
ATTENTION AND SENSOR PLANNING IN AUTONOMOUS

ROBOTIC VISUAL SEARCH

Amir Rasouli

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE AND ENGINEERING

YORK UNIVERSITY

TORONTO, ONTARIO

February 2015

© Amir Rasouli, 2015

ii

Abstract

An examination of saliency and sensor planning strategies in robotic visual search,

using a practical robot, is presented. This thesis is concerned with the incorporation of

saliency in visual search and the development of sensor planning strategies for search.

The saliency model is a mixture of two schemes that extracts visual clues regarding the

structure of the environment and object specific features. The sensor planning methods,

namely Greedy Search with Constraint (GSC), Extended Greedy Search (EGS) and

Dynamic Look Ahead Search (DLAS) are approximations to the optimal solution for

the problem of object search, as extensions to the previous solutions of Ye and Shubina.

Experiments were conducted to evaluate the proposed methods and measure their

performance with respect to variations in the size, configuration and setting of the

environment. The experiments highlighted that by using saliency computation within

visual search, a performance improvement up to 75% can be attained in terms of the

number of actions taken to complete the search. Consequently, the time and energy

consumption of the system is reduced significantly

As for the planning strategies, the GSC algorithm achieved the highest detection

rate for the target object in various situations. It also had the best efficiency in the sense

that it incurred the least cost to explore every percentage of the search environment.

iii

Acknowledgements

I would like to thank Prof. John K. Tsotsos for his continuous support and

mentorship throughout the research and completion of my thesis. I also

want to thank Prof. Minas Spetsakis for his support and helpful comments

on my thesis.

Special thanks to my dear friend and colleague Eugene Simine without

whom the implementation and testing of my work on the robot platform

would not be possible.

I also want to thank my colleague Yulia Kotseruba whose friendship

and support always comforted and encouraged me during my work.

Finally, many thanks to my family for their patience, enthusiasm and

love.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents…………………………………………………………………iv

List of Tables ... vii

List of Figures .. viii

Chapter One: Introduction ... 1

Motivation ... 1

Previous Work ... 2

Object search strategies ... 2

Active search for a 3D object .. 4

Search for an object in 3D environment ... 5

Saliency and visual search .. 9

Sensor planning strategy for object search.. 10

Contributions ... 13

Thesis outline .. 16

Chapter Two: Visual Search in an unknown 3D Environment 17

Object Search in an Unknown Environment ... 17

Problem Statement .. 17

Conducting the Search .. 20

Where to look next .. 21

Where to move next .. 22

Chapter Three: Saliency in Visual Object Search ... 23

Saliency in Robotic Visual Search .. 25

Bottom-up saliency ... 25

Top-down saliency .. 32

v

Attention based on Information Maximization (AIM) 35

Independent Component Analysis (ICA) .. 35

Distribution and Information Measures .. 38

Parameter selection and performance ... 40

Histogram Backprojection (HB) ... 49

Template extraction ... 49

Backprojection .. 51

Building the Final Saliency Map ... 56

Applying Saliency to Visual Search ... 58

Summary ... 59

Chapter Four: Sensor Planning Strategies with Predefined Constraints 61

The complexity of object search ... 63

The KNAPSACK problem .. 65

Variation of KNAPSACK ... 66

The practical limitations of optimizing object search 68

Solutions to 0-1 knapsack problems ... 70

Exact solutions .. 70

Approximate solutions .. 73

Knapsack solution to object search ... 76

Cost function in object search ... 77

Greedy Search with Constraint (GSC) .. 78

Extended Greedy Search (EGS) .. 80

Dynamic Look Ahead Search (DLAS) ... 82

Summary ... 86

Chapter Five: Experimental Evaluation .. 87

Saliency in visual search experiments ... 87

Sensor planning strategy ... 87

Recognition algorithm ... 88

Navigation and localization... 88

vi

Test environments ... 89

Hardware ... 92

Search parameters ... 93

Experiments... 94

Quantitative results.. 106

Effectiveness of saliency in search ... 109

Sensor planning experiments .. 110

Operation cost calculation ... 111

Experiments... 111

Quantitative results.. 139

Chapter Six: Conclusion ... 151

Future work ... 153

Bibliography .. 155

vii

List of Tables

Table 5.1: The results of the experiments conducted in the test environments.................................... 107

Table 5.2: A comparison between 𝑆 and 𝑆𝑠𝑎𝑙 methods in terms of the number of action taken to

complete the search. ... 109

Table 5.3: The search constraints in each environment. .. 114

Table 5.4: The table of the results acquired from the experiments conducted in office a environment.141

Table 5.5: The table of the results acquired from the experiments conducted in office b environment.142

Table 5.6: The table of the results acquired from the experiments conducted in office c environment.143

Table 5.7: The overall results of the experiments using the proposed search strategies. 150

viii

List of Figures

Figure 3.1: The application of an operation to the search environment. .. 24

Figure 3.2: The ROC curves of the saliency models in ACU. ... 33

Figure 3.3: The integral values of ROC curves for each saliency model. ... 33

Figure 3.4: An example of decomposing a grayscale image into independent features using ICA

algorithm.. 37

Figure 3.6: The framework of achieving information measures by application of AIM to a sample image

using neural circuit to measure the distribution of features. ... 39

Figure 3.7: The relationship between the kernel size of a basis matrix and the processing time of

building the AIM saliency map. .. 41

Figure 3.8: The application of AIM to a sample image using the basis matrices of various sizes. 42

Figure 3.9: The relationship between the processing time of generating the AIM saliency map and the

number of features used. .. 43

Figure 3.10: A sequence of the AIM saliency maps using a various number of features. 45

Figure 3.11: The effects of the environmental factors on the saliency responses of AIM. 48

Figure 3.12: The application of the EM algorithm to separate the objects foreground from the

background. ... 52

Figure 3.13: The Histogram Backprojection results of four samples. .. 53

Figure 3.14: The normalization of the sample templates using different techniques. 55

Figure 3.15: The HB saliency results using different index sizes. ... 57

Figure 3.16: The process of applying saliency to the robotic visual search. ... 59

Figure 4.1: The performance improvement measure of using the DLAS algorithm in comparison to

EGS .. 85

file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703306
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703307
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703308
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703309
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703309
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703310
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703310
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703311
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703311
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703313
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703313
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703316
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703316
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703317
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703318
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703319
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703320
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703321
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703321

ix

Figure 5.1: The environments where the experiments were conducted. .. 90

Figure 5.2: The environments where the experiments were conducted. .. 91

Figure 5.3: The robot used in the experiments. .. 92

Figure 5.4: The object used in the experiments. ... 94

Figure 5.5: The placement of the robot and target in each environment. .. 96

Figure 5.6: The search using 𝑆 Part 1 ... 97

Figure 5.7: The search using 𝑆 Part 2 ... 98

Figure 5.8: The grid indicating the possible locations for the robot to move to. 99

Figure 5.9: The search using 𝑆 Part 3 ... 99

Figure 5.10: The search using 𝑆 Part 4 ... 100

Figure 5.11: The search using 𝑆𝑠𝑎𝑙 Part 1 .. 103

Figure 5.12: The search using 𝑆𝑠𝑎𝑙 Part 2 .. 104

Figure 5.13: The grid indicating the possible locations for the robot to move to. 104

Figure 5.14: The search using 𝑆𝑠𝑎𝑙 Part 3 .. 105

Figure 5.15: The robot and target configurations in each environment. ... 113

Figure 5.16: The search process using the GSC algorithm with the distance constraint Part 1 116

Figure 5.17: The search process using the GSC algorithm with the distance constraint Part 2 117

Figure 5.18: The search process using the EGS algorithm with the distance constraint Part 1.......... 119

Figure 5.19: The search process using the EGS algorithm with the distance constraint Part 2.......... 120

Figure 5.20: The search process using the DLAS algorithm with the distance constraint Part 1 122

Figure 5.21: The search process using the DLAS algorithm with the distance constraint Part 2 123

Figure 5.22: The comparison of the approximate solution using 8 actions and the complete solution on

using DLAS. .. 124

Figure 5.23: The search process using GSC with the energy constraint Part 1. 125

file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703324
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703325
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703343
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703343

x

Figure 5.24: The search process using GSC with the energy constraint Part 2 126

Figure 5.25: The search process using EGS with the energy constraint Part 1. 128

Figure 5.26: The search process using EGS with the energy constraint Part 2 129

Figure 5.27: The search process using DLAS with the energy constraint Part 130

Figure 5.28: The search using the GSC algorithm with the time constraint Part 1 133

Figure 5.29: The search using the GSC algorithm with the time constraint Part 2 134

Figure 5.30: The search using the EGS algorithm with the time constraint Part 1 136

Figure 5.31: The search using the EGS algorithm with the time constraint Part 2 137

Figure 5.32: The search using the DLAS algorithm with the time constraint Part 1 138

Figure 5.33: The search using the DLAS algorithm with the time constraint Part 2. 139

Figure 5.34: The 8 action approximate and complete solutions of DLAS. .. 140

Figure 5.36. The comparison of the proposed search methods. .. 147

Figure 5.35. The comparison of the proposed search methods in terms of cost efficiency. 147

file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703355
file:///C:/Users/aras/Desktop/thesis_draft_iter_final.docx%23_Toc409703357

1

1 Introduction

1.1 Motivation

The ability to search for an object is a crucial part of any autonomous mobile robot

whose tasks involve environment manipulation, item detection or social interactions.

In a typical search environment, the configuration as well as the location of the target

of interest that we are searching for, may vary. This means, it is not possible to

memorize each environment setup and the potential target location, especially if the

number of objects increases. Therefore, a framework is required to direct a robot within

any unknown environment to search for a known object whose location is not known

prior to the search.

While searching for an object within a cluttered environment, acquiring a single

image of the environment, regardless of what viewpoint, usually does not suffice for

detecting the target. In such an image, the target might be occluded by other objects or

be too far distance to be recognized due to poor resolution, or be completely not in the

image at all. These limitations necessitate a search agent to acquire multiple images

from the environment and analyze the scene from different viewpoints in order to find

the object.

The above discussion points to the need for an object search strategy which

comprises the following two components: first, viewpoint selection that involves

2

selecting a location, navigating through the environment and configuring the sensory

apparatus to capture an image, and second, analyzing the image to detect the target

object.

Using a brute force approach to examine all possible viewpoints would certainly

suffice for a solution, but it might not be computationally and mechanically feasible.

Given the limitation of resources available to a practical robot, it is necessary to design

a system to minimize the cost of search by an efficient selection of viewpoints while

maximizing the chance of finding the target.

Analyzing the sensory information captured throughout the process is also crucial

in object search. This data can simply be processed by applying a recognition algorithm

to detect the object of interest or further be evaluated to guide the later stages of the

search if the target is not found.

1.2 Previous Work

1.2.1 Object search strategies

The straightforward approach to object search is to look toward every possible view

point within an environment. This is achieved by moving a camera to take images of

parts of the environment that are not previously seen. Of course, such a brute force

approach would suffice for a solution, but it is both computationally and mechanically

prohibitive.

3

In an early version of visual search, Garvey [1] put forward the notion of indirect

search. In this approach, a search domain is limited to those areas that have some form

of spatial relationship with the object of interest. For instance, if the objective is to find

a telephone, the locations of interest would be tables or desk surfaces, where there is a

higher chance that the phone is placed on. Garvey divides the task of object search into

two phases: first, the goal is to identify an intermediate object spatially related to the

target, which typically can be detected with a lower resolution and a wider field of view;

the search is then restricted only to those regions specified by the spatial relationship.

The idea of indirect search is put into practice by Aydemir et al. [2] in which they

characterize an object’s presence within an environment in the form of probability

distributions. These distributions are controlled by a set of predefined spatial

relationships between the target and intermediate objects. The task of search then is to

choose an action sequence that maximizes the chance of detecting the target. For

instance, a policy generated by the algorithm to search for a book looks like this: “Go

to room 1, search for a small bookcase, search for the book on the bookcase, …”.

Gobelbecker et al. [3] extend Aydemir et al.’s work by using a more generic

representation of objects’ relations within the search environment. In this work, the

belief system of the target’s presence with respect to intermediate objects encompasses

two forms of knowledge: conceptual knowledge, which relates the category of one

object to another, e.g. food items are found in kitchens, and instance knowledge, which

4

connects one specific object to another such as the cereal box is in room 2. This

knowledge is updated after each instance of the search.

To further minimize a search space, Kunze and Hawes [4] use a more detailed

description of objects’ relations that they term as Qualitative Spatial Relations (QSRs).

They categorize objects into groups of static and dynamic objects. Intuitively, the static

objects are those with relatively fixed location (e.g. a desktop PC or printer) that are

used as landmarks to locate dynamic objects (such as a keyboard or cup). Then, a

directional relation is used to specify the configuration of a search region. For example,

keyboard is “in front of” monitor, “left of” cup.

Indirect search algorithms, nevertheless, suffer from two common issues. The

detection of intermediate objects is not necessarily easier than the actual target of

interest. The search for an intermediate object is only viable if it is easier to be

recognized or some forms of prior knowledge regarding its location are available to the

search agent. More importantly, if the spatial relation between objects does not hold,

indirect search fails to locate the target.

1.2.2 Active search for a 3D object

It is argued that an active vision approach is best suited for object search [5]. In contrast

to simply receiving a series of prerecorded images, a search agent should actively

control its sensory inputs and image acquisition process with respect to the task at hand.

In the context of search, the target’s presence might be ambiguous from a point of view

5

e.g. due to occlusion by another object. Thus, to reduce occlusion, the sensor can be

moved to a different position to capture additional images from a different point of view.

In [6], Wilkes and Tsotsos introduce the concept of active object recognition in

which a camera is mounted on a robot arm with a mobile base. The mobility of the

system is used to position the camera at a standard viewpoint in regard to the object of

interest. From this perspective, recognition takes place matching the target image with

a two-dimensional pattern learned beforehand by an algorithm.

Dickinson et al. [7] propose a similar active approach. Given an ambiguous view of

an object, their algorithm determines whether there is a more discriminating view of an

object. If this is the case, it changes the direction of the camera to capture that view. At

the end, it specifies the visual events such as appearance of object features that are

encountered while moving the camera to the new viewpoint.

Alternatively, in [8] the pose of an unknown object is altered with respect to a

camera using a humanoid robot arm. Each view of the object is characterized by a

probability distribution indicating how much information that viewpoint contributes to

recognizing the object. The task of recognition is then defined as selecting a sequence

of viewpoints that minimizes the entropy of detecting the object.

1.2.3 Search for an object in 3D environment

Despite the previously described approaches, in practical applications, the task of

object search heavily relies on human involvement. Search and rescue operations in

6

hazardous environments are examples of such applications in which the process of

search is either fully controlled by a human operator [9] or autonomy is minimally

involved for undertaking trivial tasks such as sensor adjustments or motion control [10,

11]. The exploration applications are no exception. In the well-known NASA robot,

Curiosity, only the task of navigation is performed autonomously by the rover [12].

In [13], Fukazawa et al. define object search as the process of generating the

shortest path that covers an entire environment. This path is followed by the robot to

search for the target object. To create an exploration path, the environment is divided

into a grid of potential locations. The distance between locations is based on the sensing

area of the camera used in the search. A path then is produced to pass through the center

of each cell in the shortest path.

Tovar et al. [14] employ a dynamic tree structure to model an unknown

environment. Constructed by laser sensors, this visibility tree corresponds to a

connected planar environment specifying an optimal path.

 A multiple target search approach is introduced by Lau et al. [15] in which a robot

searches for objects within a known environment. They divide the search space into

distinct regions and use an adjacency matrix to portray the connections between them.

