2

= ∅, 

 

ψ𝑓1

ψΩ
+

ψ𝑓2

ψΩ − ψ𝑓1

=  
ψ𝑓2

ψΩ
+

ψ𝑓1

ψΩ − ψ𝑓2

 

ψ𝑓1
(ψΩ − ψ𝑓1

) +  ψ𝑓2
ψΩ

ψΩ(ψΩ − ψ𝑓1
)

=
ψ𝑓2

(ψΩ − ψ𝑓2
) +  ψ𝑓1

ψΩ

ψΩ(ψΩ − ψ𝑓2
)

 

(ψΩ
2 − ψ𝑓2

ψΩ)(ψ𝑓1
ψΩ − ψ𝑓1

2  +ψ𝑓2
ψΩ)

= (ψΩ
2 − ψ𝑓1

ψΩ)(ψ𝑓2
ψΩ − ψ𝑓2

2  +ψ𝑓1
ψΩ) 

ψ𝑓1
ψΩ

3 − ψ𝑓1

2 ψΩ
2 +  ψ𝑓2

ψΩ
3 − ψ𝑓1

ψ𝑓2
ψΩ

2 + ψ𝑓1

2 ψ𝑓2
ψΩ − ψ𝑓2

2 ψΩ
2 = 

ψ𝑓2
ψΩ

3 − ψ𝑓2

2 ψΩ
2 +  ψ𝑓1

ψΩ
3 −  ψ𝑓1

ψ𝑓2
ψΩ

2 + ψf1
ψ𝑓2

2 ψΩ −  ψ𝑓1

2 ψΩ
2  

ψ𝑓1

2 ψ𝑓2
ψΩ = ψf1

ψ𝑓2

2 ψΩ 

ψf1
= ψ𝑓2

 

 

(4.5) 

QED.  
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     Intuitively, the sum of probability of performing two actions 𝑓1 and 𝑓2 are equal if 

their influence ranges cover the same amount of space. This means if this equality does 

not hold the order of selecting the actions matter.    

Similarly for the cost of operations, let 𝑆0 = {𝜃0, 𝜔0, 𝜎} be the current camera 

setting, where 𝜃0 =  {x0, y0, z0} is the camera position in 3D environment Ω, 𝜔0 =

{𝑝0, 𝑡0} the angles of pan and tilt, and 𝜎 = {𝑤, ℎ} the width and height of the camera’s 

field of view. 

It is trivial to show that there are cases in which the order of selecting actions 

influences the overall cost of search (see Section 4.5.1). Hence, the value and cost of 

operation allocation 𝑭 could be different depending on the order in which each action 

is applied. This points to the fact that in order to globally optimize a search, we are 

dealing with the permutation of operations other than combination. As a result the time 

complexity of solutions and the size of the search space is significantly increased.   

 

4.4 Solutions to 0-1 knapsack problems 

4.4.1 Exact solutions 

4.4.1.1 Brute Force 

The most straightforward approach to solve the KNAPSACK problem is to consider 

every possible combination of components and select the one that yields the highest 
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value. The time complexity of brute force for solving the object search knapsack is 

𝑂(𝑛!) given the total number of possible permutations as follows: 

 ∑
𝑛!

(𝑛 − 𝑘)!

𝑛

𝑘=0

≈  𝑒 ∗ 𝑛! (4.6) 

where 𝑘 is the size of permutation and 𝑛 the total number of operations. To that extent, 

the brute force approach is extremely inefficient as a solution to object search. For 

example, assume we have a search application where the robot has a total of 20 

discretized directions to look toward and 30 possible locations to perform the search 

from. The resulting number of operations is 600 to choose from. The time requirement 

of selecting a sequence of operations is given by, 600! ∗ 𝑒 ≈ 3.46 ∗ 101408. This is 

neither feasible nor possible in any available practical system.  

4.4.1.2 Dynamic Programming 

One of the most common techniques of finding an exact solution to the KNAPSACK 

problem is dynamic programing [76]. Recalling (4.2), using dynamic programming, a 

maximum subset of the items can be calculated as follows: first, a 2-dimensinal array 

𝑓(𝑘, 𝑦) is created, where 𝑘 and y are integer and 0 ≤ 𝑘 ≤ 𝑛 and 0 ≤ 𝑦 ≤ 𝑐 where 𝑛 

and 𝑐 are the number of items and capacity respectively. The 𝑓(𝑘, 𝑦) values are given 

by 
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𝑓(0, 𝑦) = 𝑓(𝑘, 0) = 0 

𝑓(𝑘, 𝑦) = {
𝑓(𝑘 − 1, 𝑦)                                                                      𝑖𝑓 𝑤𝑘 > 𝑦 

max{𝑣𝑘 + 𝑓(𝑘 − 1, 𝑦 − 𝑤𝑘), 𝑓(𝑘 − 1, 𝑦)}      𝑖𝑓 𝑤𝑘 ≤ 𝑦 𝑎𝑛𝑑 𝑘 > 0
. (4.7) 

This would lead to finding the maximum obtainable value from 𝑛 items in 𝑓(𝑛, 𝑐). 

To estimate the value of 𝑥𝑗, we perform backtracking by 

 

repeat for 𝑘 = 𝑛 − 1, … ,1 , 

𝑥𝑗 = 1  𝑖𝑓 𝑓(𝑘, 𝑦) ≠ 𝑓(𝑘 − 1, 𝑦), 

𝑥𝑗 = 0 𝑖𝑓 𝑓(𝑘, 𝑦) = 𝑓(𝑘 − 1, 𝑦), (4.8) 

where the capacity for previous items is 𝑦 = 𝑦 − 𝑤𝑘𝑥𝑘. The time complexity of 

dynamic programing is pseudo-polynomial with 𝑂(𝑐𝑛). 

     Applying dynamic programing to the object search knapsack imposes a number of 

limitations. The dynamic programing splits constraint (capacity) into equal intervals. 

In object search, these intervals should be in real numbers in the order of thousands to 

accommodate variation in the probability values of operations. This significantly 

increases the size of sub problems. In addition, the main assumption of dynamic 

programing is that the profits and weights are constant throughout the process. Hence, 

this solution has no mechanism to address the changes in the probability values and 

costs of search operations.  
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4.4.1.3 Branch-and-Bound 

A well-known branch-and-bound technique was introduced by Horowitz and Sahni 

[77]. This method consists of two operations: forward move in which the largest 

possible set is inserted into the current solution and backtracking move where the last 

inserted item is removed from the current solution. At any point when the next best 

item cannot be selected, an upper bound value 𝑈 is calculated and compared to the best 

solution so far to realize whether a forward move could result in a better solution. If 

not, a backtracking move is performed. The algorithm terminates when no further 

backtracking is possible. 

Despite the fact that branch-and-bound on average has a lower processing time than 

brute force due to the pruning of branches throughout the process, it has the worst case 

timing of 𝑂(𝑛!). In addition, for the instances of search with a large number of possible 

operations, the number of nodes and branches increases exponentially, which requires 

a significant amount of memory and time. 

4.4.2 Approximate solutions 

4.4.2.1 Greedy algorithm 

The most immediate approach toward estimating a solution to the knapsack problem is 

through the use of a greedy algorithm [78].  Suppose there are a number of items sorted 

according to their utility values given by 𝑝/𝑤. The greedy algorithm selects the items 
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in a descending order until a critical item is observed, i.e. the next best item does not 

fit into the knapsack.  

The greedy algorithm can converge to an optimal solution and has the worst-case 

performance ratio of ½. The time complexity of the greedy algorithm is 𝑂(𝑛𝑙𝑜𝑔𝑛) +

𝑂(𝑛) and it only requires memory size of 𝑆(𝑛). In the case of object search, the greedy 

approach is slightly different. Because the values of remaining operations should be 

recalculated after selecting each action, we omit the sorting step and instead only select 

the action with the highest utility value each time. In this scenario, the processing time 

is increased to 𝑂(𝑛2).  

 The major drawback of the greedy approach in object search is that it only picks 

actions one at a time and lacks the global view of consequence of each action on the 

overall cost constraint of the search.  

4.4.2.2 Extended Greedy Algorithm 

The extended greedy algorithm [79] is an improved version of the greedy algorithm in 

which the model continues selecting the next best items until the knapsack is full or it 

reaches the last item. It is trivial to show that the processing time of extended greedy 

algorithm to solve object search is also 𝑂(𝑛2). 

4.4.2.3 Polynomial-Time Approximation Schemes (PTAS) 

Approximation schemes are a group of techniques that allow one to achieve any 

prefixed performance ratio at the expense of increasing the processing time. The most 
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common approaches in this category are Polynomial-Time Approximation Schemes 

(PTAS) [80] and Fully Polynomial Approximation Schemes (FPTAS) [81] from which 

PTAS will be discussed briefly. 

Suppose items are sorted according to their utility values with profits 𝑝𝑗  and 

weights 𝑤𝑗 to be fit in a knapsack, subject to capacity constraint 𝑐. Let 𝑧ℎ = 0 be the 

highest value so far, to maximize the value of the knapsack using PTAS, the subsets of 

the items are calculated by 

 ∀ 𝑚 ∶  0 ≤ 𝑚 ≤ 𝑘  &  𝑚 ∈ ℤ, 𝑀 = ( 𝑛
𝑚

) ∶ ∑ 𝑤𝑗 ≤ 𝑐𝑗∈𝑀   (4.9) 

where 𝑀 set of the subsets and 𝑘 is a non-negative integer denoting the maximum size 

of the subsets. For each subset, starting from empty, 𝑀 = {}, the corresponding items 

are fixed in the solution and the capacity is adjusted by  

 �̂� = 𝑐 − ∑ 𝑤𝑗 .
𝑗∈𝑀

 (4.10) 

Then, the final value of the knapsack, considering �̂� = �̂� − 𝑤𝑖  after the selection of 

each new item 𝑖 is given by 

 

𝑧 =  ∑ 𝑝𝑗
𝑗∈𝑀

+  ∑ 𝑝𝑖
𝑖∉𝑀

 ∶   𝑤𝑖 ≤  �̂�  

𝑧ℎ = 𝑧  𝑖𝑓 𝑧 > 𝑧ℎ 

(4.11) 
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𝑖 = 1, 2, … , 𝑛. 