The prior knowledge of the environment changes with the size of the environment or

the number of the objects. Taking into considerations the cost associated with each

7

action, here, the task is to determine a sequence of operations to find the targets while

minimizing the expected time of the search.

In the context of assistive robotics, Mehdi and Berns [16] use a probabilistic

approach to characterize household environments to search for the elderly. An

environment is divided into sub-regions each holding the probability distribution of the

target’s presence, defined in the form of a-priori knowledge. During the search process,

the probability values are adjusted with respect to the cost of moving to each location

from the current positon of the robot. Simulation results are presented to show the

performance of the system using a Harr cascade classifier to detect the human subjects.

Ye [17] tackles the problem of object search in unknown environments. He

describes the problem of search as maximizing the probability of detecting an object

within a predefined cost constraint. In his work, only the exterior boundaries of the

search place are known in advance and no assumption is made regarding the internal

setting of the environment. He uses a uniform probability distribution defined on an

occupancy grid to characterize the search environment corresponding to the likelihood

of the target’s presence at each location. The task of search is then to select the

viewpoints that maximize the probability of detecting the target while minimizing the

cost. After each unsuccessful detection of the target, the probability of regions observed

by the robot are appropriately adjusted. Ye demonstrates the performance of this model

using a mobile robot equipped with laser range finders and a monocular camera.

8

Shubina and Tsotsos [18] show an implementation of the above algorithm on a

practical robot only using a stereo camera. At each point of the search, a pan-tilt unit is

used to set the direction of the camera to a candidate viewpoint capturing an image of

the environment. The image is analyzed by the application of a recognition algorithm

to identify the object of interest. If the target is not found, the probability of that

viewpoint, within the effective field of the recognition algorithm (the 3D spatial region,

where the recognition algorithm can detect the target), is lowered to zero and

redistributed to the remaining unseen regions. The robot continues the same process

until the object is found.

Saidi et al. [19] improve the probability reallocation in Ye’s search model by

including the effect of occlusion within an environment. If there exists an obstacle that

blocks the field of view, the probability distribution of the target’s locations for the

regions behind the obstacle is lowered as the chance of detecting the target beyond that

point is smaller.

In the aforementioned search models, the scope of exploration is limited to the

ability of a robot to detect the target within its effective field of view (the range within

which a recognition algorithm is able to detect an object). This can be wasteful in the

sense that any sensory information acquired from beyond the range of detection is

discarded as they play no role in identifying the object of interest.

9

1.2.4 Saliency and visual search

Tsotsos and Shubina [20] argue that the use of attentive mechanisms optimizes the

search processes inherent in vision. One factor that directs the attention of an agent to

a particular point in a scenery is its visual saliency. Such visual saliency can be generic,

corresponding to the areas that stand out with respect to their surroundings due to the

possession of distinctive features [21]. Saliency also can be task driven meaning that

the parts of a scene relating to specific features of interest are considered as salient [22].

In a social robotic application, Butko et al. [23] exploit the use of saliency to

identify the motions corresponding to those of human subjects. This helps the social

robot to orient its head toward the faces providing a natural feeling of interactions with

them. They report that a simple use of saliency doubled the success rate of the camera

to capture the images of people to 70% up from 35%.

Orabona et al. [24] use saliency as a means to recognize an object using a humanoid

robot. They begin by transforming an input image into three separate opponent color

channels, each in turn is used to identify the edges within the scene. The resulting edge

maps are combined and quantized to form a conspicuity map of the environment. To

recognize the object of interest, the saliency results are biased by calculating the

Euclidean distance in the color opponent space, between the average color of the target

and the salient locations. They only presented few examples of the algorithm

performance without any validation in an actual search scenario.

10

In [25], saliency is used for the purpose of navigation and localization for a mobile

robot in outdoor environments. A series of low level features are extracted from an

input image consisting of color, intensity and orientation in three separate channels.

Then, through the application of a cross-scale center surround difference procedure

[26], salient locations are identified for each channel and combined forming a saliency

map of the environment. To estimate the position of the robot, SIFT features are

extracted from the salient locations and matched for consecutive images. In addition,

the saliency results are compared against a trained database of the object’s instances to

identify the next destination for the robot to move to.

Robert et al. [27] propose the use of saliency for the fast detection of trees aiming

to help an aerial robot to navigate its way through forested environments. A conspicuity

map is built by estimating optical flow during the robot’s transition and measuring the

motion parallax. This helps the robot to distinguish the trees from their background

regions and plan its trajectory.

1.2.5 Sensor planning strategy for object search

Ye and Tsotsos [28] comment on the tractability of object search and prove that it

belongs to NP-hard class of problems. They introduce a greedy approach as an

approximate solution to the problem. In this method, the search process is divided into

two stages of “where to look next” and “where to move next”. In the first step, the robot

searches its surroundings until some threshold is reached indicating that a new location

11

should be searched. In the second step, the robot chooses a new destination that has the

highest chance of detecting the target, and then, moves there to resume the search. This

process continues until the object is found.

In [29], the authors employ a similar heuristic approach. The actions available to

the search agent at any time are represented by their utilities given by dividing the

probability values of performing each operation by the time of their applications. The

algorithm greedily selects one or more actions at a time that yield the highest utilities.

In practice, the resources available to conduct a search are limited. This can be the

robot’s battery energy used in the search or the allowable time for conducting the search

e.g. in search and rescue missions. The scarcity of resources imposes a constraint on

object search processes. Solely relying on a greedy algorithm does not suffice for a

solution to optimize a search process with respect to a cost constraint. The greedy

approaches locally select the next best action with no look ahead and lack a global view

of the entire process to determine the consequence of executing each action on the

overall efficiency of search.

Aydemir et al. [2] use an exhaustive search method to select the sequence of

policies that yield the lowest cost. The cost of each action depends on the motion of the

robot to perform that task. The value of each action is defined by a non-uniform

probability distribution at the start of the search and is updated after each instance of

search. The authors propose the selection of 3 to 5 actions at a time and assume the

12

intermediate probability values are constant which significantly reduces the complexity

of selecting the actions.

In this work, no actual recognition algorithm is presented and detection tasks are

undertaken using simple Quick Response (QR) codes. Moreover, the authors do not

specify the criterion for the termination of search and omit to mention the effect of cost

constraints on the selection of policies.

Lau et al. [15] use a dynamic programming technique. They define operations that

search particular locations within the environment, and the cost of each operation is the

time it takes the robot to move to that location traveling along the shortest path

available. The algorithm then selects the sequence of actions that yields the highest

probability value in the shortest time, i.e. it minimizes the overall cost of the search

regardless of any predefined constraints.

The authors simplified the task of search in the following ways: the environment is

fully known and assumed obstacle free, and the probability values of each location are

considered fixed, which reduces the complexity of the search significantly. In practice,

there are both static and dynamic obstacles that need to be considered when selecting

an action to perform. Lau et al. show that the processing time for generating an optimal

sequence is around 20s for an environment with 14 regions and point out that for larger

environments the problem is intractable. They also only present simulation results in

which the environment is fully known.

13

1.3 Contributions

This thesis contributes two extensions to the work of Shubina [30] and the original

object search formulation of Ye [17]. In these methods, the ability of a robot to find a

target is limited to its recognition’s effective field of view. If we identify clues

regarding the target’s location in ranges above the field of view, we can guide the robot

to the locations of higher importance and as a consequence improve the process of the

search.

 Our first contribution is a novel use of saliency to spot the image regions that likely

contain the object of interest and use them in the form of indirect search clues without

the need for any prior knowledge of the environment or spatial relations between the

objects. For this purpose, we combine two methods of saliency: the AIM algorithm

[31] that identifies the interest points corresponding to the physical structure within the

environment and Histogram Backprojection [32], which pinpoints the regions with the

highest similarity to the target in terms of its RGB color distributions.

The saliency results generated by AIM generally correspond to those image regions

with a higher chance of including the object such as tables or shelves that stand out

within their surroundings. Then, through a top down approach, we distinguish between

these structures by increasing the importance of the ones that also include similarities

to the target. With respect to these saliency responses, the probability distributions of

14

the corresponding occupancy grid regions are enhanced, inducing the robot to search

those areas earlier then otherwise.

The second contribution of this work is in the area of sensor planning strategies. In

the original formulation of object search [17], Ye defines the task of search as

maximizing the probability of detecting the target within a predefined cost constraint.

However, due to the NP-hardness of the problem and the intractability of its exact

solutions, Ye uses a greedy approach. In his approach, actions are selected one at a time

and the overall constraint of the search is not considered. Hence, this question remains

open: how should a robot select its operations to maximize the chance of detecting an

object with respect to a predefined cost constraint?

To address this problem, we propose three sensor planning strategies, namely

Greedy Search with Constraint (GSC), Extended Greedy Search (EGS), and Dynamic

Look Ahead Search (DLAS). The first two approaches are similar to Ye’s algorithm,

with some modifications to take into account the overall cost constraint. The GSC

algorithm relies on saliency information to select the best action at each point of the

search. Once a percentage of the search constraint (e.g. time) is reached, it chooses

actions with the highest chance of detecting the target regardless of their costs. EGS,

on the other hand, generates a sequence of search operations blindly at the start of the

search. To produce a sequence, it greedily selects the next best action within a given

15

cost constrain. The saliency information are taken into considerations only if there is a

need to regenerate an action sequence during the search.

The DLAS algorithm uses a dynamic pruning technique to globally optimize the

search. It performs a multi-step look ahead procedure and selects the arrangement of

operations that maximizes the chance of detecting the target. The accuracy and

processing time of DLAS can be changed by setting the maximum number of steps for

the method to look ahead.

In order to evaluate the performance of the proposed methods, experiments are

conducted within actual 3D environments of various sizes and configurations. The

search agent is implemented on a Pioneer 3, a four-wheeled differential drive mobile

robot. The source of sensory input is a Point Grey Research Bumblebee 2 stereo

camera, which is used for estimating disparity in the environment, detecting and

locating obstacles and to recognize the object of interest. The camera is mounted on a

Directed Perception pan-tilt unit responsible for changing the gaze of the camera to

desired directions.

The experiments are divided into two sets. First experiments are conducted to

measure how much improvements can be achieved using saliency. To do so, two

greedy search approaches with and without saliency are conducted in various

environments with different configurations. In these experiments the robot and a target

16

are placed in random positions and the performance of each method is measured in

terms of the number of actions performed and the time it takes to conclude the search.

The second set of experiments are aimed to compare the performance of proposed

sensor planning techniques. The algorithms were evaluated using three cost functions

including, the time of search, battery consumption of the system and the distance

travelled by the robot.

1.4 Thesis outline

This thesis comprises six chapters. Chapter 1 discusses our motivation and reviews

some previous related work. Chapter 2 revisits some of the methodologies and concepts

proposed in the work of Ye on object search. Chapter 3 introduces the saliency mapping

technique used in our work and its application to visual search. Chapter 4 describes the

development of sensor planning strategies. Chapter 5 details the experimental results

of the proposed work. Chapter 6 summarizes the thesis and recommends some future

directions.

17

2 Visual Search in an unknown 3D Environment

As mentioned earlier, the starting point of this thesis is on the work of Yiming Ye [17]

and the later extension by Shubina [30] on sensor planning and object search. As a

result, in this chapter we briefly review some of the concepts introduced in their works

with their mathematical formulations as a guide for the remainder of this thesis. Section

2.1 describes the formulation of object search introduced by Ye. Section 2.2 provides

a sensor planning strategy to conduct the search.

2.1 Object Search in an Unknown Environment

2.1.1 Problem Statement

Assume we want to search a 3D environment Ω with known boundaries without any

prior knowledge of its internal configuration. The search environment is tessellated

into non-overlapping cubic elements, 𝑐𝑖, 𝑖 = 1,2, … , 𝑛 forming an occupancy grid. The

search agent action is defined by 𝒇 = 𝒇(𝑆(𝜏), 𝑎) in Ω, where 𝑆(𝜏) is the camera

configuration. 𝑆(𝜏) is determined by the camera position (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐), the direction of

its viewing axis (𝑝𝑎𝑛, 𝑡𝑖𝑙𝑡) in degrees of visual angle with respect to the origin, and

solid viewing angle (𝑤, ℎ) represent the width and height of the camera’s solid viewing

angle in radians at time 𝜏, and 𝑎 is the recognition algorithm used to analyze the image.

18

The probability of the center of the target being located in cubic element 𝑐𝑖 at time

𝜏 is 𝒑(𝑐𝑖, 𝜏). The value within this distribution varies according to our prior knowledge

of the target’s presence. In the absence of data, when 𝜏 = 0, a uniform probability

distribution is considered as default. Similarly, the probability that the target is outside

of the search environment at time 𝜏 is given by 𝒑(𝑐𝑜𝑢𝑡, 𝜏), and,

𝒑(𝑐𝑜𝑢𝑡, 𝜏) + ∑ 𝑝(𝑐𝑖, 𝜏)

𝑛

𝑖=0

= 1.

(2.1)

The function on Ω is a function 𝒃(𝑐𝑖, 𝒇) that gives the conditional probability of

detecting the target, given that the target is centered at 𝑐𝑖, and 𝒇 is a search operation.

𝒃(𝑐𝑖, 𝒇) is equal to zero, if any of the following conditions occur: the center of cube 𝑐𝑖

is outside of the image; the cube is occluded or too far or too near the camera; or the

recognition algorithm, 𝑎, fails to detect the target. Excluding these conditions, the value

of 𝒃(𝑐𝑖, 𝒇) is determined based on the ability of the recognition algorithm to detect the

target with respect to factors such as the object’s orientation and the distance of the

camera from 𝑐𝑖.

The probability of detecting the target by applying operation 𝒇 = 𝒇(𝑆(𝜏), 𝑎), given

𝑆(𝜏) = (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐, 𝑝𝑎𝑛, 𝑡𝑖𝑙𝑡, 𝑤, ℎ), can be calculated by

 𝑷Ψ𝐟
(𝒇) = ∑ 𝒑(𝑐𝑖, 𝜏𝒇)𝒃(𝑐𝑖, 𝒇) ,

ci∈Ψ𝒇

 (2.2)

19

where 𝜏𝒇 denotes the time just before 𝒇 is applied and Ψ𝒇 is the influence range of

action 𝒇 corresponding to the cubic elements within the effective field of view of the

camera, that are not occluded, i.e. regions within which the recognition algorithm can

detect the target.

Let 𝑶Ω be the set of all possible operations on region Ω and 𝑭 = {𝒇1, 𝒇2, … , 𝒇𝑘} be

the ordered set of the operations (effort allocation) applied during the search given 𝒇𝑖 ∈

𝑶Ω . The probability of detecting the target by applying an effort allocation 𝑭 is given

by

 𝑃[𝑭] = 𝑃(𝒇1) + [1 − 𝑃(𝒇1)]𝑃(𝒇2) + ⋯

+ {∏[1 − 𝑃(𝒇𝑗)]

𝑘−1

𝑗=1

} 𝑃(𝒇𝑘),

(2.3)

where 𝑃(𝒇1) is the probability that first action detects the target and [1 − 𝑃(𝒇1)]𝑃(𝒇2)

is the probability that first action fails to detect the target but the second action does,

and so on.

The application of each operation incurs a cost, given by the total time or energy

needed for altering the state of the hardware according to 𝒇, capturing an image of the

search environment, analyzing it by the recognition algorithm and updating the

probability distribution values. Ye [17] defines the total cost of effort allocation 𝑭 as

follows:

20

 𝑇[𝑭] = ∑ 𝒕(𝒇)

𝑓∈𝐹

 (2.4)

where 𝒕(𝒇) is the cost of operation 𝒇.

Suppose 𝐾 is the total time (or energy) available to perform the search, then we can

define the task of search as finding an effort allocation 𝑭 ⊂ 𝑶Ω that can satisfy 𝑇(𝑭) ≤

𝐾while maximizing 𝑃[𝑭]. In this manner, the actions are selected that yield the highest

utility value (described in details in Section 2.2.1).