The processing time of PTAS is exponential with respect to the value of 𝑘 given by 

𝑂(𝑛𝑘+1)and it has the space complexity of 𝑆(𝑛). The worst case performance ratio, 𝑟,  

also is dependent on 𝑘, computed by 𝑟 = 𝑘/(𝑘 + 1). This property of PTAS provides 

a flexibility to achieve different performance rates with respect to the allowable 

processing time of any given applications.   

In the case of object search, the space complexity of PTAS remains the same as the 

maximum size of each set would not exceed the total number of items. However, the 

processing time significantly increases. After choosing an operation, the probability 

values and costs of the remaining ones have to be recalculated and sorted again, which 

add at least a factor of  𝑂(𝑛𝑙𝑜𝑔𝑛) to each sub-problem. Permuting each subset M also 

increases the total number of sub-problems significantly, and as a result, the overall 

processing time. For instance, in the above problem using 𝑘 = 2, there are at most a 

total of 16 subsets whereas 26 permutated ones.  

 

4.5 Knapsack solution to object search 

Object search, as mentioned earlier, is different in nature to the classical knapsack 

problems. It deals with the permutation of actions in which the values and costs of 
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operations change depending on the order of selections limiting the use of the solutions 

mentioned above in the context of search. This points to the need for a new formulation 

to accommodate the requirements of object search. In the following sub-sections, we 

propose three sensor planning strategies designed based on the solutions to the classical 

knapsack problem. 

 

4.5.1 Cost function in object search 

 In [17], Ye considers the cost of actions only when a robot relocates to a new position. 

This is a reasonable approach, since he employs a greedy approach and the fact that the 

cost of each action is similar in a stationery position. For the purpose of a global 

optimization approach, however, we generalize this idea in two ways: first we consider 

all the costs associated with performing each action including changing the direction 

of the pan-tilt unit, applying the recognition algorithm, relocating the robot and any 

other processes associated with the algorithm (e.g. path planning). These costs have to 

be considered in order to estimate the remaining constraint in each stage of the search 

and act accordingly. 

     Second, we distinguish between the cost of each action even if both are performed 

from the same location. In practice, (as shown in lemma 2) the cost of a sequence 

depends on the order within which it is applied regardless of the location of each 

operation.  For instance, assume a scenario in which the current pan angle of a camera 
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is 0. We have two operations 𝑓1 and 𝑓2 to perform from the same location each with 

pan angle 40 and 120 degrees respectively. If the order of application is 𝑓1𝑓2, the pan 

unit has to turn 40 + 80 = 120 degrees. Applying the same actions in a reverse order, 

pan unit has to turn 120 + 80 = 200 degrees. Given certain costs are associated with 

altering the pan unit’s angle, such as time or energy it consumes, one can easily see 

why applying two actions may incur different costs. 

     For the purpose of this study, the cost of operations is measured in terms of the time 

they take to complete, energy a system (robot and processing unit) consumes to perform 

those operations and the distance travelled by the robot throughout the search. The first 

two cost functions are similar in the sense that every component of an action incurs 

them. The latter, however, is different because it is only applied when the robot moves 

to a new location. This means operations from same locations are identical in terms of 

the cost they incur, i.e. the cost of performing them is equal to 0.    

  

4.5.2 Greedy Search with Constraint (GSC) 

Perhaps the simplest approach to solving the problem of object search is the use of a 

greedy algorithm similar to the one introduced by Yiming Ye [17]. Due to the issues 

mentioned earlier, nevertheless, we need to modify this algorithm to first, take into 

account the overall constraint of the search and act accordingly and second, not to be 

dependent on any prefixed threshold. 
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Here, we propose a greedy algorithm with some modification to behave according 

to a constraint.  The probabilities and costs of all operations are calculated and placed 

in two arrays of 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} and 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} respectively. The utility of 

actions are measured by 

 𝑈(𝜏) = {
𝑝1

𝑡1
,
𝑝2

𝑡2
, … ,

𝑝𝑛

𝑡𝑛
} (4.12) 

where 𝑈(𝜏) is the set of all utilities at time 𝜏. The next operation then is selected by 

 𝑓(𝜏) = max {𝑈(𝜏)} (4.13) 

where 𝑓(𝜏) is the action chosen at time 𝜏. Note that because the probabilities and costs 

of operations should be recalculated after each selection, instead of sorting the elements 

of set 𝑈, the algorithm simply picks the maximum value. This reduces the time 

complexity from 𝑂(𝑛𝑙𝑜𝑔𝑛) to 𝑂(𝑛) at each stage.  

The model behaves greedily by selecting the actions with the highest utilities until 

a percentage of the cost constraint, 𝛼, is reached. At this stage, the algorithm chooses 

the next action in regard to its probability distribution as follows: 

 

𝑈′(𝜏) = {𝑝1, 𝑝2, … , 𝑝𝑛} 

𝑓′(𝜏) = max{𝑈′(𝜏)} ∶  𝑡𝑗 ≤ �̂�(𝜏)  
(4.14) 
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where 𝑡𝑗 denotes the cost of an action, and �̂�(𝜏) the remaining search constraint at time 

𝜏. Intuitively, once percentage of constraint 𝛼 is reached, the algorithm selects the next 

best action according to its probability value instead of its utility with respect to cost. 

The major weakness of the greedy algorithm, in this context, is the locality of its 

scope, i.e. it lacks the ability to look ahead of its current action to determine how it 

affects the later stages of the search. This is an expected behavior because after 

applying each operation, the values of remaining actions change, which are not 

foreseen by the algorithm. To address this issue, Ye assigns a threshold to move the 

robot to a new location. By changing this value, one can determine how fast the robot 

should span the range of its search.  

In the GSC algorithm the movement of the robot occurs naturally. Depending on 

how salient locations beyond the effective range of the camera look from the robot’s 

perspective, it decides when to relocate. The 𝛼 value also induces the robot to move to 

a new destination. The greater the value of 𝛼, the faster the robot tends to expand its 

scope of search and vice versa.  

 

4.5.3 Extended Greedy Search (EGS) 

Extended Greedy Search (EGS) is a direct adaptation of the extended greedy algorithm 

explained earlier in Section 4.4.2.2 with some modifications to account for the object 
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search characteristics. Similar to GSC, the utility of operations are calculated according 

to equation (4.15). Then, a sequence of actions to be performed during the search is 

given by   

  

𝐹(𝜏) = { 𝑓1, 𝑓2, … , 𝑓𝑚},     𝑚 ≤ 𝑛 

𝑓1 =  max{𝑈(𝜏)} : 𝑡1 ≤ 𝐾 , 

𝑓𝑗 = max {𝑈 (𝜏𝑓𝑗−1

+ ) − 𝑢𝑗−1} ∶ 𝑡 ≤ 𝐾 −  ∑ 𝑡𝑚

𝑗−1

𝑚=1
 

𝑗 =  2, 3, … , 𝑛, 𝑢𝑗−1 =
𝑝𝑗−1 

𝑡𝑗−1
 

 

(4.15) 

where 𝐹(𝜏) denotes the sequence of actions 𝑓𝑗, 𝑈(𝜏) is the utility of the operations at 

time 𝜏, 𝑈 (𝜏𝑓𝑗−1

+ ) is the utility of operations at time 𝜏 just after the selection of action 

𝑓𝑗−1, 𝑡𝑗  is the cost of action 𝑓𝑗 and 𝐾 represents the overall constraint of the search. It 

is important to note that, the sequence of actions is formed before the application of 

any operation to the environment. Therefore, EGS does not have any information 

regarding the environment, e.g. the saliency clues, the first time it generates an action 

sequence.  

The lack of knowledge regarding the environment implies a number of potential 

problems for the EGS algorithm.  The most dominant one is increasing the chance of 

selecting an action that the robot is unable to perform due to the adjacency of the 

operation’s location to an obstacle. In such a situation, the algorithm needs to generate 

an entire new sequence, which can add to the overall cost of the search.  
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4.5.4 Dynamic Look Ahead Search (DLAS) 

We saw that in the previous sections designing an exact solution to the problem of 

object search is quite challenging. This is primarily due to the fact that if the order of 

choosing actions in a search changes, the overall probability value and cost of the 

search may change. 

     To find a near optimal solution to the problem of search, while reducing the 

complexity of the problem, both in terms of time and space, we propose some 

modifications to the brute force approach.  We begin by creating the list of actions 

permutations in which instead of calculating all possible subsets, we incrementally 

create the list. This means, we start by permuting 2 actions as follows:  

{𝑓11(𝜏0)𝑓21(𝜏𝑓11

+ ), 𝑓11(𝜏0)𝑓20(𝜏𝑓11

+ ), … , 𝑓𝑛𝑖(𝜏0) 𝑓(𝑛−1)𝑖(𝜏𝑓𝑛𝑖

+ )} 

𝑖 = 0, 1,   (4.16) 

where (𝜏𝑓𝑗𝑖

+ ) is the time after operation 𝑓𝑗1is applied and 𝑛  is the total number of 

operations available to choose from. 

     At this stage, less optimal sets and the ones that exceed the search constraint are 

pruned. Determining the optimality of a sequence at this stage is difficult without 

having a prior knowledge of the search environment. Here, we use an estimate to select 

subsets that are near optimal as follows: if a subset has a higher cost in comparison to 
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others while yielding a lower probability value is considered as non-optimal. Based on 

this assumption, non-optimal subsets are removed from the list. The optimality measure 

is explained in details in Section 4.5.4.1. 

       The optimized sets are then combined with one more action to form subsets of 

three operations. In this manner, if adding one more action causes a subset to exceed 

the constraint, it is discarded. Once again after creating a new list, the subsets are 

optimized as before.  

     The process of synthesis and pruning continues until the maximum size of subsets 

defined by a user is reached. It is obvious to see that considering bigger subsets can 

eventually result in more optimal solutions but at the expense of a higher computation 

cost. However, after the list of possible action sequences is generated, the subset with 

the maximum probability value is selected as a candidate to be performed by the search 

agent. Note that an action sequence is generated without having any knowledge of the 

environment. So, if the robot is unable to perform an action due to its vicinity to an 

obstacle, an entire new action sequence is generated.  

     The time complexity of the proposed method is 𝑂(𝑛!/(𝑛 − 𝑘)!), where 𝑘 is the 

maximum subset size defined by a user. In practice, the computation time of the 

algorithm is much less because the optimization of subsets significantly reduces the 

size of the list.   
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4.5.4.1 On optimality measure of subsets 

Measuring the optimality of solutions calculated with DLAS is challenging. 

Mathematically it is difficult because the optimality of a solution is highly dependent 

on the context in which it is used. It is also challenging heuristically because the 

computation time of an exact solution such as brute force is not feasible for large 

instances of search. For instance, in the case of selecting 8 best operations out of 24 

available ones, applying brute force takes 3.5 days! 

     In this subsection, we present a different empirical study to show how much 

improvement can be achieved using the DLAS algorithm compared to an extended 

greedy approach. The extended greedy algorithm is chosen because as mentioned 

before it can result in an optimal solution with the worst performance measure of 50% 

optimal.   

     For evaluation purposes, we conducted over 10000 experiments in simulated 

environments similar to those shown in Chapter 5. The search parameters also were 

selected similar to our practical experiments. The environments were discretized into 

voxels of size 100 𝑚𝑚3and pan-tilt angles were discretized comprising a total of 15 

possible directions. The number of locations available to the agent was approximately 

30 in each environment creating more than 400 possible operations for 
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the algorithms to choose from.  The starting location and direction of the robot in each 

experiment was randomized. We only considered time constraint for these experiments 

ranging from 500 to 1500 seconds. For the DLAS algorithm, the maximum size of 

action sequences was set between 4-30 operations. 

     Figure 4.1 illustrates the results of our evaluations. As one would expect for small 

size of operation sequences, DLAS performs poorly. Of course after performing the 

initial sequence, if there is any remaining time, the algorithm would generate another 

sequence and continue the search.  The performance of DLAS clearly is superior for 

instances where the algorithm selects 8 actions or more, where an improvement of at 

least 10% is observed.  
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Figure 4.1: The performance improvement measure of using the DLAS algorithm in 
comparison to EGS. 
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4.6 Summary 

In this chapter, three sensor planning algorithms were proposed to select appropriate 

search operations with respect to a cost constraint. The GSC algorithm is an 

approximate approach that greedily selects actions according to their utility values. Yet, 

once a percentage of the constraint is reached, it picks the operations with the highest 

probability values instead. 

Another variation of greedy algorithms is the EGS method that greedily selects all 

the actions prior to the search. The disadvantage of this model is the lack of knowledge 

regarding the environment and a high chance of selecting the actions that the robot is 

unable to perform.  

An improved approximate solution to object search, namely DLAS, was introduced 

that globally optimizes the search. This model achieves a near optimal solution at the 

expense of very low computation time, hence, makes it a suitable option to be used in 

robotic applications.    
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5 Experimental Evaluation 

 

In this chapter, an empirical evaluation of the proposed methods is presented. Section 

5.1 presents an evaluation of the use of saliency in visual search using Ye’s sensor 

planning strategy to determine what performance improvements can be gained through 

the use of saliency. Section 5.2 shows runs of the proposed sensor planning strategies 

in Chapter 4 with different types of cost functions. Here the objective is to highlight 

the differences between each search strategy and to show which technique performs 

the best.  

 

5.1 Saliency in visual search experiments 

The saliency mapping technique used in our experiments follows the same procedure 

described in Section 3.4. The sensor planning strategy is the same as the one 

implemented by Shubina [30], which will be explained briefly in the next few 

subsections.  

5.1.1 Sensor planning strategy 

The search process is divided into two steps similar to that introduced in Chapter 2, 

namely “where to look next” and “where to move next”. Prior to the search, the robot 

does not have any information regarding the environment except the dimensions and 
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locations of its external boundaries. Therefore, a uniform probability distribution is 

used to characterize the environment. Probability threshold Θ𝑚𝑜𝑣𝑒 was empirically set 

to 0.05, meaning that if the probability of all available actions fall below that value, 

then the robot selects a new destination to explore. 

 

5.1.2 Recognition algorithm 

The detection model used in the experiments is based on normalized gray-scale 

correlation [82], as implemented by Shubina [30]. This algorithm is not view-

independent, meaning that the target is only recognized when facing toward the camera 

up to some degree of transformation (in depth rotation). This algorithm reduces the task 

of 3D recognition to 2D recognition by relying on only one view of the object. In 

addition, the algorithm is scale and rotation (in the plane) invariant as long as the object 

stays within the detection range. Shubina [30] shows that this algorithm can handle up 

to 45 degrees of in depth rotation as long as the illumination of the target does not 

change significantly.  

 

5.1.3 Navigation and localization 

A stereo camera is used to supply sensory inputs for navigation purposes. The images 

captured through the camera are used to create a depth map of the environment using 
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OpenCV libraries. The depth information is transformed into a 2D grid of the search 

space used by the robot to select its path. The accuracy of the depth map highly depends 

on what the camera is pointing at but in general it is about 3 cm depth for the range of 

3m. The depth error significantly increases beyond 10m to more than 30 cm. 

The path planning is handled locally at each point of movement. The robot captures 

images from the direction of interest, builds an obstacle map and identifies the gaps 

that the robot can move through. Along the available paths, the robot chooses the first 

one it identifies by checking first the direction pointing toward its final destination and 

if occupied, checking the next best direction.  

The localization of the robot in the environment depends upon the internal robot 

encoders and odometry information. Given the small size of our test environments and 

the fact that the robot does not relocate more than a few times throughout the search, 

the localization error is negligible.  

 

5.1.4 Test environments 

Four scenarios were used to conduct the experiments. Three were office environments 

furnished with desks, chairs and shelves and the forth was an outdoor terrain simulation 

of ground and rocks. Figures 5.1 and 5.2 show the images of the environments along 

with their top views.  
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Figure 5.1: The environments where the experiments were conducted. The 
dimensions of the environments from the top to bottom are, 6.23 x 6.20 m and 2.8 x 
11.5. 
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Figure 5.2: The environments where the experiments were conducted. The 
dimensions of the environments from the top to bottom are, 4.73 x 9.30 m and 5.50 x 
3.80 m. 
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5.1.5 Hardware  

The search agent was implemented on a Pioneer 3 mobile robot (Figure 5.3) with four-

wheel differential–drive. The robot was equipped with a Point Grey Bumblebee 2 

stereo camera mounted on a Directed Perception pan-tilt unit. The robot contains an 

on-board computer with a Core Duo Intel CPU and 1GB RAM responsible for 

controlling the motors, capturing and transmitting images. The rest of the computation 

is handled by an off-board PC with a 2.67 GHz, 12 Core Intel Xeon CPU, 24 GB RAM 

and a Tesla C2050 graphic card.   

Figure 5.3: The robot used in the experiments. 
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5.1.6 Search parameters 

The search environments were discretized into voxels of size 50 𝑚𝑚3 each, and the 

target’s probability values were represented for each. The maximum height to search 

was set to one meter and the interior configurations of the environments were unknown 

to the robot (e.g. layout of tables, chairs, etc.). Thus, a uniform probability distribution 

for target presence was considered for each environment given by 𝑝 =

1

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑜𝑥𝑒𝑙𝑠
.  

The pan and tilt angles of the camera were limited to (−158𝑜 , 158𝑜) and 

(−20𝑜 , 30𝑜) respectively. A subset of pan and tilt angles was used comprising a total 

of 142 possible directions. Threshold Θ𝑚𝑜𝑣𝑒 was empirically set and remained constant 

for all the experiments.  

The AIM saliency maps were generated using a kernel size of 21 𝑥 21 𝑝𝑖𝑥𝑒𝑙𝑠 with 

25 ICA features, trained over a large number of natural and indoor samples. A 

percentile value of 80% was empirically set to threshold the AIM saliency results. To 

minimize the computation time of AIM, it was implemented on the GPU, reducing the 

processing time from approx. 15 seconds on a fully parallelized code running on the 

CPU to less than 0.8 seconds. 
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The HB algorithm was applied to pixelwise normalized images. An index size of 

32 was used to create the 3D histograms of the images with a threshold value set 

empirically to minimize the number of outliers.  