2.2 Conducting the Search

Based on the above formulation, Ye [17] proves that the sensor planning task for object

search is NP-hard in terms of processing time. Due to the intractable nature of the

problem, Ye proposes a heuristic greedy approach and argues that it would suffice as a

good approximation to the solution.

Because of the fact that the cost of moving the robot during the search is usually

significantly greater than the cost of changing the camera direction at any stationary

position, Ye divides the task of search into two stages of “where to look next” and

“where to move next”.

21

2.2.1 Where to look next

At this stage, the robot is in a stationary position and the goal is to select an operation

𝒇 = 𝒇(𝑝, 𝑡, 𝑤, ℎ, 𝑎) that yields the highest utility given by

𝑬Ψf
(𝒇) =

∑ 𝒑(𝑐𝑖, 𝜏𝒇𝑐𝑖∈Ψ𝑓
)𝒃(𝑐𝑖, 𝒇)

𝑡(𝒇)
 ,

(2.5)

where Ψ𝑓 is the influence range of operation 𝒇 and 𝑡(𝒇) is the cost of applying action

𝒇. Given the similarity of actions’ costs, Ye further simplifies the process at this stage

by only considering the numerator part of (2.5).

If the target is not found after performing an operation, the probability distributions

of the cubic elements are updated as follows:

𝒑(𝑐𝑖, 𝜏𝒇+) =

𝒑(𝑐𝑖,𝜏𝒇) (1− 𝒃(𝑐𝑖,𝜏𝒇))

𝒑(𝑐𝑜𝑢𝑡,𝜏𝒇)+ ∑ 𝒑(𝑐𝑗,𝜏𝒇)(1−𝒃(𝑐𝑗,𝜏𝒇))𝑛
𝑗=1

, 𝑖 = 1, … , 𝑛, 𝑜𝑢𝑡

(2.6)

where 𝜏𝒇+ is the time after 𝒇 is applied and 𝒑(𝑐𝑜𝑢𝑡, 𝜏𝒇+) is the probability that the target

is outside of the image at the time 𝜏𝒇+. Intuitively, if operation 𝒇 fails to detect the target,

the probability of the influence range decreases while those of the other regions increase.

The process of action selection and application continues until the “covering

probability” of all remaining operations, 𝑃𝑟𝑜𝑏Ψf
= ∑ 𝒑(𝑐𝑖)𝑐𝑖∈Ψ𝑓

 where falls below

22

some threshold, Θ𝑚𝑜𝑣𝑒 at the stage in which the robot considers to move to a new

location. In this formulation 𝑝(𝑐𝑖) refers to the target probability represented at cubic

element 𝑖.

2.2.2 Where to move next

The new destination of the robot is decided according to two criteria: the new location

should be reachable and has a high probability of providing an appropriate viewpoint

for detecting the target. Given that the height of the camera is fixed and the robot only

moves horizontally, the new position is only within the vertices of the 2D grid.

Alternatively if a robot is capable of changing its height of view, it would not be limited

considering the search space is defined 3D.

 The probability of each location 𝑗 is calculated by 𝑃𝑟𝑜𝑏Ψj
= ∑ 𝒑(𝑐𝑖)𝑐𝑖∈Ψ𝑗

 , where

Ψ𝑗 is the region within the union of all effective fields of view at position 𝑗. After

selecting a new location, the robot moves there. If the robot detect an obstacle in the

candidate location, it selects a new one.

 Once at the current position, a similar procedure as before is repeated in which the

robot selects and searches directions with the highest probability. The look next and

move next processes continue until either the target is detected or it is not found within

the environment.

23

3 Saliency in Visual Object Search

The range of a recognition algorithm is limited by factors such as the types of features

used or the characteristics of the object of interest. This range is typically less than the

range of stereo cameras within which they can measure disparity (see Figure 3.1), and

varies according to the camera’s baseline, resolution or sensor type. For instance, in

the work of Shubina and Tsotsos [18], the recognition algorithm is capable of detecting

the target (Figure 5.4) within the maximum range of 2.6 meters. The stereo camera

used in their experiments, however, has at least twice as long a range of the recognition

algorithm to detect disparity.

Discarding the information beyond the range of the recognition algorithm means a

potential source of guidance is ignored. Such information can further be processed to

identify clues regarding the target presence within the environment. A common

approach in visual search applications for identifying regions of interest is the use of

saliency algorithms. A saliency map can provide one with clues regarding a target’s

presence by highlighting the interest points, which in turn can be used to direct the

attention of the search agent to the regions with a higher importance.

24

This chapter is organized as follows: Section 3.1 reviews vision literature to explore

some of the common approaches to building a saliency map. Section 3.2 describes the

AIM algorithm to construct a general saliency map. Section 3.3 explains Histogram

Backprojection and its application to generate top down saliency. Section 3.4 shows

the process of building the final saliency map. Section 3.5 concludes this chapter by

demonstrating the application of saliency to visual search.

 Figure 3.1: The application of an operation to the search environment. The gray
background shows the uniform probability of the target presence, the black annulus
denotes the range of the recognition algorithm and the green sector the disparity range
of the stereo camera.

25

3.1 Saliency in Robotic Visual Search

In the computer vision literature, it is a common practice to identify points of interest

using saliency mapping techniques for the purposes of attention, recognition,

segmentation or navigation.

3.1.1 Bottom-up saliency

In general, there are two classes of algorithms to construct saliency maps [33]. One

class of algorithms measure saliency without any prior knowledge of an object or a task

(bottom-up approach). These models are designed to identify the portions of an image

that stand out in comparison to the rest [21, 34, 35, 36, 37, 38, 39].

Bottom-up saliency in particular is useful to identify structures that stand out within

an image. Such saliency may correspond to an object of interest (e.g. in the context of

visual search) or other physical structures that are in some form of spatial relationship

to that object e.g. tables or shelves. Hence, for the purpose of visual search, a bottom-

up saliency can both directly and indirectly guide the attention of an agent to a target

of interest.

There are two methods of building bottom-up saliency: object-based and space-

based.

26

3.1.1.1 Object-based saliency

Object-based approaches in essence are similar to segmentation algorithms. However,

instead of partitioning an image into regions of coherent properties, they only segment

the salient object(s) from the background.

Goeferman et al. [40] introduce a model that they call context-aware saliency

detection in which the objective is not only to detect the most prominent object but also

to contain enough of the background that convey the context. To achieve this, they

divide an image into patches of equal size. Saliency is generated by comparing the

Euclidean distance between the patches in terms of their RGB colors. The more unique

a patch is, i.e. more dissimilar to other patches, the more salient it becomes. This

saliency is further modified by taking into consideration the positional distance

between the similar patches. This is based on the idea that the background patches tend

to have similarity with both patches in near or far distances whereas the salient patches

tend to be grouped up in a close proximity of each other.

In addition, a comparison of patches is conducted in multiple scales (Gaussian

pyramid levels). The authors believe that the background patches yield more

similarities in the lower scales of pyramid, hence, if that is the case, the saliency value

of those patches should be reduced accordingly. At the end, the generated saliency

responses are adjusted by the application of a face detection algorithm. If a face is

detected, the saliency of the corresponding pixels are increased.

27

Chang et al. [41] calculate saliency by minimizing an energy function comprising

two forms of energy: the energy affected only by saliency and the energy affected by

objectness. The saliency energy is obtained using the method in [40] with the difference

of using superpixel segmentation instead of static patches.

As for the objectness, the energy is defined by how likely a portion of an image

contains an object. Intuitively, an object is a standalone thing with a well-defined

boundary and different from its surroundings.

Jiang et al. [42] identify saliency in two steps: saliency detection and shape

extraction. In the first step, they over-segment an image by a superpixel operation at

multiple scales. Then, the saliency of each region is computed by determining the

difference between its color and surroundings. At the end, the results are averaged over

all scales.

Next, the saliency map is processed to extract shapes by finding a closed contour

covering the salient object. For this purpose, an edge detection is performed on the

image followed by a line fitting operation. If the objective is to find multiple objects,

this process is repeated more than once.

Object-based saliency methods have a number of shortcomings that makes them

unsuitable for indoor search applications. First, these models heavily rely on

segmentation of images, meaning that they are most effective for scenes where a

limited number of objects are placed over a uniform background such as natural

28

images. Second, object-based saliency models are designed for identification of one or

few objects, the number of which should be defined prior to the detection of saliency.

In the context of visual search, the visually salient region does not necessarily

correspond to the target of interest. In addition, it is hard to specify the number of

salient objects for the algorithm to detect if there are many objects.

Moreover, the object-based models are generally optimized for particular objects

or environments, e.g. [40] is optimized for human detection and [41] works best for

natural images. Hence, they lack the generality to be used in different visual search

contexts.

3.1.1.2 Space-based saliency

Space-based (fixation) models of saliency are more generic in the sense that they

are designed to predict human eye fixations typically measured by subjective rankings

of interesting and salient locations or eye movement [43].

Itti et al. [26] calculate a bottom-up saliency using low–level image characteristics

including color, intensity and orientation (e.g. orientation is calculated by oriented

difference of Gaussian (DOG)). Instead of the direct calculation of features, features

are computed in a center-surround structure to derive the contrast of a feature to its

surroundings. To do so, the differences between a fine and a coarse scale (Gaussian

pyramid) for a given feature is computed. The same process repeats in eight scales for

all features and at the end the resulting maps are cross-scale summed and normalized.

29

Hou and Zhang [44] use a sparse coding approach to decompose an image into a

series of independent features. Then they measure the activity ratio of each feature and

consider a feature to be salient if succeeding activations of that feature increases the

entropy of the entire system.

In a different representation, Hou and Zhang [45] exploit a property of natural

images to estimate saliency. This property indicates that natural images are scale

invariant meaning that the amplitude 𝐴(𝑓) of their average Fourier spectrum obeys a

1/𝑓 distribution. Based on this characteristic, the authors estimated the saliency by

identifying statistical singularities in the Fourier spectrum, i.e. the information that

jumps out of the smooth curve corresponds to salient locations.

In [46] a graph-based approach is introduced. The image features are generated by

the application of difference of offset Gaussian (DOOG) filters oriented toward six

equally spaced directions. Next, the dissimilarity of each feature with its neighboring

features is calculated by dividing their corresponding intensity values. This forms a

graph in which each feature is considered as a node and connected to other nodes

through edges, the value of which is determined by the normalized (0-1) dissimilarity

between the corresponding nodes. To compute saliency, the authors define a Markov

chain on the resulting graph, indicating that the equilibrium distribution at each node

would naturally accumulate mass at nodes that have high dissimilarity with their

surroundings.

30

In a different formulation of saliency, Bruce and Tsotsos [31] decompose an image

into independent features using the Independent Component Analysis (ICA) algorithm.

Then, they compute the joint distribution of features along the image at each pixel. The

information measure of each pixel is calculated which is an indicator of saliency at that

location, i.e. the less common features in the image (more salient) yield higher

information responses.

3.1.1.3 Performance measure of space-based saliency models

Measuring and comparing the performance of saliency models is a challenging task.

These models use different techniques of decomposing images into features and

measuring their distributions. There have been a number of attempts to quantitatively

analyze the performance of bottom-up saliency approaches using various scoring

techniques and datasets [43, 47]. The common approach in all these schemes of

performance measurement is comparing the saliency results of each model against

ground truth images. The ground truth images are binary images produced by a human

observer who identifies those locations to which humans are more likely to fixate.

 Despite the fact that in the comparison studies there are models that consistently

perform better than the rest, there are still minor differences in ranking of these models

on being applied to different datasets. For instance, in [47] 5 datasets are used for

comparison purposes. Along the 11 space-based models of saliency analyzed in this

study, three models had the best performance on average in all datasets including

31

graph-based visual saliency (GBVS) [46], dynamic visual attention (DVA) [44] and

attention based on information maximization (AIM) [31]. However, the performance

of each model varies depending on the type of datasets. For example, GBVS has the

best performance in the dataset with multiple number of objects while AIM achieves

the best performance in the dataset with single dominant objects.

Given such variation in performance, we conducted our own evaluation of bottom-

up saliency models using image samples collected from test environments used for our

search experiments. We used the area under curve (ACU) scoring scheme similar to

[48]. In this technique, points from human fixations (ground truth) are considered

positive, and a number of points are sampled from images, which form the negative

set. Then the saliency map is treated as a binary classifier which separates the positive

from negative samples. These maps are thresholded with different percentile values

ranges from 0% (no saliency responses) to 100% (all saliency responses considered).

Next, a true positive rate vs. false positive rate is calculated and a receiver operating

characteristic (ROC) [49] curve is plotted for each saliency map and is averaged for all

the dataset images. By calculating the area underneath of each curve, we can predict

the performance of a given saliency model. A score of 1 corresponds to perfect

prediction whereas a score of 0.5 indicates chance level.

For evaluation purposes, we used 316 sample images with saliency maps

thresholded by steps 5% apart, i.e. a total of 21 maps for each model. The saliency

32

models were selected based on their average performance measures in [47] namely, Itti

[26], AIM [31], GBVS [46], DVA [44], spectral residual approach (SRA) [45] using

fast fourier transform (FFT) and discrete cosine transform (DCT) techniques. Figures

3.2 and 3.3 show the ROC curves and their integral values respectively. Based on the

ACU evaluation, AIM has the best performance measure with 0.7701.

3.1.2 Top-down saliency

As the name implies, the second class of saliency algorithms are those used to detect

clues regarding specific objects (top-down approach). In this method of saliency, the

objective is to identify portions of an image that corresponds to a specific object. Thus,

using such methods requires some form of training prior to the process to learn features

corresponding to those of the task at hand [22, 23, 50, 51].

Zhu et al. [50] introduce the notion of contextual pooling. In this model, top-down

saliency is treated as a classification problem. For training purposes, random patches

as well as their neighbouring patches are extracted from training data to take into

account both the object specific features and the context of the samples. Then, SIFT

features are obtained from each patch cluster and mapped to K-dimensional codes

forming a code book through the use of a support vector machine (SVM) model. To

measure the saliency in a test image, through the use of a Bayesian approach, the

probability of each pixel belonging to the object is computed. Based on the distribution

values, pixels are labeled as the background or the object.

33

Figure 3.3: The integral values of ROC curves for each saliency model.

0.6956

0.7701

0.6507

0.7216

0.7532

0.7154

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

SRA_FFT AIM DVA GBVS Itti SRA_DCT

Figure 3.2: The ROC curves of the saliency models in ACU.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

SRA_FFT

AIM

DVA

GBVS

Itti

SRA_DCT

34

 In [51], the authors use a similar classification approach to calculate top-down

saliency. However, top-down saliency is combined with a bottom-up saliency map to

generate more robust results. The bottom-up saliency is generated using low level

filters such as Difference of Gaussian (DOG) and coded into a more compact format

using the discrete cosine transform (DCT) technique.

To include contextual information, Yang and Yang [52] use a graphical model

known as conditional random field (CRF). First, they train a dictionary of an object’s

features using SIFT descriptors. Then through the use of the CRF, they determine how

a combination of these features and their neighboring regions contribute to the presence

of an object. The result of the CRF is a probability distribution value indicating the

saliency of a given feature in an image.

As it was seen in the above formulations of top-down saliency, these techniques are

designed for classification and recognition purposes. Hence, they rely heavily on high

level features (e.g. face) to separate an object from its background. In our visual search

application, we intend to find object specific clues in distances above the effective

range of our recognition algorithm, i.e. there is not enough features for recognition to

succeed. Having this fact in mind, to generate top-down saliency results, we propose

the use of histogram backprojection technique in which regions of interest are

identified only based on low level features such as color.

35

3.2 Attention based on Information Maximization (AIM)

In order to identify the general structures of interest, we employ the work of Bruce and

Tsotsos [31], commonly known as AIM. The reason behind this is AIM’s superior

performance in comparison to other state-of-the-art saliency methods in particular for

natural images (refer to [43, 47] for more details). The AIM algorithm begins by

decomposing an image into a series of distributions corresponding to independent

features. These features are generated by the application of a basis function previously

trained over a large number of natural samples using Independent Component Analysis

(ICA) [53].

3.2.1 Independent Component Analysis (ICA)

In this section, some principles of ICA are briefly reviewed to better understand the

process of feature generation in AIM. For more information regarding the operation

and formulation of ICA, see [53, 54].

ICA is a common technique in signal processing applications where one intends to

identify the individual sources of a mixed signal. A known application of ICA is in the

so-called “cocktail-party problem”. In this problem, 𝑛 people are speaking

simultaneously at a cocktail party and their voices are recorded by some microphones.

The objective is to separate the independent voices chattering at the party.

36

 Assume we have a random vector of 𝑛 observations 𝒙(𝑡) =

[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)] at times 𝑡 ∈ (𝑡0, 𝑡1, … , 𝑡max) each is a mixture of 𝑛

independent sources as follows:

 𝑥𝑗(𝑡) = 𝑎𝑗1𝑠1(𝑡) + 𝑎𝑗2𝑠2(𝑡) + ⋯ + 𝑎𝑗𝑛𝑠𝑛(𝑡), (3.1)

where 𝑥𝑗(𝑡) denotes the mixture, 𝑠1(𝑡), … , 𝑠𝑛(𝑡) and 𝑎𝑗1, … , 𝑎𝑗𝑛 are the source elements

and mixing coefficients respectively [55]. Putting the above notations into vector-matrix

representation we get,

 𝒙 = 𝑨𝒔 (3.2)

where 𝑨 is a 𝑛 𝑥 𝑚 matrix of mixing coefficients 𝑎𝑗𝑖 for 𝑚 ≤ 𝑛, 𝒙 and 𝒔 are the

random vectors of the mixtures and sources respectively.

 In the context of feature extraction, same principles are applied. Mixtures at each

time interval 𝑡 is represented by pixels of a sample image patch. For instance, a patch

of size 10 𝑥 10 forms a vector of 100 mixtures.

The fundamental assumption of ICA is that the sources are non-Gaussian and

statistically independent, i.e. information about the distribution of one source does not

provide any information about other sources. Based on this assumption, the values of

𝑨 and 𝒔 are estimated. Once the mixing coefficients are calculated, one can obtain the

independent components by multiplying the inverse of 𝑨 to signal 𝑿,

 �̂� = 𝑾𝒙 (3.3)

37

where 𝑾 can be thought as the inverse of matrix 𝑨 and �̂� is an estimation of sources

values.

There are numerous techniques proposed in the signal processing literature to

estimate the values of 𝑾 and s [56]. The one used for training the AIM basis matrices

is commonly known as infomax [57], a method inspired by the Shannon’s information

and entropy measures [58].

Figure 3.4: An example of decomposing a grayscale
image (top) into independent features (bottom) using
ICA algorithm [83].

38

In Shannon’s theory, entropy is a measure of uncertainty which means the more

information we have about a system, the lower the value of its entropy and

consequently the lower the uncertainty. In this context, uncertainty corresponds to

independence meaning that maximum entropy implies independent signals. Based on

this assumption, infomax attempts to extract independent sources by estimating an un-

mixing matrix that minimizes the mutual information of the sources, i.e. maximizes

their entropy (see [57] for more details).

3.2.2 Distribution and Information Measures

The next stage in the AIM algorithm is the calculation of features’ distributions

generated by the application of the basis function (un-mixing matrix). Using a Gaussian

kernel density function, we define the likelihood of the features by

𝑝(𝑤𝑖,𝑗,𝑘 = 𝑣𝑖,𝑗,𝑘) =
1

𝜎√2𝜋
∑ 𝜔(𝑟, 𝑡)𝑒−(𝑣𝑖,𝑗,𝑘−𝑣𝑖,𝑠,𝑡)

2
/2𝜎2

,

∀𝑟,𝑡∈Ψ

(3.4)

with ∑ 𝜔(𝑟, 𝑡)∀𝑟,𝑡∈Ψ = 1, where 𝜔(𝑟, 𝑡) denotes the degree to which the coefficient

𝜔 at coordinates 𝑟, 𝑡 contributes to the probability estimates, 𝑤𝑖,𝑗,𝑘 is the set of

independent coefficients based on neighborhood centered at 𝑗, 𝑘, 𝑣𝑖,𝑗,𝑘 is the local

39

statistic value and Ψ is the context which the probability estimate of the coefficients of

𝜔 is based on.

Since features generated by ICA are independent, the joint density function of the

features is given by

𝑝(𝑤1 = 𝑣1, 𝑤2 = 𝑣2, … , 𝑤𝑛 = 𝑣𝑛) = ∏ 𝑝(𝑤𝑖 = 𝑣𝑖).

𝑛

𝑖=1

 (3.5)

Using Shannon’s self-information measure theory [58], the information of the

resulting joint distribution is calculated by

Figure 3.5: The framework of achieving information measures by application of
AIM to a sample image using neural circuit to measure the distribution of features
[31].

40

𝐼(𝑊) = − log(𝑝(𝑊)) (3.6)

where 𝐼(𝑊) is the information measure of distribution 𝑝(𝑊). This information then

serves as a means to detect saliency within an image. In this case, the regions with the

highest information responses, i.e. the least common within the image, are identified

as salient.

3.2.3 Parameter selection and performance

The saliency responses of the AIM information map highly fluctuate with respect to

the changes in the kernel size used to generate local distributions, the number of

features and environmental factors such as lighting condition.

3.2.3.1 Kernel size

Given that a basis matrix is multiplied by each local patch of an image to extract

features, it is obvious that increasing the size of the kernel increases the dimension of

the matrices multiplied together, and as a result, the processing time rises (Figure 3.6).

Moreover, altering the kernel size also has a direct impact on the saliency responses

of AIM. Although the output of the conspicuity map highly depends on the content of

the image, as a general rule, the bigger the kernel size be, the higher the chance that

larger salient structures are detected within the image. Figure 3.7 demonstrates the

effect of the kernel size on the saliency results using AIM. The algorithm is fully

parallelized on a 12 core 2.1GHz Intel processor.

41

It is apparent that in the saliency responses generated by the small kernels of size

52 and 72 square pixels, the small components such as floor’s texture have the highest

intensity As the size of the kernel increases, the saliency drifts away from the smaller

objects toward the bigger ones. For instance, in the saliency map with the kernel size

of 312 square pixels, the stairs at the back of the room have the highest response while

the smaller objects such as the colorful toys are much less salient.

0

10

20

30

40

50

60

70

5 7 9 11 15 21 31 51

K
er

n
el

 S
iz

e
(s

q
u

ar
e

p
ix

el
)

Processing Time (sec)

Kernel Size to processing time

Figure 3.6: The relationship between the kernel size of a basis matrix and the
processing time of building the AIM saliency map.

42

Figure 3.7: The application of AIM to a sample image using the basis matrices of
various sizes. a) is the original image, and b-g) are information maps generated by
AIM with the kernel sizes of 5, 7, 11,15, 21, and 31 square pixels respectively.

a b

c d

e f

g

43

3.2.3.2 The number of features

The AIM saliency model also behaves differently by changing the number of features.

Clearly, the processing time is directly correlated with the dimensionality of basis

matrices because their number of rows are equal to the number of features. Figure 3.8

illustrates the relationship between the processing time and the number of features used

to create an AIM saliency map. The same processor as before is used with the patch

size of 21 square pixels. The number of features also influences the saliency responses

of AIM. In fact, using ICA to generate the features of interest, each individual pixel is

treated as an individual source of information. This means that using more features

reduces the sensitivity of the model to correspond to meaningful shapes but rather to

0

10

20

30

40

50

60

7 15 25 69 163 251 478

P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Number of Features

No. Features to Processing Time

Figure 3.8: The relationship between the processing time of generating the AIM
saliency map and the number of features used.

44

individual pixel intensities or minor structures. Using a small number of features also

is inefficient because there is a higher chance of accidental similarity among features

for different objects, and consequently, generating similar saliency responses in spite

of the variation in the scene.

Figure 3.9 shows the changes in the behavior of AIM using a varying number of

features. In the case of using only 7 features, the resulting map is fairly generic as it

shows uniform responses with low intensities on the majority of the image. By

increasing the number of features, the saliency responses become more specific for

individual objects until reaching a certain threshold at which they are drift away to

textureless patterns within the image such as walls.

In addition to the type of the basis matrix used in AIM, the environmental factors

such as lighting conditions or the objects’ distances from the camera greatly alter the

saliency results. Without any attempt to generalize the effect of each factor, Figure 3.9

demonstrates some of their impacts on the conspicuity outcomes.

3.2.3.3 Thresholding the saliency map

For the purpose of visual search, we are only interested in the highest saliency

responses not the entire map. One way to focus on the highest responses is through

static thresholding of the results in which the saliency responses below a fixed value

(often set empirically) are discarded.

45

Figure 3.9: A sequence of the AIM saliency maps using a various number of
features. a) is the original image, and b-g) are the saliency maps using 7, 25, 69, 163,
251, and 478 features respectively.

a b

c d

e f

g

46

This method is inadequate because given the dependency of the saliency responses to

elements such as the environment’s configuration, the distance of objects to the camera

and viewing angle, a fixed threshold value would not correctly reflect saliency.

A dynamic approach known as percentile thresholding is used to remove the low

salient points. The 𝑝𝑡ℎ percentile is a value below which 𝑝 percentage of the data falls

[59]. These authors compute an index of observation using 𝑛 observations,

𝑥1, 𝑥2, … , 𝑥𝑛 . First, the observations are sorted in an ascending format, thus 𝑥1 has the

lowest value and 𝑥𝑛 the highest. Then they calculate the index of observation 𝑥𝑖 for the

percentile value 𝑝 by

𝑖 =

𝑛. 𝑝

100
+ 0.5 (3.7)

where 𝑖 presents the index of observation 𝑥𝑖. If 𝑖 is an integer, 𝑥𝑖 is the 𝑝𝑡ℎ percentile

value, otherwise they interpolate as follows:

𝑥𝑖𝑛𝑡 = (1 − 𝑓)𝑥𝑘 + 𝑓𝑥𝑘+1 (3.8)

where 𝑥𝑖𝑛𝑡 is the interpolated value, and 𝑘 and 𝑓are the integer and fractional parts of

𝑥𝑖.

47

3.2.3.4 The limitations of AIM

The application of ICA to decompose the image of interest into independent features

imposes a number of limitations on the performance of AIM. The basis functions

trained by ICA do not account for the color distributions of objects, i.e. features

generated for two identical objects with different colors might be the same. It is also

challenging for ICA to learn the object specific features within natural environments

due to the variations in scale, orientation and lighting conditions.

Moreover, ICA considers each pixel value of an image as a source of information.

This means, it is not feasible to train the system over all the individual features of an

object. For instance, in the case of a RGB patch of size 212 pixels, there will be a total

of 21𝑥21𝑥3 = 1323 features. Applying such a basis matrix to a typical image of size

640x480, we will have a feature space of 1323𝑥620𝑥460 pixels. Using a smaller

subset of features, however, creates similar basis functions for different objects, which

makes it challenging to train a basis matrix for a specific object.

Despite such limitations, AIM perfectly satisfies our initial objective to identify

general physical structures that likely correspond to regions such as shelves, tables or

any other surfaces with a high chance of containing the object of interest.

48

a)

 b)

Figure 3.10: The effects of the environmental factors on the saliency responses of
AIM. Each AIM generated saliency uses a basis matrix with the kernel size of 21 square
pixels with 25 features. a) Lighting changes within the search environment. On the left
from the top to bottom, natural lighting, direct lighting and ceiling lighting and on the
right, the saliency responses of each image. b) A drawer with random objects on the
top with different distances from the camera. On the left, from the top to bottom, the
original image with the drawer’s distance of 1m, 2m, 3m and 5m. On the right side,
the resulting saliency responses.

49

3.3 Histogram Backprojection (HB)

The saliency map presented in the previous section does not include clues relating to

the target. There are variety of ways to achieve this based on the characteristics of an

object such as shape, color or orientation. In this work, only the target’s color

distribution is considered.

To identify similarities of an object’s colors within an environment, an algorithm

commonly known as Histogram Backprojection (HB) [32] is employed. First, the HB

method requires an object template in order to establish its color distributions.

3.3.1 Template extraction

In order to reduce false saliency responses, it is important to use an object template that

has minimal background information. One can attain this by cropping the object from

an image manually. This method is neither efficient in terms of timing nor suitable for

online applications in which we intend to show an instance of the object that is not

previously known to a system.

A clustering technique based on Gaussian Mixture Model (GMM) [60] is used to

segment the target of interest from its background. In this method, the object and

background colors are represented by a multivariate density function and the goal is to

estimate the parameters of each distribution in the form of a GMM. In this manner,

50

care should be taken to use templates with a uniform background color, preferably

distinguishable from those of the object.

A GMM probability distribution takes the form

𝑝(𝑥|Θ) = ∑ 𝛼𝑖𝑝𝑖(𝑥|𝜃𝑖)

𝑚

𝑖=1

, (3.9)

where 𝑚 is the number of mixtures and Θ = (𝛼1, … , 𝛼𝑚, 𝜃1, … , 𝜃𝑚) are the parameters

from which 𝛼𝑖 ≥ 0 denotes the mixing coefficient (weight) of each mixture such that

∑ 𝛼𝑖
𝑚
𝑖=1 = 1, and 𝜃𝑖 = (𝜇𝑖, 𝐶𝑖) where 𝜇𝑖 and C𝑖 refer to the mean and covariance of

normal distribution 𝑝𝑖 respectively. The distribution of each mixture is given in the

form of a 𝑑 dimensional Gaussian as follows:

𝑝𝑖(𝑥|𝜇𝑖, σ𝑖) =

1

(2𝜋)
𝑑
2 |𝐶𝑖|

1
2

𝑒−
1
2

(𝑥−𝜇𝑖)𝑇C𝑖
−1(𝑥−𝜇𝑖)

 .

(3.10)

Let 𝑥𝑖 be an image RGB patch. The objective is to find the maximum likelihood

estimate (MLE) of all the mixture parameters of Θ,

log(𝐿(Θ|𝑥)) = log ∏ 𝑝(𝑥𝑖|Θ)

𝑁

𝑖=1

= ∑ log (∑ 𝛼𝑗𝑝𝑗(𝑥𝑖|𝜃𝑗)

𝑚

𝑗=1

) .

𝑁

𝑖=1

(3.11)

The Expectation Maximization (EM) algorithm is employed to estimate the

parameters. EM consists of two steps, the Expectation or E-step and the Maximization

51

or M-step. In the E-step, 𝑝𝑖,𝑗 is calculated, which corresponds to the probability of

sample 𝑖 belonging to mixture 𝑗 using currently available parameters (initial values are

set randomly)

𝑝𝑖,𝑗 =

𝛼𝑗𝑝𝑗(𝑥|𝜇𝑗 , C𝑗)

∑ 𝛼𝑘 𝑝𝑘(𝑥|𝜇𝑘 , C𝑘)𝑚
𝑖=1

 .