Figure 5-4 shows the object used in our experiments. This target is chosen because 

the detection algorithm in 5.1.2 shows a robust performance in recognizing this target 

in various lighting and view angles. In these experiments, the goal is to evaluate sensor 

planning strategies. Hence, having a robust algorithm to recognize an object is 

necessary to highlight the actual performance of each search method regardless of the 

detection errors that might be introduced by the recognition algorithm. We will 

speculate on the impact of an object characteristics on saliency results later in this 

chapter.    

5.1.7 Experiments 

The primary objective of these experiments was to measure how much improvement 

can be achieved by the application of saliency to object search. Hence, we conducted 

Figure 5.4: The object used in the experiments. 
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two sets of experiments, one with and one without the use of saliency. The performance 

of each method was measured in terms of the number of actions performed to detect 

the target, the time of search and the total distance travelled by the robot. In the 

remainder of this chapter, we refer to the search with saliency as “𝑆𝑠𝑎𝑙” and the search 

with no saliency as “𝑆”. It is important to note that except the use of saliency, 𝑆𝑠𝑎𝑙 and 

𝑆 are identical in every aspect. 

A total of 126 experiments were conducted by placing the robot and the target 

(Figure 5.4) in various locations. Figure 5.5 illustrates these combinations in each 

environment. The red and yellow rectangles represent the robot and the smaller red 

rectangle is the object of interest.   

5.1.7.1 Search with no saliency (𝑆) 

In this subsection, we describe an instance of 𝑆 in environment 5.5c. Figures 5.6-10 

illustrate the entire process of the search with the image captured through the camera, 

a 2D representation of the probability distribution map and the top view of the 

environment.  In the probability maps, the black colored regions refer to areas searched 

by the robot, the green spots the obstacles and the grey background the probability of 

the target’s location. 
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Figure 5.5: The placement of the robot (red-yellow rectangles) and target (small-
red rectangles) in each environment. a-c) Refer to the office environments and d) the 
outdoor terrain environment. 
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Figure 5.6: The search using 𝑆. Images are, the image captured by the camera (IC), 
a 2D representation of the probability distribution map (PM) and the top view of the 
environment (TV). The robot is at its initial position, searching the first two directions 
(pan, tilt) (20, 0) and (-60, 0) respectively. 
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Figure 5.7: The search using 𝑆. Images are, the image captured by the camera (IC), 
a 2D representation of the probability distribution map (PM) and the top view of the 
environment (TV). The robot is at its initial position, searching the third and fourth 
directions (pan, tilt) (80, 0) and (-120, 0) respectively. 
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Figure 5.8: The grid indicating the possible locations for the robot to move to. The 
center of each cell is a potential destination and the intensity refers to the sum of the 
probabilities of all directions observable from that location. The regions with the color 
black are those falling over obstacles, therefore not reachable by the robot.  

 

 

Figure 5.9: The search using 𝑆. Images are, the image captured by the camera (IC), 
a 2D representation of the probability distribution map (PM) and the top view of the 
environment (TV). The robot moves to the second position, and looks toward the fifth 
direction (pan, tilt) (20, 0). 
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Figure 5.10: The search using 𝑆. Images are, the image captured by the camera (IC), 
a 2D representation of the probability distribution map (PM) and the top view of the 
environment (TV). The last two observations by the robot (pan, tilt) (-60, 0) and (80, 
0). The target is found after performing the 7th action.  
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The search begins by calculating the probabilities of all possible directions by 

summing up the voxels’ probability values within the effective field of view. Then, an 

image is captured and processed, which fails to detect the target. Therefore, the 

probability of the space within the effective field of view is lowered to zero and 

redistributed to the rest of the environment.  

Three more directions are selected by the robot from its current location all of which 

fail to detect the target. At this point, the probabilities of the remaining actions fall 

below threshold Θ𝑚𝑜𝑣𝑒,  forcing the robot to select a new position to explore. To do so, 

the environment is divided into potential locations forming a grid. Each grid cell 

(location) is the size of the robot and its value is determined by the sum of the 

probabilities of all directions observable from that location (see Figure 5.8).   The robot 

chooses the location that yields the highest probability value and moves to its center. 

After arriving at the new position, the robot performs three more observations and 

detects the target after performing the 7th operation.  

5.1.7.2 Search with saliency (𝑆𝑠𝑎𝑙) 

Figures 5.11-14 show the application of 𝑆𝑠𝑎𝑙 in practice with the same configuration as 

the above. The figures are represented as before with an additional illustration 

indicating the saliency responses in the environment.  Moreover, the 2D probability 

maps are slightly different. They contain lighter grey spots pinpointing the location of 

saliency observed by the robot. These locations are estimated using the depth 
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information captured through the stereo camera. The intensity of these locations 

correspond to the strength of saliency observed by the robot, hence, their probability 

values are increased accordingly.  

The search strategy is similar to 𝑆 in which the direction with the maximum 

probability is selected and an image of the corresponding direction is taken. However, 

after failing to detect the target, a saliency map is developed to identify interest points 

beyond the effective range of the recognition camera. As it can be seen, there are high 

saliency responses over regions occupied by tables. Consequently, the probability of 

those regions are increased.  
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Figure 5.11: The search using 𝑆𝑠𝑎𝑙. Images are, the image captured by the camera 

(IC), a 2D representation of the probability distribution map (PM), the saliency map 
of the image (SM) and the top view of the environment (TV). The robot is at its initial 
position, searching the first two directions (pan, tilt) (20, 0) and (-60, 0) respectively. 
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Figure 5.12: The search using 𝑆𝑠𝑎𝑙. Images are, the image captured by the camera 
(IC), a 2D representation of the probability distribution map (PM), the saliency map 
of the image (SM) and the top view of the environment (TV). The robot is at its initial 
position, concluding its search at this point by looking toward direction (pan, tilt) (80, 
0). 

 

 

 

Figure 5.13: The grid indicating the possible locations for the robot to move to. The 
center of each cell is a potential destination and the intensity refers to the sum of the 
probabilities of all directions visible from that location. The regions with the color 
black are those falling over obstacles, therefore not reachable by the robot.  
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Figure 5.14: The search using 𝑆𝑠𝑎𝑙. Images are, the image captured by the camera 
(IC), a 2D representation of the probability distribution map (PM), the saliency map 
of the image (SM) and the top view of the environment (TV). The robot is at the second 
position, where it completes the search by performing two actions (pan, tilt) (-40, 0) 
and (40, 0) respectively.  
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     In this example, due to the high saliency responses in the distance, threshold Θ𝑚𝑜𝑣𝑒 

is reached after performing only three actions (as opposed to four actions in 𝑆). As a 

result, the robot moves to the next location and resumes the search from there. Relying 

on the saliency responses to select directions, the robot found the target with only two 

more operations, giving the  𝑆𝑠𝑎𝑙 method the advantage to detect the object with two 

fewer actions than 𝑆. 

The AIM algorithm, as explained in Section 3.2, generates the saliency responses 

of each local neighbourhood with respect to its surrounding areas. This means 

depending on the distance of the camera from a scene or the direction of view with 

respect to the scene, different saliency responses would emerge.  In practice, this is a 

common scenario for the robot to see a region multiple times from different angles or 

distances. To address this issue, the saliency responses of the locations are averaged, if 

they are observed more than once.   

5.1.8 Quantitative results 

In this section, we divide the results of the experiments into two groups of “Move” (M) 

and “No Move” (NM). The M group consists of the search scenarios in which the robot 

relocated at least once to detect the target. In such cases the object was placed far away 

from the initial location of the robot and was not detectable by the recognition 

algorithm. In the NM scenarios, the object was located within the effective range of the 

robot, hence, was found from its initial location. The reason behind this decision is that 
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the methods performed similarly in the NM situations, of course, with some minor 

disadvantage for 𝑆𝑠𝑎𝑙 in terms of the processing time of saliency. In each search 

strategy, the robot initially searches its surroundings before moving to a new location. 

Because the initial area is not seen beforehand, it has a uniform probability distribution 

(i.e. with no saliency information), which means similar directions are chosen 

regardless of the method of choice. 

Table 5.2 summarizes the average outcomes of the experiments in each 

environment. In this table, the results are presented in two groups of 𝑆 and 𝑆𝑠𝑎𝑙 each 

expressed in terms of the number of actions taken to complete the search, the duration 

of the search and the distance travelled by the robot to conclude the search. 

Table 5.1: The results of the experiments conducted in the test environments. The 
results are expressed as the average performance in each category.   

Office Location a 

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall 

No. of Actions 1.7 11.61 9.75 No. of Actions 1.7 8.69 7.37 

Duration of Search (s) 72.78 994.42 821.61 Duration of Search (s) 73.54 614.77 511.85 

Distance Travelled (m) 0 16 13 Distance Travelled (m) 0 7.6 6.2 

Office Location b 

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall 

No. of Actions 2.8 10.69 7.84 No. of Actions 2.8 9.13 6.84 

Duration of Search (s) 121.19 628.93 480.7 Duration of Search (s) 123.78 594.23 424.49 

Distance Travelled (m) 0 8.3 5.3 Distance Travelled (m) 0 6.5 4.2 

Office Location c 

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall 

No. of Actions 1.7 9.2 7.3 No. of Actions 1.7 7.7 6.17 
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Duration of Search (s) 73.29 647.95 504.29 Duration of Search (s) 75.03 568.77 442.56 

Distance Travelled (m) 0 11.3 8.5 Distance Travelled (m) 0 9.3 7 

Mars Simulated Environment 

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall 

No. of Actions N/A 7.22 7.22 No. of Actions N/A 5.9 5.9 

Duration of Search (s) N/A 402.22 402.22 Duration of Search (s) N/A 332.78 332.78 

Distance Travelled (m) N/A 3.5 3.5 Distance Travelled (m) N/A 3.28 3.28 

Total 

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall 

Avg. No. of Actions 2.06 9.68 8.03 No. of Actions 2.06 7.83 6.57 

Duration of Search (s) 89.08 681.88 552.205 Duration of Search (s) 90.78 527.64 427.92 

Distance Travelled (m) 0 9.76 7.56 Distance Travelled (m) 0 6.57 5.17 

 

It is apparent that, both methods performed similarly in cases where the object was 

found from the initial location of the robot. However, the performance gap increased 

in favor of 𝑆𝑠𝑎𝑙 when the robot moved at least once to detect the target. As can be seen, 

on average the 𝑆𝑠𝑎𝑙 algorithm improved the search in the cases of Move by 

approximately 2 actions, 154 seconds and 3.2 meters travel distance. 

A comparison between the methods is conducted in Table 5.3 to illustrate the 

percentage each method performed better in terms of the number of actions taken to 

conclude the search. Note that for the reasons mentioned earlier, only the cases of Move 

are considered in this evaluation. 
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Table 5.2: A comparison between 𝑆 and 𝑆𝑠𝑎𝑙 methods in terms of the number of 
action taken to complete the search. 

Method performed better Office a Office b Office c Mars Total 

𝑆𝑠𝑎𝑙 76.92% 68.75% 77.77% 55.55% 69.75% 

𝑆 7.69% 18.75% 11.11% 11.11% 12.17% 

Similar performance 15.38% 12.5% 11.11% 33.33% 18.08% 

  

The least performance improvement was achieved in the Mars environment, where 

the ratio of the environment size to the effective field of view is at the lowest. In this 

case, such performance is expected because there is a higher chance that 𝑆𝑠𝑎𝑙  selects 

similar operations as 𝑆.  

The effectiveness of saliency also reduces as the number of distracters increases 

within the environment. For instance, office b is populated with a large amount of 

furniture, therefore it yielded a lower performance improvement rate comparing to the 

other office environments. 

5.1.9 Effectiveness of saliency in search 

In the experiments presented earlier, the basic assumption was that in a typical 

environment objects are more likely placed on surfaces such as tabletops which are 

possibly to be observed as salient from an agent point of view. However, if this is not 

the case, saliency clues can play an opposite role in visual search. Instead of guiding a 
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robot to the object of interest, they would distract the attention of the robot to regions 

away from the actual place of the target. 

     Moreover, in our experiments we only used one object due to the complication of 

developing a robust recognition algorithm. It is important to note that target 

characteristics play an important role in the efficiency of saliency information. The less 

distinctive the features of an object be, the less salient the object is perceived by an 

agent. This, in particular, is true for the top-down saliency model if the target’s color 

is similar to its surroundings. The bottom-up saliency, however, is less affected. It still 

can be effective even though the object of interest does not stand out clearly from its 

surroundings. Given the main purpose of using bottom-up saliency is to produce 

indirect search clues, regardless of the characteristics of the target, the salient locations 

that are in spatial relation to the target still can be detected. 

     

5.2 Sensor planning experiments 

In this section, the sensor planning strategies with a predefined search constraint are 

evaluated. For this purpose, we used three different cost functions specifically the total 

time for the search, battery consumed by the system and the overall distance travelled 

by the robot. The same hardware and search parameters are used as before unless 

otherwise mentioned.   
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5.2.1 Operation cost calculation 

The cost of each action is calculated based on the following components involved in 

the search: the cost of the robot to move to a new location, the pan and tilt angle 

changes, and the costs associated with the image processing and environment mapping. 

The last two components are constant for every given operation because the processing 

of each image is identical. The pan and tilt angle changes are calculated by measuring 

the difference between an operation’s direction and the pan and tilt angles of the last 

action performed by the robot.  

Perhaps, the most challenging aspect of the cost calculation is the estimation of the 

distance travelled by the robot. This is mainly due to the fact that the environment is 

either unknown or partially known by the robot at the time of selecting actions. In 

addition, the performance of stereo cameras is limited to detect disparity. This is 

typically limited to some ranges above which the estimation error increases 

significantly. Therefore, we consider an uncertainty cost to be added to estimated 

distances above the reliable range of our stereo camera. This means operations in far 

distances are even less likely to be selected by the algorithm due to a higher rate of 

ambiguity. 

5.2.2 Experiments 

Due to a larger volume of experiments, from the test environments shown in Figures 

5.1-2, only the office locations were chosen with a sparser number of configurations as 
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shown in Figure 5.15. The environments were discretized by dividing each into the 

voxels of size 100 𝑚𝑚3. Each operation was defined in terms of the view direction 

and location of the robot. In these experiments, only 11 directions were considered by 

fixing the angle of the tilt and dividing the pan angles into 11 discrete portions.  As for 

the possible locations of the robot, the environments were divided into the cells of size 

equal to the radius of the robot.  

In the previous series of experiments, we established the benefit of saliency in 

visual search. Therefore, in the following experiments the saliency model is used as 

default in all algorithms. In the case of GSC algorithm, each time the algorithm selects 

an action it takes into account the saliency information. In the other two planning 

methods, if an action sequence is generated some time during the search, the saliency 

information is used.  

The cost constraint limits in each location were selected according to the average 

performance of the algorithms in the previous experiments. The reason for this decision 

is to make sure at least in some instances the target is found. This gives us a better 

insight on performance of each planning method. Table 5.4 shows the cost constraints 

of the search in each environment. Note that these parameters were the same for all the  
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Figure 5.15: The robot and target configurations in each environment. 

 

a) 

b) 

c) 
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Table 5.3: The search constraints in each environment. 

 Time (s) Energy (kJ) Distance (m) Action Count 

Office a 700 67.9 6 9 

Office b 640 62.4 7 8 

Office c 500 48.5 6.5 7 

 

strategies with the exception of the maximum action sequence size, which was only 

applied to DLAS. In addition, the 𝛼 value of the GSC algorithm (the value after which 

the algorithm selects actions based on their probability values) was set to 10%.  It is 

worth mentioning that for evaluation purposes, the cost constraints can be set to any 

desirable value.   

A total of 216 experiments were conducted using the strategies mentioned in 

Chapter 4, namely GSC, EGS and DLAS. Each method was tested in practice by 

applying different cost functions including time, energy consumption and distance. The 

following sub-sections demonstrate examples of each sensor planning technique using 

different types of cost constraints. The target in Figure 5-4 was used in these 

experiments. 

5.2.2.1 Distance 

Figures 5.16-17 show an instance of the GSC algorithm in office b, where the robot is 

positioned at the bottom left of the room and the target at the top right. In this example, 
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the cost of each action is calculated based on the distance traveled. Hence, at the initial 

location of the robot, the cost is equal to zero. This encourages the robot to fully search 

its initial position before considering a new one.  

Once the current location is fully explored, the robot chooses its next destination 

toward the top due to the high saliency responses of this area. Despite this, the robot 

conservatively moves upward for only a short distance. Such behaviour is expected for 

two reasons: first, the tendency of the greedy algorithm to locally select an action, and 

second, larger motion increase the uncertainty and cost of the operations. 

The robot searches the second location and repeats the same process in another 3 

destinations until it detects the target after performing 24 actions. Note that due to the 

large number of operations, only a few critical stages are demonstrated in the Figures. 

In this particular scenario, value 𝛼 is not triggered, therefore the search only behaves 

greedily.  

     One particular property of the GSC algorithm is its concentration on the areas of the 

environment populated with furniture. This increases the chance of detecting the target 

if it is placed on those furniture. Once again confirms the importance of saliency and 

how it can effectively guide the search agent to the regions of high importance.  
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Figure 5.16: The search process using the GSC algorithm with the distance 
constraint. From the left to right, a 2D representation of the 3D probability 
distribution map and the top view of the environment. The robot explores two 
positions.  

 



117 

 

 

  

 

  

  

 

 

 

 

  

 

 

 

 

Figure 5.17: The search process using the GSC algorithm with the distance 
constraint. From the left to right, a 2D representation of the 3D probability 
distribution map and the top view of the environment. The robot detects the target 
after exploring two directions from the fifth position. 
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EGS follows a similar routine to conduct the search as can be seen in Figures 5.18-

19. The algorithm first generates a sequence of operations to be performed in the 

search. Based on that, the robot begins by exploring its surroundings, and performs 7 

actions. Since the target is not found, the robot moves to the next location that is located 

on the right side of the room.  Here, the absence of saliency is apparent as the new 

destination is different from that was chosen in GSC.  

After exploring the second and third locations, a new action sequence is produced 

by EGS because the next destination is unreachable due to its vicinity to an obstacle 

(the round table). At this point, the saliency clues take effect in the new action 

sequence, changing the search route toward the regions on the top. 

Conforming to the new plan, the robot first inspects one more direction prior to 

moving to the next destination. Although this direction (shown by the yellow color at 

the bottom of the image) only covers an insignificant portion of the environment, its 

utility is still higher than the operations to be performed at the next spot primarily 

because of the large distance of the new location from the current position of the robot.  