(3.12)

At the second step or M-step, the mixture parameters are refined by

𝛼𝑗 =
1

𝑁
∑ 𝑝𝑖,𝑗

𝑁

𝑖=1

, 𝜇𝑗 =
∑ 𝑝𝑖,𝑗𝑥𝑖

𝑁
𝑖=1

∑ 𝑝𝑖,𝑗
𝑁
𝑖=1

,

C𝑗 =
∑ 𝑝𝑖,𝑗(𝑥𝑖 − 𝜇𝑗)(𝑥𝑖 − 𝜇𝑗)

𝑇𝑁
𝑖=1

∑ 𝑝𝑖,𝑗
𝑁
𝑖=1

.

(3.13)

Alternatively, the E-step and M-step can be applied in a reverse order depending

on the availability of data at the time of calculation (see [60] for more details). After

calculating the distribution of the background colors, their values are replaced by the

color black (RGB value 0) (Figure 3.11).

3.3.2 Backprojection

A 3D RGB histogram of the object’s template is created, ignoring the color black as it

is used for the template background.

52

 Let ℎ(𝐶𝐿) be the histogram function that maps color 𝐶𝐿 = (𝑅, 𝐺, 𝐵) to a bin of

histogram 𝐻(𝐶𝐿) generated based on object’s template 𝑇𝜃. We can perform

backprojection of the object over an image as follows:

∀ 𝑥, 𝑦: 𝑏𝑥,𝑦 ≔ ℎ(𝐼𝑥,𝑦,𝑐𝑙

′), (3.14)

where 𝑏 is the grayscale backprojected image, and 𝐼′ is normalized image 𝐼(see Figure

3.12).

Figure 3.11: The application of the EM algorithm to separate the objects foreground
from the background.

53

3.3.2.1 Image Normalization

The performance of HB is limited in applications where images are captured in variety

of conditions. In practice, an object’s template is created independent of the physical

environment in which it will be searched. However, throughout the search process

using a mobile robot, the object’s colors might be perceived differently depending on

the distance of the robot to the target, reflection, illumination changes and even in some

cases the type of sensor used. As a result, a direct projection of the template’s colors

would fail to accurately identify the target in the majority of situations.

Figure 3.12: The Histogram Backprojection results of four samples. The saliency
results from the top to bottom refer to the object templates from the left to right.

54

One way of addressing the issue of illumination changes, is to normalize the images

of interest. A simple but effective technique is pixelwise normalization [61], in which

every pixel’s color values 𝑟𝑘, 𝑔𝑘 and 𝑏𝑘 are normalized by

𝑟𝑘′ =

𝑟𝑘

𝑠𝑘
 , 𝑔𝑘′ =

𝑔𝑘

𝑠𝑘
, 𝑏𝑘′ =

𝑏𝑘

𝑠𝑘

(3.15)

where 𝑟′, 𝑔′ and 𝑏′ denote the normalized color values and 𝑠𝑘 = 𝑟𝑘 + 𝑔𝑘 + 𝑏𝑘 is the

intensity of each pixel. Normalization also can be achieved channelwise,

𝑟𝑘′ =

𝑟𝑘

∑ 𝑟𝑖
𝑛
𝑖=1

 , 𝑔𝑘′ =
𝑔𝑘

∑ 𝑔𝑖
𝑛
𝑖=1

, 𝑏𝑘′ =
𝑏𝑘

∑ 𝑏𝑖
𝑛
𝑖=1

(3.16)

where 𝑛 is the total number of pixels in each channel.

Swain and Ballard [32] proposed an alternative approach to normalization. They

used what so called the three opponent color axes technique to isolate the intensity of

an image in a separate channel, which in turn will be coarsely indexed to reduce the

effect of lighting. In this model channels are defined as follows:

 𝑟𝑔𝑘 = 𝑟𝑘 − 𝑔𝑘,

 𝑏𝑦𝑘 = 2 ∗ 𝑏𝑘 − 𝑟𝑘 − 𝑔𝑘,

𝑤𝑏𝑘 = 𝑟𝑘 + 𝑔𝑘 + 𝑏𝑘

(3.17)

55

where 𝑟𝑔, 𝑏𝑦 and 𝑤𝑏 are the three color axes. Figure 3.13 shows the result of each

normalization technique on a number of sample templates.

3.3.2.2 Color Indexing

Although normalization reduces the effect of illumination changes, it certainly is not

sufficient for backprojection. The color (hue) of an object also may change in regard

to lighting’s color, the surface reflection of other objects or shadow.

To resolve this issue, the histogram of templates ought to be indexed. i.e. a range

of colors is considered for each bin other than using the specific number of colors (e.g.

0-255 in the case of 8 bit RGB). Here, care should be taken not to set the index values

too high so that each bin includes too many colors, or too little that with the smallest

Figure 3.13: The normalization of the sample templates using different techniques.
From the top to bottom: the original templates, pixelwise normalization, channelwise
normalization, and the three opponent color axes.

56

changes in the environment conditions such as lighting, HB fails to identify the object

of interest.

Figure 3.14 shows the effects of the index size on the final output of the HB map.

In this example, the images are pixelwise normalized and thresholded to only reflect

the highest salient points. As can be seen, by increasing the size of the color index, the

saliency becomes more specific up to a point that the algorithm fails to detect the target.

These images also highlight the potential issues with merely relying on color

distributions especially in the cases where there is a similarity between the object, e.g.

the cup, and the environment’s color distributions.

3.4 Building the Final Saliency Map

The final saliency map is produced by merging the AIM and HB conspicuity maps.

For this purpose, a binary mask of the AIM saliency responses is created. This mask is

then applied to the original image to extract the RGB values corresponding to the

interest points identified by AIM,

 𝐼𝜽 = 𝐼𝜃 × 𝑀(𝒙, 𝒚),

{
𝑀(𝒙, 𝒚) = 1 𝑖𝑛𝑓𝑜(𝒙, 𝒚) > 𝒑

 𝑀(𝒙, 𝒚) = 0 𝑒𝑙𝑠𝑒,

(3.18)

where 𝑖𝑛𝑓𝑜() refers to the information map generated by AIM.

57

Figure 3.14: The HB saliency results using different index sizes. The images are
pixelwise normalized and thresholded using a 8-bit value, 60. a) is the image of the
environment, b) are the object templates and c-g) the HB generated saliencies with index
sizes 16, 32, 64,128 and 256 respectively.

a)

b)

c)

d)

e)

f)

g)

58

where 𝐼𝜃 is the original image captured through camera configuration 𝜃 , 𝑖𝑛𝑓𝑜(𝒙, 𝒚) is

the information map resulted from AIM, 𝑀(𝒙, 𝒚) is the binary mask and 𝒑 denotes the

percentile threshold. Image 𝐼𝜃, is used to produce the HB saliency through the

projection of an object’s template. Then, the result is integrated with the AIM

conspicuity map, each contributing 60% and 40% to the final saliency results

respectively. These values are set empirically to ensure that the saliency responses of

each model are not exaggerated.

3.5 Applying Saliency to Visual Search

The resulting saliency map is used to increase the probability distribution of those

regions that have a higher chance of detecting the target. By relying on a stereo camera,

the depth of each point is calculated to determine its 3D coordinates within the

environment. Those points that fall within the range of the recognition algorithm (the

effective field of view) are discarded, otherwise based on their perceptual saliency, the

probability distribution of the target’s presence is increased. Figure 3.15, shows the

process of generating and applying saliency to visual search.

59

3.6 Summary

In this chapter, we explained two techniques for building saliency maps. The AIM

algorithm is used to extract general interest points within an environment that have a

higher chance of corresponding to structures that are in spatial relation to a target of

interest. These points can play the role of indirect clues by guiding a search agent to

the regions of a higher importance.

Figure 3.15: The process of applying saliency to the robotic visual search.

60

The second method is Histogram Backprojection (HB). HB is used to identify the

interest points relating to the object of interest rather than the environment’s structure.

The combination of these two methods modifies the probability distributions of the

target’s presence, allowing the search agent to make more informed decisions when

selecting an action.

61

4 Sensor Planning Strategies with Predefined Constraints

Recalling the concept of search from Chapter 2, the goal of object search is to find a

sequence of operations that maximizes the probability of detecting the target within a

predefined cost constraint. Ye [17] introduces an approximate solution to the problem

using a greedy approach that maximizes the probability of detecting the target at any

time when an operation is selected. Shubina and Tsotsos [18] extend this work by

adding the cost of each operation in terms of the distance traveled by the robot. This

cost is used to determine the utility of the next best location for the robot to move to.

In the above greedy approaches, the cost of each action is only considered locally,

meaning that among all the possible operations, they determine what the next best

operation that maximizes the value of an action. The cost is only included to compute

the utility of an action. These methods do not consider the possibility of a larger scale

optimization approach. This is particularly important to maximize the chance of finding

a target within a given cost constraint.

 Another aspect for potential improvement of Ye’s sensor planning strategy

concerns thresholding the utility of a location with a fixed value before moving to

another one. If the robot perceives an area of a greater importance in another location,

it is limited to finish searching its current location before deciding to move to the next,

62

i.e., searching its current location must continue until some threshold is reached

regardless of what is present at other locations.

Setting the threshold itself is also challenging. In [18], the authors define the

threshold value empirically based on the parameters of search such as the resolution of

the search (the size of cubic elements holding the probability distributions), the

recognition algorithm’s effective field of view, or other factors that affect the search

process. In practice, some of these elements may change prior to search, which then

would require conducting evaluative experiments to estimate a reasonable threshold

value. In addition, throughout the search there might be different methods of analysing

an image to be used. For instance, an agent may be instructed to detect a table and then

search for a cup on top of it. The algorithms to perform these tasks are not necessarily

the same, each having its own characteristics. As a result having a fixed threshold to

accommodate different tasks in this context may not suffice for a good search

algorithm.

The aforementioned deficiencies in the previous sensor planning strategies point

strongly to the need for a more general approach. First, such a technique first should

have a global approach towards sensor planning by acting according to the constraints

within which we intend to conduct the search such as available time or the battery

energy of the robot. Second, the model should be free of any predefined parameters

63

that limit the performance of the search agent in employing different methods for

detecting an object.

The contribution of the work presented in this chapter is twofold. First, we expand

on the complexity of object search mentioned in [17], and then we formalize the

problem in an attempt to define some global optimization technique to solve the

problem with respect to a constraint. Section 4.1 shows the complexity of object search.

Section 4.2 reviews a variety of the knapsack problems and their similarities to object

search. Section 4.3 details the practical limitations of object search. Section 4.4 surveys

some of the common techniques of solving the knapsack problem. Section 4.5 proposes

some novel approaches to sensor planning for object search with a constraint.

4.1 The complexity of object search

Ye and Tsotsos [62, 28, 63] perform a complexity analysis of object search and prove

that this problem belongs to 𝑁𝑃 class (later in this section, we comment on the

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 of the problem).

It is difficult to extract any regularities in the problem of object search as described

in Chapter 2, primarily due to the presence of intermediate probability distributions

which are being changed after the application of each operation. To add further

perspective to the problem of search, Ye further simplifies the search process at the

64

current location of the robot. He proposes to only update the probability of the regions

within the sensed sphere (the region around the robot with a radius equal to the size of

the recognition algorithm’s effective field of view) at a time the robot is searching its

current position. This means the probabilities of the remaining locations are updated

when the robot moves to a new destination.

With respect to the above assumptions and restricting the actions in a way that no

two actions share influence ranges (i.e. the recognition algorithm’s effective field of

view), Ψ𝑓𝑖
∩ Ψ𝑓𝑗

= 0 for 𝑖 ≠ 𝑗, 𝑃[𝑭] can be redefined as follows:

` 𝑃[𝑭] = ∑ 𝑝(𝒇𝑖, 𝜏0)

𝑛

𝑖=0

. (4.1)

According to (2.4) and constraint 𝑇(𝑭) ≤ 𝐾, where 𝐾 is the total time available to

conduct the search, the problem of object search can be reduced to the KNAPSACK

problem in which the objective is to maximize a value (probability distributions) while

not exceeding a capacity (𝐾). Based on this interpretation, the problem of object search

is showed to be NP-hard.

Alternatively, one can transform the optimization problem into an equivalent

decision problem by imposing a lower limit on 𝑃[𝑭]. In this case, the problem of object

search is defined as finding an effort allocation 𝑭 such that 𝑇(𝑭) ≤ 𝐾 and 𝑃[𝑭] ≥ 𝑀.

By this definition, the problem belongs to 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 class. In practice, however,

65

it is hard to set the 𝑀 value, therefore, we treat object search as an optimization problem

in this work.

4.2 The KNAPSACK problem

In order to formulate a sensor planning algorithm for object search with a cost

constraint, we follow the same reasoning as Ye and reduce the object search problem

to the KNAPSACK problem [64]. Here, however, we intend to generalize this idea to

select a sequence of actions to maximize the probability of detecting an object with a

given constraint.

 Recalling the KNAPSACK problem, we have 𝑛 items with 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 (𝑝) and

𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑤) and we want to place a subset of items in a knapsack of 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑐). In

this manner, we want to maximize the profit of the selected subset while its overall

weight should not exceed the capacity of the knapsack.

 Recalling from (2.3), let 𝑂Ω be the set of all possible operations on Ω and 𝑭 =

{𝑓1, 𝑓2, … , 𝑓𝑘} an ordered set of actions performed during the search. To fit into a similar

description of KNAPSACK, we consider 𝑂Ω as the set of all items available to pick

from, and probability 𝑝(𝑓) and cost 𝑡(𝑓) as the profit and weight of each item

respectively. Here, the capacity is defined in terms of the cost constraint 𝑲 and

maximization is constrained by 𝑇[𝑭] ≤ 𝑲 where 𝑇[𝑭] is the total cost of subset 𝑭.

66

4.2.1 Variation of KNAPSACK

In order to formulate a solution to our problem, we first need to know which category

of the KNAPSACK problem, object search belongs to. Perhaps the most common case

of the KNAPSACK problem is the 0-1 knapsack problem. This problem arises when

the objective is to maximize the value of 𝑛 objects while there is only one instance of

each allowed,

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑐,

𝑥𝑗 = 0 𝑜𝑟 1 , 𝑗 = 1, … , 𝑛. (4.2)

A special case of this problem also exists where the goal is to select a subset of

weights closest to the capacity of the knapsack [64].

The number of knapsacks may vary. In the 0-1 Multiple Knapsack Problem [65],

there are a total of 𝑚 knapsacks with capacities 𝑐1, 𝑐2, … , 𝑐𝑚. Similar to the 0-1

knapsack problem, the aim is to maximize the value of items subject to each item

selected must be put in all 𝑚 knapsacks. Another special case of the problem is the

bounded knapsack problem [66] that considers a limited number of each item. If there

is no limit on the number of items to use, this problem transforms into an unbounded

knapsack problem [67].

67

Maximizing the profit while having more than one weight (cost) is addressed in

Multidimensional Knapsack Problem [68]. In the cases where 𝑥 is not an integer, the

problem becomes a Fractional Knapsack Problem [69].

There are other variation of the KNAPSACK problem, which are beyond of the

scope of this thesis including the Temporal Knapsack Problem [70], Interactive

Knapsack problem [71], Dynamic and Stochastic Knapsack Problem [72], Partially

Ordered Knapsack [73], Static Stochastic Problem [74], and Change Making

Problem [75].

In the object search problem, each operation is independent and unique. The process

of action selection is binary, i.e. an operation is either selected or not. Each action is

only selected once given the probability (profit) of the action is reduced to zero once

selected. Given this definition, the problem of object search with a single constraint

can be regarded as a 0-1 knapsack problem as follows:

`

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃[𝑭] = ∑ 𝑝(𝒇𝑗)

𝑛

𝑖=0

𝑥𝑗 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇[𝑭] = ∑ 𝑡(𝒇𝑗)

𝑛

𝑖=0

𝑥𝑗 ≤ 𝑲.

𝑥𝑗 ∈ {0, 1} , 𝑗 = 1, 2, … , 𝑛 (4.3)

68

It is important to note that if we intend to use multiple constraints for the search

(e.g. time and energy consumption), a multidimensional knapsack would be a more

adequate choice.