The robot concludes the search after performing 25 operations and fails to find the 

target within the given constraint. 
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      Figure 5.18: The search process using the EGS algorithm with the distance 
constraint. From the left to right, a 2D representation of the 3D probability distribution 
map and the top view of the environment. The robot completes searching three 
locations after performing 14 actions.   
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Figure 5.19: The search process using the EGS algorithm with the distance 
constraint. From the left to right, a 2D representation of the 3D probability distribution 
map and the top view of the environment. The robot concludes the search and fails to 
detect the target after exploring 5 locations. 
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The DLAS algorithm demonstrates a very different behaviour (see Figures 5.20-

21). It first generates an action sequence to be performed during the search. Based on 

that, the robot only looks toward two directions and then moves to a new position. After 

searching the second location, the robot places itself at the third one and searches only 

one more direction. Thereafter, it attempts to reach the forth position but it fails to do 

so because the navigation cost exceeds the overall constraint.  

This example reveals two potential problems with DLAS. The first problem arises 

from limiting the number of operations generated by DLAS (to save processing time 

as described before). Applying a distance constraint to the search means if the robot 

searches all the directions from a position, it does not incur any additional cost except 

the cost of moving to that location. For the same reason in instances of the GSC and 

EGS algorithms, the robot always fully searches its current location until the 

probability values of all available actions are zero.  

DLAS on the other hand, attempts to maximize the probability by performing a 

limited number of actions in a given constraint. As a result, it prefers inspecting 

locations with larger unexplored surroundings. Hence, instead of fully searching its 

current location it moves to the next one.  This is a potential problem for DLAS 

algorithm because it explores a lower percentage of the environment during the search 

in comparison to GSC and EGS.   
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Figure 5.20: The search process using the DLAS algorithm with the distance 
constraint. From the left to right, a 2D representation of the 3D probability distribution 
map and the top view of the environment. The robot commences the search by 
performing the first four operations.   
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     Obviously, if time permits, one can calculate the complete solution using DLAS in 

which the target could be found. Figure 5.22 shows the 8-action approximate and full 

approximate solutions of DLAS to the search. The processing time of this solution is 

359.2 seconds in comparison to 19.9 seconds for the 8 action approximation. 

The second potential issue using DLAS is the difficulty to estimate the cost of each 

action (in this case distance) prior to the search when there is no information available 

regarding the environment. In the above example, DLAS produced an action sequence 

commanding the robot to move to four locations and look toward a total of nine 

  

  

Figure 5.21: The search process using the DLAS algorithm with the distance 
constraint. From the left to right, a 2D representation of the 3D probability distribution 
map and the top view of the environment. The robot finishes searching the third 
location is unable to move any further. 
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directions. However, from the position 2 to 3, the robot faces an obstacle, therefore it 

is must to travel a longer distance around the obstacle in order to arrive at the next 

location. This causes the actual distance travelled to exceed the one forecasted by the 

algorithm, therefore the robot fails to reach its final destination. 

5.2.2.2 Energy consumption 

The search examples with energy constraint were conducted in the same environment 

as before. Figures 5.23-24 illustrate the process of the GCS algorithm to find the target. 

Once again the search commences at the current location of the robot where it inspects 

three directions. Then the robot chooses its next destination on the top and continues 

the search from there. 

One may notice that the number of actions performed at the start is significantly 

fewer than the search with the distance constraint. This can be explained by the fact  

Figure 5.22: The comparison of the approximate solution using 

8 actions on the left and the complete solution on the right using 
DLAS. 
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Figure 5.23: The search process using GSC with the energy constraint. From the 
left to right, a 2D representation of the 3D probability distribution map and the top 
view of the environment. The robot searches its initial location and moves to the 
second one. 
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Figure 5.24: The search process using GSC with the energy constraint. From the 
left to right, a 2D representation of the 3D probability distribution map and the top 
view of the environment. The robot concludes the search and finds the target after 
looking toward the first direction from the third location. 
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that each operation now incurs a cost even from a stationary position. It causes the 

robot to expand the search faster to new locations in spite of inducing more costs.  

After the robot fully searches its surroundings on the second position, it moves to 

the next one, where it detects the target after executing only one more action. This 

counts to a total of 9 actions to find the target using GSC.   

The EGS algorithm (Figures 5.25-26) follows a similar route to GSC to perform the 

search. The major difference, however, is it does this more conservatively. The robot 

takes smaller steps to move forward each time it relocates to a new location. This makes 

EGS very inefficient in terms of timing or energy consumption even though it detects 

the target within the predefined energy constraint. 

Using the EGS algorithm, the search begins by inspecting three directions. Then 

the robot moves to a new position from where it searches two more directions. Once 

more, it relocates to another position and performs three more actions after which it 

fails to reach the next destination. At this point, a new action sequence is generated by 

EGS defining a different route to be searched.   

Following the new path and inspecting two more locations, the robot finally finds 

the target. The entire process is completed after performing 11 operations and 

relocating 4 times.  
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Figure 5.25: The search process using EGS with the energy constraint. From the left 
to right, a 2D representation of the 3D probability distribution map and the top view 
of the environment. The robot inspects the 3 locations and fails to move to the next 
one.  
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Figure 5.26: The search process using EGS with the energy constraint. From the left 
to right, a 2D representation of the 3D probability distribution map and the top view 
of the environment. The robot executes the new operation sequence and detects the 
target from the 5th location after inspecting one direction. 

 

     The DLAS algorithm also detects the target but after performing only 9 actions (see 

Figures 5.27-28). In this scenario, the robot explores two directions before deciding to 

relocate at which point it is unable to do so. Hence, DLAS generates a new action 

sequence through which the robot continues the search by exploring 4 directions at the 

second position and 2 more at the third one. At the final spot, the object is seen by the 

robot and the search is concluded. 
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Figure 5.27: The search process using DLAS with the energy constraint. From the 
left to right, a 2D representation of the 3D probability distribution map and the top 
view of the environment. The first two operations performed by the robot. 

 



131 

 

 

 

Figure 5-28. The search process using DLAS with the energy constraint. From the 
left to right, a 2D representation of the 3D probability distribution map and the top 
view of the environment. The robot concludes the search for the target by detecting it 
from the 4th location.  

It might be of interest to observe that how the 8-action approximate and complete 

solutions are in terms of efficiency and the processing time. Figure 5.29 shows both 

solutions from the left to right, the approximation using 8 actions and the complete 

solution with the processing times of 29 and 3033.8 seconds respectively. It is easy to 

see the superiority of the complete solution in terms of efficiency by observing the 

intensity of the background or the percentage of the environment forecasted to be 

Figure 5-29. The 8 action approximate (on the left) and complete 
(on the right) solutions of DLAS. 
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searched by the robot. However, such performance comes with a significant cost, 

increasing the processing time by more than 100 times, making the complete solution 

impractical to be used in the search. 

5.2.2.3 Time 

The last example in this series is illustrated by applying the time constraint to the 

search. We begin with an instance of the GSC algorithm in which the robot fails to 

detect the target (see Figures 5.30-31). It is worth mentioning that the path selection of 

the robot during the search is consistent with the previous examples, i.e. the robot 

always goes toward the regions populated with more furniture. 

In this example, the robot searches its initial position by performing 2 operations 

followed by moving upward where it explores 5 additional directions. It continues by 

approaching the third location and inspecting two more directions after which the 𝛼 

threshold is triggered, thus, the robot changes behaviour and selects an operation with 

the highest probability distribution with a cost less than the remaining time constraint. 

As for the last operation, the robot moves downward to a position in the vicinity of the 

previous one and searches one additional direction after which the search is terminated. 
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Figure 5.28: The search using the GSC algorithm with the time constraint. From 
the left to right, a 2D representation of the 3D probability distribution map and the 
top view of the environment. The robot inspects two locations. 
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Figure 5.29: The search using the GSC algorithm with the time constraint. From 
the left to right, a 2D representation of the 3D probability distribution map and the 
top view of the environment. The search is terminated and the robot fails to find the 
target. 
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The EGS method (Figures 5.32-33) also fails to detect the target within the given 

time constraint. The robot very slowly expands the search domain by conservatively 

selecting the new locations. After conducting the search from three locations and 

performing 7 operations, the robot fails to move to the 4th spot resulting in a new action 

sequence to be generated. 

In compliance with the new operation sequence, the robot executes another action 

from its current location and then moves to the next one. From this position, three more 

directions are inspected by the robot after which the search is terminated 

unsuccessfully.   

Applying the time constraint, the best performance was achieved by DLAS (see 

Figures 5.34-35). The robot looks toward two directions from its initial location and 

decides to relocate. Again the issue of destination and obstacle overlapping emerges, 

forcing DLAS to generate an improved version of the operation sequence.  

The robot follows the new sequence and moves to the far up and searches two more 

directions. At the end, from the third location, the robot detects the object of interest 

by performing a total of 7 actions. 
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Figure 5.30: The search using the EGS algorithm with the time constraint. From the 
left to right,  a 2D representation of the 3D probability distribution map and the top 
view of the environment. The robot searches the first 3 locations by performing 8 
operations. 
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Figure 5.31: The search using the EGS algorithm with the time constraint. From 
the left to right, a 2D representation of the 3D probability distribution map and the 
top view of the environment. The robot finishes the search and fails to find the target. 
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Figure 5.32: The search using the DLAS algorithm with the time constraint. From 
the left to right, a 2D representation of the 3D probability distribution map and the 
top view of the environment. The robot inspects its initial location.  
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Figure 5.33: The search using the DLAS algorithm with the time constraint. The 
top view of the environment. The robot finds the target by looking toward the seventh 
direction. 

 

In this instance of the search, the advantage of the DLAS global optimization is 

apparent. The search expands much faster and to more distant locations in comparison 

to EGS and GSC. This is particularly important in the cases where the search constraint 

is fairly low for the robot to explore an entire environment.  

As of the previous subsections, a comparison of the approximate and complete 

solutions of DLAS is presented in Figure 5.36. The processing time of the solutions are 

23.9 and 1824.9 seconds respectively. 

5.2.3 Quantitative results 

The results of the experiments are summarized for each individual environment in 

Tables 5.5-7 and the overall outcomes are reflected in table 5.8. The Tables are 
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categorized into 3 cost functions each divided into three sections reflecting the methods 

of search. The values are reflected in terms of the average time of the search and the 

energy spent by the system.  Moreover, the average distance travelled by the robot and 

the number of actions performed by it are also included.  

     In addition, the percentage that each method found the target is indicated followed 

by the average number of times action sequences were recalculated (ANAR) (only 

applicable to EGS and DLAS). Finally, two additional measures are added to illustrate 

the efficiency of each method: the average percentage of the environment searched 

(APS) by each method and the units of cost incurred per APS (UCA). The UCA values 

show that how efficient methods are in terms of the cost they incur for searching each 

percentage of the environment. A lower rate of UCA means the method of the search 

is more efficient. 

  

Figure 5.34: The 8 action approximate (on the left) and complete 
(on the right) solutions of DLAS. 
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Table 5.4: The table of the results acquired from the experiments conducted in 
office a environment. The values that are colored green are the best in each category. 
The abbreviations are as follows: Greedy Search with Constraint(GSC), Extended 
Greedy Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of 
Actions Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost 
incurred per APS. 

Office a 

Constraint Method Factor Avg. Spent % Found ANAR APS UCA 

Distance 

GSC 

Time (s) 1006 

89% N/A 51.32% 59.43 (mm) 
Energy (kj) 70.390 

Distance (m) 3.050 

No. Actions 17.44 

EGS 

Time (s) 984 

67% 0.11 48.79% 68.12 (mm) 
Energy (kj) 67.155 

Distance (m) 3.324 

No. Actions 15.44 

DLAS 

Time (s) 410 

67% 0.44 37.97% 104.71 (mm) 
Energy (kj) 36.831 

Distance (m) 3.976 

No. Actions 5.44 

Energy 

GSC 

Time (s) 453 

67% N/A 42.98% 818.68 (j) 
Energy (kj) 35.187 

Distance (m) 2.784 

No. Actions 7.33 

EGS 

Time (s) 587 

44% 0 46.04% 956.02 (j) 
Energy (kj) 44.015 

Distance (m) 3.224 

No. Actions 8.67 

DLAS 

Time (s) 503 

56% 0.78 45.39% 976.71 (j) 
Energy (kj) 44.333 

Distance (m) 4.299 

No. Actions 6.89 

Time 

GSC 

Time (s) 449 

44% N/A 44.25% 10.14 (s) 
Energy (kj) 35.563 

Distance (m) 3.012 

No. Actions 7.22 

EGS 

Time (s) 463 

44% 0.44 38.88% 11.90 (s) 
Energy (kj) 33.246 

Distance (m) 2.357 

No. Actions 7.44 

DLAS 

Time (s) 459 

44% 1.11 43.65% 10.51 (s) 
Energy (kj) 37.946 

Distance (m) 3.471 

No. Actions 6.56 
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Table 5.5: The table of the results acquired from the experiments conducted in 
office b environment. The values that are colored green are the best in each category. 
The abbreviations are as follows: Greedy Search with Constraint(GSC), Extended 
Greedy Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of 
Actions Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost 
incurred per APS. 

Office b 

Constraint Method Factor Avg. Spent % Found ANAR APS UCA 

Distance 

GSC 

Time (s) 720 

89% N/A 46.24% 55.13 (mm) 
Energy (kj) 51.150 

Distance (m) 2.549 

No. Actions 12.56 

EGS 

Time (s) 865 

67% 0.78 50.34% 63.75 (mm) 
Energy (kj) 61.843 

Distance (m) 3.209 

No. Actions 14.67 

DLAS 

Time (s) 410 

89% 0.56 41.79% 81.93 (mm) 
Energy (kj) 34.915 

Distance (m) 3.424 

No. Actions 5.67 

Energy 

GSC 

Time (s) 391 

100% N/A 42.34% 715.30 (j) 
Energy (kj) 30.286 

Distance (m) 2.541 

No. Actions 6.22 

EGS 

Time (s) 441 

89% 0.44 45.40% 726.67 (j) 
Energy (kj) 32.991 

Distance (m) 2.618 

No. Actions 7.11 

DLAS 

Time (s) 445 

78% 0.56 44.44% 831.72 (j) 
Energy (kj) 36.962 

Distance (m) 3.285 

No. Actions 5.89 

Time 

GSC 

Time (s) 374 

89% N/A 42.26% 8.84 (s) 
Energy (kj) 29.388 

Distance (m) 2.555 

No. Actions 6 

EGS 

Time (s) 407 

89% 0.44 43.27% 9.40 (s) 
Energy (kj) 30.221 

Distance (m) 2.393 

No. Actions 6.56 

DLAS 

Time (s) 443 

78% 1.11 41.86% 10.58 (s) 
Energy (kj) 36.202 

Distance (m) 3.609 

No. Actions 5.56 
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Table 5.6: The table of the results acquired from the experiments conducted in 
office c environment. The values that are colored green are the best in each category. 
The abbreviations are as follows: Greedy Search with Constraint(GSC), Extended 
Greedy Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of 
Actions Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost 
incurred per APS. 

Office c 

Constraint Method Factor Avg. Spent % Found ANAR APS UCA 

Distance 

GSC 

Time (s) 676 

67% N/A 43% 62.07 (mm) 
Energy (kj) 41.585 

Distance (m) 2.669 

No. Actions 11.83 

EGS 

Time (s) 706 

67% 0.33 45.13% 63.68 (mm) 
Energy (kj) 51.819 

Distance (m) 2.874 

No. Actions 12.17 

DLAS 

Time (s) 366 

83% 0.33 40.48% 71.81 (mm) 
Energy (kj) 31.073 

Distance (m) 2.907 

No. Actions 5.50 

Energy 

GSC 

Time (s) 317 

67% N/A 37.28% 686.59 (j) 
Energy (kj) 25.596 

Distance (m) 2.329 

No. Actions 5.17 

EGS 

Time (s) 331 

67% 0.33 37.89% 707.44 (j) 
Energy (kj) 26.805 

Distance (m) 2.548 

No. Actions 5.33 

DLAS 

Time (s) 305 

83% 0 38.39% 680.44 (j) 
Energy (kj) 26.122 

Distance (m) 2.747 

No. Actions 4.33 

Time 

GSC 

Time (s) 272 

67% N/A 35.40% 7.68 (s) 
Energy (kj) 22.911 

Distance (m) 2.836 

No. Actions 4.33 

EGS 

Time (s) 308 

67% 0 33.15% 9.29 (s) 
Energy (kj) 24.612 

Distance (m) 2.337 

No. Actions 4.33 

DLAS 

Time (s) 326 

50% 1 35.69% 9.13 (s) 
Energy (kj) 26.302 

Distance (m) 2.327 

No. Actions 5 
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In order to derive meaning from the data presented in the tables above, we start by 

reviewing the performance of the search models in office environment a. In scenarios 

where the distance and energy constraints were applied, GSC was able to achieve the 

best performance in terms of the percentage it found the target and the efficiency of the 

search.   

GSC shared the same spot with the other algorithms by only detecting the target 

44% of the times when the search was restricted by the time constraint. Despite the 

similar detection rates, GSC had the best efficiency by spending on average 10.40 𝑠 

for searching each percentage of the environment. In this instance, the worst 

performance belongs to the EGS algorithm, which at its best did not outperform any of 

the other two methods. It, however, yielded a better efficiency in comparison to DLAS 

in the experiments with the distance and energy constraints.   

The GSC algorithm attained the best search efficiency in office b along with the 

highest detection rate, sharing the first place with DLAS and EGS in the search 

instances with the distance and time constraints respectively.  

The experiments in office c had very different outcomes. DLAS performed the best 

overall by having the highest percentage of detection in the cases of the distance and 

energy constraints. It was also the most efficient technique in terms of energy 

consumption. However, DLAS performed poorly with only 50% success rate in 

finding the target when the time constraint was applied.  
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Taking into account all the results, EGS exhibited the poorest performance thus far. 

The algorithm’s rate of detection is the lowest overall despite having a better efficiency 

in comparison to DLAS in the majority of the cases. DLAS performed at its best in the 

environment c. It benefited from its global optimization, allowing the robot to spread 

the search domain further away from its initial location, resulting in the higher chance 

of detecting the target in far distances.  Whereas relying on the greedy approaches, the 

robot stuck in a local neighbourhood of its initial location and the regions far away 

were ignored.  

As it was anticipated, DLAS had its weakest performance when a time constraint 

was applied to the search, primarily due to the high time consumption of generating 

action sequences. This effect was less in the scenarios with the energy constraints 

because the processing energy was significantly lower in comparison to performing 

operations such as moving the pan-tilt unit or the robot. The operation generation cost 

is also irrelevant when distance is the constraint of the search, therefore DLAS had its 

best results in such cases. 

The environments’ settings had strong impacts on the performance of DLAS.  The 

algorithm, as mentioned before, selects an initial operation sequence blindly without 

any prior information regarding the search environment. It is easy to see that if an 

environment is more cluttered, there is a higher chance of failure due to the 

unreachability of an action’s location. 
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The aforementioned impact was apparent in the experiments. DLAS had the lowest 

performance rate comparing to GSC in office a, which was populated with the most 

number of furniture items in comparison to the other rooms. On average, DLAS 

recalculated sequences 0.77 of the times. This value was less in office b, 0.74, in which 

DLAS matched the performance of GSC in the search with the distance constraint.    