4.3 The practical limitations of optimizing object search

Thus far, in every definition of the KNAPSACK problem, the profit and weight of each

item are known in advance and constant, and the order of selecting the objects does not

alter the final result. This is with the exception of the stochastic knapsack problem in

which one component of the problem is not completely known in advance or may be

subject to change.

In practice, only the constraint of search is known and constant throughout the

process. Depending on the order of choosing actions, the value and cost of each

operation changes. This implies that two sets of identical operations with different

orders may result in dissimilar values and costs.

Assume we want to perform two operations 𝑓1 = (𝑆1, 𝑎) and 𝑓2 = (𝑆2, 𝑎) with the

probabilities of detecting a target 𝑝(𝑓1) and 𝑝 (𝑓2), where 𝑆𝑗 is the camera’s

configuration parameters and 𝑓𝑗 is the action for 𝑗 = 1, 2. We assume that the number

of cubic elements in 𝑓𝑗’s effective field of view is given by 𝜓𝑗.

Lemma 1

69

 𝑝(𝑓1 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) + 𝑝(𝑓2 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 | 𝑓1 ≠ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) =

 𝑝(𝑓2 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) + 𝑝(𝑓1 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 | 𝑓2 ≠ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) (4.4)

If 𝜓1 = 𝜓2 𝑎𝑛𝑑 𝜓Ω > 𝜓1 + 𝜓2.

Proof

The probability of each action is given by

 𝑝(𝑓) =
ψ𝑓

ψΩ

where Ω is the search space and ψ𝑓1
∩ ψ𝑓2

= ∅,

ψ𝑓1

ψΩ
+

ψ𝑓2

ψΩ − ψ𝑓1

=
ψ𝑓2

ψΩ
+

ψ𝑓1

ψΩ − ψ𝑓2

ψ𝑓1
(ψΩ − ψ𝑓1

) + ψ𝑓2
ψΩ

ψΩ(ψΩ − ψ𝑓1
)

=
ψ𝑓2

(ψΩ − ψ𝑓2
) + ψ𝑓1

ψΩ

ψΩ(ψΩ − ψ𝑓2
)

(ψΩ
2 − ψ𝑓2

ψΩ)(ψ𝑓1
ψΩ − ψ𝑓1

2 +ψ𝑓2
ψΩ)

= (ψΩ
2 − ψ𝑓1

ψΩ)(ψ𝑓2
ψΩ − ψ𝑓2

2 +ψ𝑓1
ψΩ)

ψ𝑓1
ψΩ

3 − ψ𝑓1

2 ψΩ
2 + ψ𝑓2

ψΩ
3 − ψ𝑓1

ψ𝑓2
ψΩ

2 + ψ𝑓1

2 ψ𝑓2
ψΩ − ψ𝑓2

2 ψΩ
2 =

ψ𝑓2
ψΩ

3 − ψ𝑓2

2 ψΩ
2 + ψ𝑓1

ψΩ
3 − ψ𝑓1

ψ𝑓2
ψΩ

2 + ψf1
ψ𝑓2

2 ψΩ − ψ𝑓1

2 ψΩ
2

ψ𝑓1

2 ψ𝑓2
ψΩ = ψf1

ψ𝑓2

2 ψΩ

ψf1
= ψ𝑓2

(4.5)

QED.

70

 Intuitively, the sum of probability of performing two actions 𝑓1 and 𝑓2 are equal if

their influence ranges cover the same amount of space. This means if this equality does

not hold the order of selecting the actions matter.

Similarly for the cost of operations, let 𝑆0 = {𝜃0, 𝜔0, 𝜎} be the current camera

setting, where 𝜃0 = {x0, y0, z0} is the camera position in 3D environment Ω, 𝜔0 =

{𝑝0, 𝑡0} the angles of pan and tilt, and 𝜎 = {𝑤, ℎ} the width and height of the camera’s

field of view.

It is trivial to show that there are cases in which the order of selecting actions

influences the overall cost of search (see Section 4.5.1). Hence, the value and cost of

operation allocation 𝑭 could be different depending on the order in which each action

is applied. This points to the fact that in order to globally optimize a search, we are

dealing with the permutation of operations other than combination. As a result the time

complexity of solutions and the size of the search space is significantly increased.

4.4 Solutions to 0-1 knapsack problems

4.4.1 Exact solutions

4.4.1.1 Brute Force

The most straightforward approach to solve the KNAPSACK problem is to consider

every possible combination of components and select the one that yields the highest

71

value. The time complexity of brute force for solving the object search knapsack is

𝑂(𝑛!) given the total number of possible permutations as follows:

 ∑
𝑛!

(𝑛 − 𝑘)!

𝑛

𝑘=0

≈ 𝑒 ∗ 𝑛! (4.6)

where 𝑘 is the size of permutation and 𝑛 the total number of operations. To that extent,

the brute force approach is extremely inefficient as a solution to object search. For

example, assume we have a search application where the robot has a total of 20

discretized directions to look toward and 30 possible locations to perform the search

from. The resulting number of operations is 600 to choose from. The time requirement

of selecting a sequence of operations is given by, 600! ∗ 𝑒 ≈ 3.46 ∗ 101408. This is

neither feasible nor possible in any available practical system.

4.4.1.2 Dynamic Programming

One of the most common techniques of finding an exact solution to the KNAPSACK

problem is dynamic programing [76]. Recalling (4.2), using dynamic programming, a

maximum subset of the items can be calculated as follows: first, a 2-dimensinal array

𝑓(𝑘, 𝑦) is created, where 𝑘 and y are integer and 0 ≤ 𝑘 ≤ 𝑛 and 0 ≤ 𝑦 ≤ 𝑐 where 𝑛

and 𝑐 are the number of items and capacity respectively. The 𝑓(𝑘, 𝑦) values are given

by

72

𝑓(0, 𝑦) = 𝑓(𝑘, 0) = 0

𝑓(𝑘, 𝑦) = {
𝑓(𝑘 − 1, 𝑦) 𝑖𝑓 𝑤𝑘 > 𝑦

max{𝑣𝑘 + 𝑓(𝑘 − 1, 𝑦 − 𝑤𝑘), 𝑓(𝑘 − 1, 𝑦)} 𝑖𝑓 𝑤𝑘 ≤ 𝑦 𝑎𝑛𝑑 𝑘 > 0
. (4.7)

This would lead to finding the maximum obtainable value from 𝑛 items in 𝑓(𝑛, 𝑐).

To estimate the value of 𝑥𝑗, we perform backtracking by

repeat for 𝑘 = 𝑛 − 1, … ,1 ,

𝑥𝑗 = 1 𝑖𝑓 𝑓(𝑘, 𝑦) ≠ 𝑓(𝑘 − 1, 𝑦),

𝑥𝑗 = 0 𝑖𝑓 𝑓(𝑘, 𝑦) = 𝑓(𝑘 − 1, 𝑦), (4.8)

where the capacity for previous items is 𝑦 = 𝑦 − 𝑤𝑘𝑥𝑘. The time complexity of

dynamic programing is pseudo-polynomial with 𝑂(𝑐𝑛).

 Applying dynamic programing to the object search knapsack imposes a number of

limitations. The dynamic programing splits constraint (capacity) into equal intervals.

In object search, these intervals should be in real numbers in the order of thousands to

accommodate variation in the probability values of operations. This significantly

increases the size of sub problems. In addition, the main assumption of dynamic

programing is that the profits and weights are constant throughout the process. Hence,

this solution has no mechanism to address the changes in the probability values and

costs of search operations.

73

4.4.1.3 Branch-and-Bound

A well-known branch-and-bound technique was introduced by Horowitz and Sahni

[77]. This method consists of two operations: forward move in which the largest

possible set is inserted into the current solution and backtracking move where the last

inserted item is removed from the current solution. At any point when the next best

item cannot be selected, an upper bound value 𝑈 is calculated and compared to the best

solution so far to realize whether a forward move could result in a better solution. If

not, a backtracking move is performed. The algorithm terminates when no further

backtracking is possible.

Despite the fact that branch-and-bound on average has a lower processing time than

brute force due to the pruning of branches throughout the process, it has the worst case

timing of 𝑂(𝑛!). In addition, for the instances of search with a large number of possible

operations, the number of nodes and branches increases exponentially, which requires

a significant amount of memory and time.

4.4.2 Approximate solutions

4.4.2.1 Greedy algorithm

The most immediate approach toward estimating a solution to the knapsack problem is

through the use of a greedy algorithm [78]. Suppose there are a number of items sorted

according to their utility values given by 𝑝/𝑤. The greedy algorithm selects the items

74

in a descending order until a critical item is observed, i.e. the next best item does not

fit into the knapsack.

The greedy algorithm can converge to an optimal solution and has the worst-case

performance ratio of ½. The time complexity of the greedy algorithm is 𝑂(𝑛𝑙𝑜𝑔𝑛) +

𝑂(𝑛) and it only requires memory size of 𝑆(𝑛). In the case of object search, the greedy

approach is slightly different. Because the values of remaining operations should be

recalculated after selecting each action, we omit the sorting step and instead only select

the action with the highest utility value each time. In this scenario, the processing time

is increased to 𝑂(𝑛2).

 The major drawback of the greedy approach in object search is that it only picks

actions one at a time and lacks the global view of consequence of each action on the

overall cost constraint of the search.

4.4.2.2 Extended Greedy Algorithm

The extended greedy algorithm [79] is an improved version of the greedy algorithm in

which the model continues selecting the next best items until the knapsack is full or it

reaches the last item. It is trivial to show that the processing time of extended greedy

algorithm to solve object search is also 𝑂(𝑛2).

4.4.2.3 Polynomial-Time Approximation Schemes (PTAS)

Approximation schemes are a group of techniques that allow one to achieve any

prefixed performance ratio at the expense of increasing the processing time. The most

75

common approaches in this category are Polynomial-Time Approximation Schemes

(PTAS) [80] and Fully Polynomial Approximation Schemes (FPTAS) [81] from which

PTAS will be discussed briefly.

Suppose items are sorted according to their utility values with profits 𝑝𝑗 and

weights 𝑤𝑗 to be fit in a knapsack, subject to capacity constraint 𝑐. Let 𝑧ℎ = 0 be the

highest value so far, to maximize the value of the knapsack using PTAS, the subsets of

the items are calculated by

 ∀ 𝑚 ∶ 0 ≤ 𝑚 ≤ 𝑘 & 𝑚 ∈ ℤ, 𝑀 = (𝑛
𝑚

) ∶ ∑ 𝑤𝑗 ≤ 𝑐𝑗∈𝑀 (4.9)

where 𝑀 set of the subsets and 𝑘 is a non-negative integer denoting the maximum size

of the subsets. For each subset, starting from empty, 𝑀 = {}, the corresponding items

are fixed in the solution and the capacity is adjusted by

 �̂� = 𝑐 − ∑ 𝑤𝑗 .
𝑗∈𝑀

 (4.10)

Then, the final value of the knapsack, considering �̂� = �̂� − 𝑤𝑖 after the selection of

each new item 𝑖 is given by

𝑧 = ∑ 𝑝𝑗
𝑗∈𝑀

+ ∑ 𝑝𝑖
𝑖∉𝑀

 ∶ 𝑤𝑖 ≤ �̂�

𝑧ℎ = 𝑧 𝑖𝑓 𝑧 > 𝑧ℎ

(4.11)

76

𝑖 = 1, 2, … , 𝑛.

The processing time of PTAS is exponential with respect to the value of 𝑘 given by

𝑂(𝑛𝑘+1)and it has the space complexity of 𝑆(𝑛). The worst case performance ratio, 𝑟,

also is dependent on 𝑘, computed by 𝑟 = 𝑘/(𝑘 + 1). This property of PTAS provides

a flexibility to achieve different performance rates with respect to the allowable

processing time of any given applications.

In the case of object search, the space complexity of PTAS remains the same as the

maximum size of each set would not exceed the total number of items. However, the

processing time significantly increases. After choosing an operation, the probability

values and costs of the remaining ones have to be recalculated and sorted again, which

add at least a factor of 𝑂(𝑛𝑙𝑜𝑔𝑛) to each sub-problem. Permuting each subset M also

increases the total number of sub-problems significantly, and as a result, the overall

processing time. For instance, in the above problem using 𝑘 = 2, there are at most a

total of 16 subsets whereas 26 permutated ones.

4.5 Knapsack solution to object search

Object search, as mentioned earlier, is different in nature to the classical knapsack

problems. It deals with the permutation of actions in which the values and costs of

77

operations change depending on the order of selections limiting the use of the solutions

mentioned above in the context of search. This points to the need for a new formulation

to accommodate the requirements of object search. In the following sub-sections, we

propose three sensor planning strategies designed based on the solutions to the classical

knapsack problem.

4.5.1 Cost function in object search

 In [17], Ye considers the cost of actions only when a robot relocates to a new position.

This is a reasonable approach, since he employs a greedy approach and the fact that the

cost of each action is similar in a stationery position. For the purpose of a global

optimization approach, however, we generalize this idea in two ways: first we consider

all the costs associated with performing each action including changing the direction

of the pan-tilt unit, applying the recognition algorithm, relocating the robot and any

other processes associated with the algorithm (e.g. path planning). These costs have to

be considered in order to estimate the remaining constraint in each stage of the search

and act accordingly.

 Second, we distinguish between the cost of each action even if both are performed

from the same location. In practice, (as shown in lemma 2) the cost of a sequence

depends on the order within which it is applied regardless of the location of each

operation. For instance, assume a scenario in which the current pan angle of a camera

78

is 0. We have two operations 𝑓1 and 𝑓2 to perform from the same location each with

pan angle 40 and 120 degrees respectively. If the order of application is 𝑓1𝑓2, the pan

unit has to turn 40 + 80 = 120 degrees. Applying the same actions in a reverse order,

pan unit has to turn 120 + 80 = 200 degrees. Given certain costs are associated with

altering the pan unit’s angle, such as time or energy it consumes, one can easily see

why applying two actions may incur different costs.

 For the purpose of this study, the cost of operations is measured in terms of the time

they take to complete, energy a system (robot and processing unit) consumes to perform

those operations and the distance travelled by the robot throughout the search. The first

two cost functions are similar in the sense that every component of an action incurs

them. The latter, however, is different because it is only applied when the robot moves

to a new location. This means operations from same locations are identical in terms of

the cost they incur, i.e. the cost of performing them is equal to 0.

4.5.2 Greedy Search with Constraint (GSC)

Perhaps the simplest approach to solving the problem of object search is the use of a

greedy algorithm similar to the one introduced by Yiming Ye [17]. Due to the issues

mentioned earlier, nevertheless, we need to modify this algorithm to first, take into

account the overall constraint of the search and act accordingly and second, not to be

dependent on any prefixed threshold.

79

Here, we propose a greedy algorithm with some modification to behave according

to a constraint. The probabilities and costs of all operations are calculated and placed

in two arrays of 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} and 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} respectively. The utility of

actions are measured by

 𝑈(𝜏) = {
𝑝1

𝑡1
,
𝑝2

𝑡2
, … ,

𝑝𝑛

𝑡𝑛
} (4.12)

where 𝑈(𝜏) is the set of all utilities at time 𝜏. The next operation then is selected by

 𝑓(𝜏) = max {𝑈(𝜏)} (4.13)

where 𝑓(𝜏) is the action chosen at time 𝜏. Note that because the probabilities and costs

of operations should be recalculated after each selection, instead of sorting the elements

of set 𝑈, the algorithm simply picks the maximum value. This reduces the time

complexity from 𝑂(𝑛𝑙𝑜𝑔𝑛) to 𝑂(𝑛) at each stage.