As one would expect, DLAS regenerated operation sequences on average as low as 

0.44 of the times in office c. This is why, it reached its highest performance comparing 

to GSC in this environment, where the furniture were concentrated on only two edges 

of the room leaving the central regions empty. This reduces the chance that operations’ 

locations to be chosen in the areas occupied by obstacles. Furthermore, searching in a 

semi empty environment increases the accuracy of distance estimation when the search 

operations are calculated by DLAS. As a result, there is a better chance that the actions 

to be performed as predicted by the algorithm.  

Figures 5.36 and 5.37 display the performance measures of the planning algorithms. 

Without any doubts, the best performance belongs to the GSC algorithm. This method 

achieved at least the highest percentage of finding the target in 7 out of 9 scenarios of 

the search and with only one exception, the best overall cost efficiency.  
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Figure 5.36. The comparison of the proposed search methods in terms of the 
percentage the target was detected. These results are presented for each cost 
constraint, Distance (D), Energy (E) and Time (T). 
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Figure 5.35. The comparison of the proposed search methods in terms of cost 
efficiency. The results are presented for each cost constraint, Distance (D), Energy (E) 
and Time (T) with units in mm, joules and seconds respectively. 
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Table 5.8 presents the average performance of the sensor planning algorithms 

across all the test environments. As anticipated, GSC stands out as the most cost 

efficient search strategy. It also achieved the best detection percentage with a small 

margin over DLAS in the experiments with distance and energy constraints, and shared 

the first place with EGS in the search instances with the time constraints.  

It is important to note that in order to better highlight the differences between the 

detection ratios of the search models, it is necessary to conduct additional evaluations 

with various constraint values in a similar search environment. In our experiments, the 

constraints were set randomly and remained the same for experiments in each test 

environment. Merely relying on such fixed values increases the chance that they are set 

either too high or too low resulting in all the methods to whether find the target or not, 

thus, yielding similar detection ratios.  

 However, by taking into consideration the efficiency of the planning strategies in 

addition to their detection rates, we can gain a better insight into the performance of 

each model. Based on this approach, the GSC algorithm clearly stands out. On average, 

GSC incurred approximately 1s, 100 j and 27 mm less cost to explore each percentage 

of environment in comparison to DLAS, and similarly 1.30 s, 60 j, and 7 mm less than 

EGS. Having a method with a better efficiency implies that it more likely can find a 

target successfully in the situations with tighter constraints.   
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Moreover, the choice of the search strategy highly depends on the nature of the 

environment. The use of the DLAS algorithm is only justifiable in the large 

environments, where only a limited number of obstacles are available as was seen in 

the case of the experiments in office c. To be efficient, DLAS requires a prior 

knowledge of the environment assuming that there are no dynamic elements involved 

at any point of the search. As a result, the DLAS algorithm certainly is not a reliable 

option for conducting the search in unknown environments.  

Nevertheless, GSC has the advantage to react to changes in the environment. It also 

relies on the visual clues, which allow this model to foresee into the future and estimate 

the outcome of its later actions with no significant cost of processing. To state this in a 

different manner, through the use of saliency, GCS can literally “look ahead” of itself 

in the environment and decide what to do next.  

Moreover, the expanding radio of the search domain in GCS can be altered by 

varying the parameters of the algorithm such as the 𝛼 threshold or the influence of 

saliency responses on increasing the probability of interest regions. The higher these 

values are, the larger the steps taken by the robot to explore new locations. 
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Table 5.7: The overall results of the experiments using the proposed search 
strategies. The values that are colored green are the best of each constraint. The 
abbreviations are as follows: Greedy Search with Constraint(GSC), Extended Greedy 
Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of Actions 
Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost incurred 
per APS. 

Total 

Constraint Method Factor Avg. Spent % Found ANAR APS UCA 

Distance 

GSC 

Time (s) 800 

81.48% N/A 46.85% 58.82 (mm) 
Energy (kj) 54.375 

Distance (m) 2.756 

No. Actions 13.94 

EGS 

Time (s) 840 

66.67% 0.41 48.09% 65.19 (mm) 
Energy (kj) 60.273 

Distance (m) 3.135 

No. Actions 14.09 

DLAS 

Time (s) 396 

79.63% 0.44 40.08% 85.72 (mm) 
Energy (kj) 34.273 

Distance (m) 3.436 

No. Actions 5.54 

Energy 

GSC 

Time (s) 387 

77.78% N/A 40.87% 742.76 (j) 
Energy (kj) 30.356 

Distance (m) 2.551 

No. Actions 6.24 

EGS 

Time (s) 453 

66.67% 0.26 43.11% 802.69 (j) 
Energy (kj) 34.604 

Distance (m) 2.797 

No. Actions 7.04 

DLAS 

Time (s) 418 

72.22% 0.44 42.74% 837.76 (j) 
Energy (kj) 35.806 

Distance (m) 3.443 

No. Actions 5.70 

Time 

GSC 

Time (s) 365 

67% N/A 40.64% 8.90 (s) 
Energy (kj) 29.287 

Distance (m) 2.801 

No. Actions 5.85 

EGS 

Time (s) 393 

67% 0.30 38.43% 10.21 (s) 
Energy (kj) 29.359 

Distance (m) 2.362 

No. Actions 6.11 

DLAS 

Time (s) 409 

57% 1.07 40.40% 10.08 (s) 
Energy (kj) 33.483 

Distance (m) 3.135 

No. Actions 5.70 
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6 Conclusion 

 

In this thesis, we presented a framework of generating saliency to be used in robotic 

visual search as a means of detecting regions with a higher chance of being spatially 

related to the target object. The proposed model exploits the use of two saliency 

techniques to produce clues regarding the structure of the environment that may contain 

the target as well as the target itself.  

The model of search used in this work has no prior knowledge of the environment 

except those of its exterior boundaries. The knowledge describing the environment is 

dynamically produced using saliency, as the robot progresses through the search. The 

saliency responses are used to increase the importance of the regions yielding a higher 

chance of detecting the target, inducing the robot to search those locations first.   

Through the extensive empirical evaluations, we showed that how such attentive 

processes benefit the search by reducing the overall time of the search, the distance 

travelled by the robot and the number of operations performed to detect the target.   

The efficiency of the saliency mapping is somewhat dependent on the structure of 

the search environment. The presence and number of distractors in an environment can 

greatly alter the performance of the search using saliency. The more such components 

exist in an environment, the lower the effectiveness of saliency.  
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In the second part of this thesis, we tackled the problem of sensor planning for 

object search with predefined cost constraints. Three strategies were proposed, namely 

Greedy Search with Constraint (GSC), Extended Greedy Search (EGS) and Dynamic 

Look Ahead Search (DLAS). The first two methods greedily select actions and attempt 

to maximize the number of operations to be performed within the search constraint.  

The DLAS algorithm, however, follows a more global approach to optimization at 

the expense of a higher processing time. It is a form of tree search, which generates a 

number of alternative solutions and selects the one that yields the highest probability 

of detecting the target. 

Experiments were conducted in the environments of various sizes and 

configurations with the different values and types of constraints. The results indicate 

that the GSC algorithm has the highest rate of detecting the target, and at the same time, 

it is the most efficient method of the search. The GSC algorithm heavily relies on 

saliency information and makes decisions one at a time, whereas DLAS and EGS 

generate action sequences at the start of the search and only saliency comes into effect 

if the algorithms regenerate the sequence at some point during the search.  
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6.1 Future work 

The target specific saliency proposed in our model only relies on the color distributions 

of an object. This can be easily distracted to other objects with similar colors within an 

environment. One way of addressing this issue is to include additional object features 

such as shape and orientation to filter out unwanted saliency responses.   

Moreover, our assumption was that in a typical environment an object more likely 

is placed on surfaces such as tables or shelves which may stand out applying a saliency 

model. In this way, the saliency results can help in the form of indirect clues to guide 

the robot to locations with higher chance of detecting the target. As for indirect search 

applications, in search with saliency if such the spatial relation between objects does 

not hold, e.g. the object is placed individually on the ground, saliency would not be 

effective. In fact, in such scenarios saliency can rather be distracting. One way of 

addressing this issue is the use of a highly tuned salient algorithm for a particular object. 

The test environments used in our experiments were limited in size in the sense that 

their dimensions did not significantly exceed the effective field of view of the 

recognition algorithm. It is anticipated that the performance gap between the search 

methods with and without saliency grows as a result of increasing the size of the 

environment, something to be studied in the future. 
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To evaluate the proposed sensor planning techniques, only one constraint was 

applied at a time to the search. In practice, however, more than one constraint might be 

of interest depending on the nature of the application it is being used in. For instance, 

in search and rescue missions, the timing of search is very vital but at the same time 

the traveling distance of the robot should be minimized to avoid hazards and damaging 

the hardware, which might jeopardize the mission. The proposed methods can be 

extended to include multiple cost constraints. One way of achieving this is unifying 

costs into a single unit with some bias which reflects the importance of each cost at a 

given time. 

Furthermore, the GSC model can be tested with different strategies of operation 

selection after reaching the 𝛼 threshold such as the actions with minimum cost, search 

locations closest to the robot or the next best greedy action. 

Both series of the experiments presented in this thesis indicated that saliency plays 

an important role in the efficiency of visual search. Perhaps limiting the number of 

actions generated by DLAS and EGS and including saliency information in their 

decision making processes more frequently can enhance the performance of these 

techniques. 

Finally, search strategies were evaluated with fixed constraint values within each 

environment. One may consider altering the constraints in the search spaces to gain a 

better insight into the behavior of each planning strategy.   
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