The model behaves greedily by selecting the actions with the highest utilities until

a percentage of the cost constraint, 𝛼, is reached. At this stage, the algorithm chooses

the next action in regard to its probability distribution as follows:

𝑈′(𝜏) = {𝑝1, 𝑝2, … , 𝑝𝑛}

𝑓′(𝜏) = max{𝑈′(𝜏)} ∶ 𝑡𝑗 ≤ �̂�(𝜏)
(4.14)

80

where 𝑡𝑗 denotes the cost of an action, and �̂�(𝜏) the remaining search constraint at time

𝜏. Intuitively, once percentage of constraint 𝛼 is reached, the algorithm selects the next

best action according to its probability value instead of its utility with respect to cost.

The major weakness of the greedy algorithm, in this context, is the locality of its

scope, i.e. it lacks the ability to look ahead of its current action to determine how it

affects the later stages of the search. This is an expected behavior because after

applying each operation, the values of remaining actions change, which are not

foreseen by the algorithm. To address this issue, Ye assigns a threshold to move the

robot to a new location. By changing this value, one can determine how fast the robot

should span the range of its search.

In the GSC algorithm the movement of the robot occurs naturally. Depending on

how salient locations beyond the effective range of the camera look from the robot’s

perspective, it decides when to relocate. The 𝛼 value also induces the robot to move to

a new destination. The greater the value of 𝛼, the faster the robot tends to expand its

scope of search and vice versa.

4.5.3 Extended Greedy Search (EGS)

Extended Greedy Search (EGS) is a direct adaptation of the extended greedy algorithm

explained earlier in Section 4.4.2.2 with some modifications to account for the object

81

search characteristics. Similar to GSC, the utility of operations are calculated according

to equation (4.15). Then, a sequence of actions to be performed during the search is

given by

𝐹(𝜏) = { 𝑓1, 𝑓2, … , 𝑓𝑚}, 𝑚 ≤ 𝑛

𝑓1 = max{𝑈(𝜏)} : 𝑡1 ≤ 𝐾 ,

𝑓𝑗 = max {𝑈 (𝜏𝑓𝑗−1

+) − 𝑢𝑗−1} ∶ 𝑡 ≤ 𝐾 − ∑ 𝑡𝑚

𝑗−1

𝑚=1

𝑗 = 2, 3, … , 𝑛, 𝑢𝑗−1 =
𝑝𝑗−1

𝑡𝑗−1

(4.15)

where 𝐹(𝜏) denotes the sequence of actions 𝑓𝑗, 𝑈(𝜏) is the utility of the operations at

time 𝜏, 𝑈 (𝜏𝑓𝑗−1

+) is the utility of operations at time 𝜏 just after the selection of action

𝑓𝑗−1, 𝑡𝑗 is the cost of action 𝑓𝑗 and 𝐾 represents the overall constraint of the search. It

is important to note that, the sequence of actions is formed before the application of

any operation to the environment. Therefore, EGS does not have any information

regarding the environment, e.g. the saliency clues, the first time it generates an action

sequence.

The lack of knowledge regarding the environment implies a number of potential

problems for the EGS algorithm. The most dominant one is increasing the chance of

selecting an action that the robot is unable to perform due to the adjacency of the

operation’s location to an obstacle. In such a situation, the algorithm needs to generate

an entire new sequence, which can add to the overall cost of the search.

82

4.5.4 Dynamic Look Ahead Search (DLAS)

We saw that in the previous sections designing an exact solution to the problem of

object search is quite challenging. This is primarily due to the fact that if the order of

choosing actions in a search changes, the overall probability value and cost of the

search may change.

 To find a near optimal solution to the problem of search, while reducing the

complexity of the problem, both in terms of time and space, we propose some

modifications to the brute force approach. We begin by creating the list of actions

permutations in which instead of calculating all possible subsets, we incrementally

create the list. This means, we start by permuting 2 actions as follows:

{𝑓11(𝜏0)𝑓21(𝜏𝑓11

+), 𝑓11(𝜏0)𝑓20(𝜏𝑓11

+), … , 𝑓𝑛𝑖(𝜏0) 𝑓(𝑛−1)𝑖(𝜏𝑓𝑛𝑖

+)}

𝑖 = 0, 1, (4.16)

where (𝜏𝑓𝑗𝑖

+) is the time after operation 𝑓𝑗1is applied and 𝑛 is the total number of

operations available to choose from.

 At this stage, less optimal sets and the ones that exceed the search constraint are

pruned. Determining the optimality of a sequence at this stage is difficult without

having a prior knowledge of the search environment. Here, we use an estimate to select

subsets that are near optimal as follows: if a subset has a higher cost in comparison to

83

others while yielding a lower probability value is considered as non-optimal. Based on

this assumption, non-optimal subsets are removed from the list. The optimality measure

is explained in details in Section 4.5.4.1.

 The optimized sets are then combined with one more action to form subsets of

three operations. In this manner, if adding one more action causes a subset to exceed

the constraint, it is discarded. Once again after creating a new list, the subsets are

optimized as before.

 The process of synthesis and pruning continues until the maximum size of subsets

defined by a user is reached. It is obvious to see that considering bigger subsets can

eventually result in more optimal solutions but at the expense of a higher computation

cost. However, after the list of possible action sequences is generated, the subset with

the maximum probability value is selected as a candidate to be performed by the search

agent. Note that an action sequence is generated without having any knowledge of the

environment. So, if the robot is unable to perform an action due to its vicinity to an

obstacle, an entire new action sequence is generated.

 The time complexity of the proposed method is 𝑂(𝑛!/(𝑛 − 𝑘)!), where 𝑘 is the

maximum subset size defined by a user. In practice, the computation time of the

algorithm is much less because the optimization of subsets significantly reduces the

size of the list.

84

4.5.4.1 On optimality measure of subsets

Measuring the optimality of solutions calculated with DLAS is challenging.

Mathematically it is difficult because the optimality of a solution is highly dependent

on the context in which it is used. It is also challenging heuristically because the

computation time of an exact solution such as brute force is not feasible for large

instances of search. For instance, in the case of selecting 8 best operations out of 24

available ones, applying brute force takes 3.5 days!

 In this subsection, we present a different empirical study to show how much

improvement can be achieved using the DLAS algorithm compared to an extended

greedy approach. The extended greedy algorithm is chosen because as mentioned

before it can result in an optimal solution with the worst performance measure of 50%

optimal.

 For evaluation purposes, we conducted over 10000 experiments in simulated

environments similar to those shown in Chapter 5. The search parameters also were

selected similar to our practical experiments. The environments were discretized into

voxels of size 100 𝑚𝑚3and pan-tilt angles were discretized comprising a total of 15

possible directions. The number of locations available to the agent was approximately

30 in each environment creating more than 400 possible operations for

85

the algorithms to choose from. The starting location and direction of the robot in each

experiment was randomized. We only considered time constraint for these experiments

ranging from 500 to 1500 seconds. For the DLAS algorithm, the maximum size of

action sequences was set between 4-30 operations.

 Figure 4.1 illustrates the results of our evaluations. As one would expect for small

size of operation sequences, DLAS performs poorly. Of course after performing the

initial sequence, if there is any remaining time, the algorithm would generate another

sequence and continue the search. The performance of DLAS clearly is superior for

instances where the algorithm selects 8 actions or more, where an improvement of at

least 10% is observed.

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

0 4 6 8 10 12 14 16 18 20 22 24 26 28 30

%
 im

p
ro

ve
d

Number of operations

Min Max

Figure 4.1: The performance improvement measure of using the DLAS algorithm in
comparison to EGS.

86

4.6 Summary

In this chapter, three sensor planning algorithms were proposed to select appropriate

search operations with respect to a cost constraint. The GSC algorithm is an

approximate approach that greedily selects actions according to their utility values. Yet,

once a percentage of the constraint is reached, it picks the operations with the highest

probability values instead.

Another variation of greedy algorithms is the EGS method that greedily selects all

the actions prior to the search. The disadvantage of this model is the lack of knowledge

regarding the environment and a high chance of selecting the actions that the robot is

unable to perform.

An improved approximate solution to object search, namely DLAS, was introduced

that globally optimizes the search. This model achieves a near optimal solution at the

expense of very low computation time, hence, makes it a suitable option to be used in

robotic applications.

87

5 Experimental Evaluation

In this chapter, an empirical evaluation of the proposed methods is presented. Section

5.1 presents an evaluation of the use of saliency in visual search using Ye’s sensor

planning strategy to determine what performance improvements can be gained through

the use of saliency. Section 5.2 shows runs of the proposed sensor planning strategies

in Chapter 4 with different types of cost functions. Here the objective is to highlight

the differences between each search strategy and to show which technique performs

the best.

5.1 Saliency in visual search experiments

The saliency mapping technique used in our experiments follows the same procedure

described in Section 3.4. The sensor planning strategy is the same as the one

implemented by Shubina [30], which will be explained briefly in the next few

subsections.

5.1.1 Sensor planning strategy

The search process is divided into two steps similar to that introduced in Chapter 2,

namely “where to look next” and “where to move next”. Prior to the search, the robot

does not have any information regarding the environment except the dimensions and

88

locations of its external boundaries. Therefore, a uniform probability distribution is

used to characterize the environment. Probability threshold Θ𝑚𝑜𝑣𝑒 was empirically set

to 0.05, meaning that if the probability of all available actions fall below that value,

then the robot selects a new destination to explore.

5.1.2 Recognition algorithm

The detection model used in the experiments is based on normalized gray-scale

correlation [82], as implemented by Shubina [30]. This algorithm is not view-

independent, meaning that the target is only recognized when facing toward the camera

up to some degree of transformation (in depth rotation). This algorithm reduces the task

of 3D recognition to 2D recognition by relying on only one view of the object. In

addition, the algorithm is scale and rotation (in the plane) invariant as long as the object

stays within the detection range. Shubina [30] shows that this algorithm can handle up

to 45 degrees of in depth rotation as long as the illumination of the target does not

change significantly.

5.1.3 Navigation and localization

A stereo camera is used to supply sensory inputs for navigation purposes. The images

captured through the camera are used to create a depth map of the environment using

89

OpenCV libraries. The depth information is transformed into a 2D grid of the search

space used by the robot to select its path. The accuracy of the depth map highly depends

on what the camera is pointing at but in general it is about 3 cm depth for the range of

3m. The depth error significantly increases beyond 10m to more than 30 cm.

The path planning is handled locally at each point of movement. The robot captures

images from the direction of interest, builds an obstacle map and identifies the gaps

that the robot can move through. Along the available paths, the robot chooses the first

one it identifies by checking first the direction pointing toward its final destination and

if occupied, checking the next best direction.

The localization of the robot in the environment depends upon the internal robot

encoders and odometry information. Given the small size of our test environments and

the fact that the robot does not relocate more than a few times throughout the search,

the localization error is negligible.

5.1.4 Test environments

Four scenarios were used to conduct the experiments. Three were office environments

furnished with desks, chairs and shelves and the forth was an outdoor terrain simulation

of ground and rocks. Figures 5.1 and 5.2 show the images of the environments along

with their top views.

90

Figure 5.1: The environments where the experiments were conducted. The
dimensions of the environments from the top to bottom are, 6.23 x 6.20 m and 2.8 x
11.5.

91

Figure 5.2: The environments where the experiments were conducted. The
dimensions of the environments from the top to bottom are, 4.73 x 9.30 m and 5.50 x
3.80 m.

92

5.1.5 Hardware

The search agent was implemented on a Pioneer 3 mobile robot (Figure 5.3) with four-

wheel differential–drive. The robot was equipped with a Point Grey Bumblebee 2

stereo camera mounted on a Directed Perception pan-tilt unit. The robot contains an

on-board computer with a Core Duo Intel CPU and 1GB RAM responsible for

controlling the motors, capturing and transmitting images. The rest of the computation

is handled by an off-board PC with a 2.67 GHz, 12 Core Intel Xeon CPU, 24 GB RAM

and a Tesla C2050 graphic card.

Figure 5.3: The robot used in the experiments.

93

5.1.6 Search parameters

The search environments were discretized into voxels of size 50 𝑚𝑚3 each, and the

target’s probability values were represented for each. The maximum height to search

was set to one meter and the interior configurations of the environments were unknown

to the robot (e.g. layout of tables, chairs, etc.). Thus, a uniform probability distribution

for target presence was considered for each environment given by 𝑝 =

1

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉𝑜𝑥𝑒𝑙𝑠
.

The pan and tilt angles of the camera were limited to (−158𝑜 , 158𝑜) and

(−20𝑜 , 30𝑜) respectively. A subset of pan and tilt angles was used comprising a total

of 142 possible directions. Threshold Θ𝑚𝑜𝑣𝑒 was empirically set and remained constant

for all the experiments.

The AIM saliency maps were generated using a kernel size of 21 𝑥 21 𝑝𝑖𝑥𝑒𝑙𝑠 with

25 ICA features, trained over a large number of natural and indoor samples. A

percentile value of 80% was empirically set to threshold the AIM saliency results. To

minimize the computation time of AIM, it was implemented on the GPU, reducing the

processing time from approx. 15 seconds on a fully parallelized code running on the

CPU to less than 0.8 seconds.

94

The HB algorithm was applied to pixelwise normalized images. An index size of

32 was used to create the 3D histograms of the images with a threshold value set

empirically to minimize the number of outliers.

Figure 5-4 shows the object used in our experiments. This target is chosen because

the detection algorithm in 5.1.2 shows a robust performance in recognizing this target

in various lighting and view angles. In these experiments, the goal is to evaluate sensor

planning strategies. Hence, having a robust algorithm to recognize an object is

necessary to highlight the actual performance of each search method regardless of the

detection errors that might be introduced by the recognition algorithm. We will

speculate on the impact of an object characteristics on saliency results later in this

chapter.

5.1.7 Experiments

The primary objective of these experiments was to measure how much improvement

can be achieved by the application of saliency to object search. Hence, we conducted

Figure 5.4: The object used in the experiments.

95

two sets of experiments, one with and one without the use of saliency. The performance

of each method was measured in terms of the number of actions performed to detect

the target, the time of search and the total distance travelled by the robot. In the

remainder of this chapter, we refer to the search with saliency as “𝑆𝑠𝑎𝑙” and the search

with no saliency as “𝑆”. It is important to note that except the use of saliency, 𝑆𝑠𝑎𝑙 and

𝑆 are identical in every aspect.

A total of 126 experiments were conducted by placing the robot and the target

(Figure 5.4) in various locations. Figure 5.5 illustrates these combinations in each

environment. The red and yellow rectangles represent the robot and the smaller red

rectangle is the object of interest.

5.1.7.1 Search with no saliency (𝑆)

In this subsection, we describe an instance of 𝑆 in environment 5.5c. Figures 5.6-10

illustrate the entire process of the search with the image captured through the camera,

a 2D representation of the probability distribution map and the top view of the

environment. In the probability maps, the black colored regions refer to areas searched

by the robot, the green spots the obstacles and the grey background the probability of

the target’s location.

96

Figure 5.5: The placement of the robot (red-yellow rectangles) and target (small-
red rectangles) in each environment. a-c) Refer to the office environments and d) the
outdoor terrain environment.

d)

a)

b)

c)

97

Figure 5.6: The search using 𝑆. Images are, the image captured by the camera (IC),
a 2D representation of the probability distribution map (PM) and the top view of the
environment (TV). The robot is at its initial position, searching the first two directions
(pan, tilt) (20, 0) and (-60, 0) respectively.

IC PM

M

TV

IC PM

M

TV

98

Figure 5.7: The search using 𝑆. Images are, the image captured by the camera (IC),
a 2D representation of the probability distribution map (PM) and the top view of the
environment (TV). The robot is at its initial position, searching the third and fourth
directions (pan, tilt) (80, 0) and (-120, 0) respectively.

IC PM

M

TV

IC PM

M

TV

99

Figure 5.8: The grid indicating the possible locations for the robot to move to. The
center of each cell is a potential destination and the intensity refers to the sum of the
probabilities of all directions observable from that location. The regions with the color
black are those falling over obstacles, therefore not reachable by the robot.

Figure 5.9: The search using 𝑆. Images are, the image captured by the camera (IC),
a 2D representation of the probability distribution map (PM) and the top view of the
environment (TV). The robot moves to the second position, and looks toward the fifth
direction (pan, tilt) (20, 0).

IC PM

M

TV

100

Figure 5.10: The search using 𝑆. Images are, the image captured by the camera (IC),
a 2D representation of the probability distribution map (PM) and the top view of the
environment (TV). The last two observations by the robot (pan, tilt) (-60, 0) and (80,
0). The target is found after performing the 7th action.

IC PM

M

TV

IC

TV

101

The search begins by calculating the probabilities of all possible directions by

summing up the voxels’ probability values within the effective field of view. Then, an

image is captured and processed, which fails to detect the target. Therefore, the

probability of the space within the effective field of view is lowered to zero and

redistributed to the rest of the environment.

Three more directions are selected by the robot from its current location all of which

fail to detect the target. At this point, the probabilities of the remaining actions fall

below threshold Θ𝑚𝑜𝑣𝑒, forcing the robot to select a new position to explore. To do so,

the environment is divided into potential locations forming a grid. Each grid cell

(location) is the size of the robot and its value is determined by the sum of the

probabilities of all directions observable from that location (see Figure 5.8). The robot

chooses the location that yields the highest probability value and moves to its center.

After arriving at the new position, the robot performs three more observations and

detects the target after performing the 7th operation.

5.1.7.2 Search with saliency (𝑆𝑠𝑎𝑙)

Figures 5.11-14 show the application of 𝑆𝑠𝑎𝑙 in practice with the same configuration as

the above. The figures are represented as before with an additional illustration

indicating the saliency responses in the environment. Moreover, the 2D probability

maps are slightly different. They contain lighter grey spots pinpointing the location of

saliency observed by the robot. These locations are estimated using the depth

102

information captured through the stereo camera. The intensity of these locations

correspond to the strength of saliency observed by the robot, hence, their probability

values are increased accordingly.

The search strategy is similar to 𝑆 in which the direction with the maximum

probability is selected and an image of the corresponding direction is taken. However,

after failing to detect the target, a saliency map is developed to identify interest points

beyond the effective range of the recognition camera. As it can be seen, there are high

saliency responses over regions occupied by tables. Consequently, the probability of

those regions are increased.

103

Figure 5.11: The search using 𝑆𝑠𝑎𝑙. Images are, the image captured by the camera

(IC), a 2D representation of the probability distribution map (PM), the saliency map
of the image (SM) and the top view of the environment (TV). The robot is at its initial
position, searching the first two directions (pan, tilt) (20, 0) and (-60, 0) respectively.

IC PM

M

TV SM

IC PM

M

TV SM

104

Figure 5.12: The search using 𝑆𝑠𝑎𝑙. Images are, the image captured by the camera
(IC), a 2D representation of the probability distribution map (PM), the saliency map
of the image (SM) and the top view of the environment (TV). The robot is at its initial
position, concluding its search at this point by looking toward direction (pan, tilt) (80,
0).

Figure 5.13: The grid indicating the possible locations for the robot to move to. The
center of each cell is a potential destination and the intensity refers to the sum of the
probabilities of all directions visible from that location. The regions with the color
black are those falling over obstacles, therefore not reachable by the robot.

IC PM

M

TV SM

105

Figure 5.14: The search using 𝑆𝑠𝑎𝑙. Images are, the image captured by the camera
(IC), a 2D representation of the probability distribution map (PM), the saliency map
of the image (SM) and the top view of the environment (TV). The robot is at the second
position, where it completes the search by performing two actions (pan, tilt) (-40, 0)
and (40, 0) respectively.

IC PM

M

TV SM

IC

TV

106

 In this example, due to the high saliency responses in the distance, threshold Θ𝑚𝑜𝑣𝑒

is reached after performing only three actions (as opposed to four actions in 𝑆). As a

result, the robot moves to the next location and resumes the search from there. Relying

on the saliency responses to select directions, the robot found the target with only two

more operations, giving the 𝑆𝑠𝑎𝑙 method the advantage to detect the object with two

fewer actions than 𝑆.

The AIM algorithm, as explained in Section 3.2, generates the saliency responses

of each local neighbourhood with respect to its surrounding areas. This means

depending on the distance of the camera from a scene or the direction of view with

respect to the scene, different saliency responses would emerge. In practice, this is a

common scenario for the robot to see a region multiple times from different angles or

distances. To address this issue, the saliency responses of the locations are averaged, if

they are observed more than once.

5.1.8 Quantitative results

In this section, we divide the results of the experiments into two groups of “Move” (M)

and “No Move” (NM). The M group consists of the search scenarios in which the robot

relocated at least once to detect the target. In such cases the object was placed far away

from the initial location of the robot and was not detectable by the recognition

algorithm. In the NM scenarios, the object was located within the effective range of the

robot, hence, was found from its initial location. The reason behind this decision is that

107

the methods performed similarly in the NM situations, of course, with some minor

disadvantage for 𝑆𝑠𝑎𝑙 in terms of the processing time of saliency. In each search

strategy, the robot initially searches its surroundings before moving to a new location.

Because the initial area is not seen beforehand, it has a uniform probability distribution

(i.e. with no saliency information), which means similar directions are chosen

regardless of the method of choice.

Table 5.2 summarizes the average outcomes of the experiments in each

environment. In this table, the results are presented in two groups of 𝑆 and 𝑆𝑠𝑎𝑙 each

expressed in terms of the number of actions taken to complete the search, the duration

of the search and the distance travelled by the robot to conclude the search.

Table 5.1: The results of the experiments conducted in the test environments. The
results are expressed as the average performance in each category.

Office Location a

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall

No. of Actions 1.7 11.61 9.75 No. of Actions 1.7 8.69 7.37

Duration of Search (s) 72.78 994.42 821.61 Duration of Search (s) 73.54 614.77 511.85

Distance Travelled (m) 0 16 13 Distance Travelled (m) 0 7.6 6.2

Office Location b

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall

No. of Actions 2.8 10.69 7.84 No. of Actions 2.8 9.13 6.84

Duration of Search (s) 121.19 628.93 480.7 Duration of Search (s) 123.78 594.23 424.49

Distance Travelled (m) 0 8.3 5.3 Distance Travelled (m) 0 6.5 4.2

Office Location c

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall

No. of Actions 1.7 9.2 7.3 No. of Actions 1.7 7.7 6.17

108

Duration of Search (s) 73.29 647.95 504.29 Duration of Search (s) 75.03 568.77 442.56

Distance Travelled (m) 0 11.3 8.5 Distance Travelled (m) 0 9.3 7

Mars Simulated Environment

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall

No. of Actions N/A 7.22 7.22 No. of Actions N/A 5.9 5.9

Duration of Search (s) N/A 402.22 402.22 Duration of Search (s) N/A 332.78 332.78

Distance Travelled (m) N/A 3.5 3.5 Distance Travelled (m) N/A 3.28 3.28

Total

𝑆 NM M Overall 𝑆𝑠𝑎𝑙 NM M Overall

Avg. No. of Actions 2.06 9.68 8.03 No. of Actions 2.06 7.83 6.57

Duration of Search (s) 89.08 681.88 552.205 Duration of Search (s) 90.78 527.64 427.92

Distance Travelled (m) 0 9.76 7.56 Distance Travelled (m) 0 6.57 5.17

It is apparent that, both methods performed similarly in cases where the object was

found from the initial location of the robot. However, the performance gap increased

in favor of 𝑆𝑠𝑎𝑙 when the robot moved at least once to detect the target. As can be seen,

on average the 𝑆𝑠𝑎𝑙 algorithm improved the search in the cases of Move by

approximately 2 actions, 154 seconds and 3.2 meters travel distance.

A comparison between the methods is conducted in Table 5.3 to illustrate the

percentage each method performed better in terms of the number of actions taken to

conclude the search. Note that for the reasons mentioned earlier, only the cases of Move

are considered in this evaluation.

109

Table 5.2: A comparison between 𝑆 and 𝑆𝑠𝑎𝑙 methods in terms of the number of
action taken to complete the search.

Method performed better Office a Office b Office c Mars Total

𝑆𝑠𝑎𝑙 76.92% 68.75% 77.77% 55.55% 69.75%

𝑆 7.69% 18.75% 11.11% 11.11% 12.17%

Similar performance 15.38% 12.5% 11.11% 33.33% 18.08%

The least performance improvement was achieved in the Mars environment, where

the ratio of the environment size to the effective field of view is at the lowest. In this

case, such performance is expected because there is a higher chance that 𝑆𝑠𝑎𝑙 selects

similar operations as 𝑆.

The effectiveness of saliency also reduces as the number of distracters increases

within the environment. For instance, office b is populated with a large amount of

furniture, therefore it yielded a lower performance improvement rate comparing to the

other office environments.

5.1.9 Effectiveness of saliency in search

In the experiments presented earlier, the basic assumption was that in a typical

environment objects are more likely placed on surfaces such as tabletops which are

possibly to be observed as salient from an agent point of view. However, if this is not

the case, saliency clues can play an opposite role in visual search. Instead of guiding a

110

robot to the object of interest, they would distract the attention of the robot to regions

away from the actual place of the target.

 Moreover, in our experiments we only used one object due to the complication of

developing a robust recognition algorithm. It is important to note that target

characteristics play an important role in the efficiency of saliency information. The less

distinctive the features of an object be, the less salient the object is perceived by an

agent. This, in particular, is true for the top-down saliency model if the target’s color

is similar to its surroundings. The bottom-up saliency, however, is less affected. It still

can be effective even though the object of interest does not stand out clearly from its

surroundings. Given the main purpose of using bottom-up saliency is to produce

indirect search clues, regardless of the characteristics of the target, the salient locations

that are in spatial relation to the target still can be detected.

5.2 Sensor planning experiments

In this section, the sensor planning strategies with a predefined search constraint are

evaluated. For this purpose, we used three different cost functions specifically the total

time for the search, battery consumed by the system and the overall distance travelled

by the robot. The same hardware and search parameters are used as before unless

otherwise mentioned.

111

5.2.1 Operation cost calculation

The cost of each action is calculated based on the following components involved in

the search: the cost of the robot to move to a new location, the pan and tilt angle

changes, and the costs associated with the image processing and environment mapping.

The last two components are constant for every given operation because the processing

of each image is identical. The pan and tilt angle changes are calculated by measuring

the difference between an operation’s direction and the pan and tilt angles of the last

action performed by the robot.

Perhaps, the most challenging aspect of the cost calculation is the estimation of the

distance travelled by the robot. This is mainly due to the fact that the environment is

either unknown or partially known by the robot at the time of selecting actions. In

addition, the performance of stereo cameras is limited to detect disparity. This is

typically limited to some ranges above which the estimation error increases

significantly. Therefore, we consider an uncertainty cost to be added to estimated

distances above the reliable range of our stereo camera. This means operations in far

distances are even less likely to be selected by the algorithm due to a higher rate of

ambiguity.

5.2.2 Experiments

Due to a larger volume of experiments, from the test environments shown in Figures

5.1-2, only the office locations were chosen with a sparser number of configurations as

112

shown in Figure 5.15. The environments were discretized by dividing each into the

voxels of size 100 𝑚𝑚3. Each operation was defined in terms of the view direction

and location of the robot. In these experiments, only 11 directions were considered by

fixing the angle of the tilt and dividing the pan angles into 11 discrete portions. As for

the possible locations of the robot, the environments were divided into the cells of size

equal to the radius of the robot.

In the previous series of experiments, we established the benefit of saliency in

visual search. Therefore, in the following experiments the saliency model is used as

default in all algorithms. In the case of GSC algorithm, each time the algorithm selects

an action it takes into account the saliency information. In the other two planning

methods, if an action sequence is generated some time during the search, the saliency

information is used.

The cost constraint limits in each location were selected according to the average

performance of the algorithms in the previous experiments. The reason for this decision

is to make sure at least in some instances the target is found. This gives us a better

insight on performance of each planning method. Table 5.4 shows the cost constraints

of the search in each environment. Note that these parameters were the same for all the

113

Figure 5.15: The robot and target configurations in each environment.

a)

b)

c)

114

Table 5.3: The search constraints in each environment.

 Time (s) Energy (kJ) Distance (m) Action Count

Office a 700 67.9 6 9

Office b 640 62.4 7 8

Office c 500 48.5 6.5 7

strategies with the exception of the maximum action sequence size, which was only

applied to DLAS. In addition, the 𝛼 value of the GSC algorithm (the value after which

the algorithm selects actions based on their probability values) was set to 10%. It is

worth mentioning that for evaluation purposes, the cost constraints can be set to any

desirable value.

A total of 216 experiments were conducted using the strategies mentioned in

Chapter 4, namely GSC, EGS and DLAS. Each method was tested in practice by

applying different cost functions including time, energy consumption and distance. The

following sub-sections demonstrate examples of each sensor planning technique using

different types of cost constraints. The target in Figure 5-4 was used in these

experiments.

5.2.2.1 Distance

Figures 5.16-17 show an instance of the GSC algorithm in office b, where the robot is

positioned at the bottom left of the room and the target at the top right. In this example,

115

the cost of each action is calculated based on the distance traveled. Hence, at the initial

location of the robot, the cost is equal to zero. This encourages the robot to fully search

its initial position before considering a new one.

Once the current location is fully explored, the robot chooses its next destination

toward the top due to the high saliency responses of this area. Despite this, the robot

conservatively moves upward for only a short distance. Such behaviour is expected for

two reasons: first, the tendency of the greedy algorithm to locally select an action, and

second, larger motion increase the uncertainty and cost of the operations.

The robot searches the second location and repeats the same process in another 3

destinations until it detects the target after performing 24 actions. Note that due to the

large number of operations, only a few critical stages are demonstrated in the Figures.

In this particular scenario, value 𝛼 is not triggered, therefore the search only behaves

greedily.

 One particular property of the GSC algorithm is its concentration on the areas of the

environment populated with furniture. This increases the chance of detecting the target

if it is placed on those furniture. Once again confirms the importance of saliency and

how it can effectively guide the search agent to the regions of high importance.

116

Figure 5.16: The search process using the GSC algorithm with the distance
constraint. From the left to right, a 2D representation of the 3D probability
distribution map and the top view of the environment. The robot explores two
positions.

117

Figure 5.17: The search process using the GSC algorithm with the distance
constraint. From the left to right, a 2D representation of the 3D probability
distribution map and the top view of the environment. The robot detects the target
after exploring two directions from the fifth position.

118

EGS follows a similar routine to conduct the search as can be seen in Figures 5.18-

19. The algorithm first generates a sequence of operations to be performed in the

search. Based on that, the robot begins by exploring its surroundings, and performs 7

actions. Since the target is not found, the robot moves to the next location that is located

on the right side of the room. Here, the absence of saliency is apparent as the new

destination is different from that was chosen in GSC.

After exploring the second and third locations, a new action sequence is produced

by EGS because the next destination is unreachable due to its vicinity to an obstacle

(the round table). At this point, the saliency clues take effect in the new action

sequence, changing the search route toward the regions on the top.

Conforming to the new plan, the robot first inspects one more direction prior to

moving to the next destination. Although this direction (shown by the yellow color at

the bottom of the image) only covers an insignificant portion of the environment, its

utility is still higher than the operations to be performed at the next spot primarily

because of the large distance of the new location from the current position of the robot.

The robot concludes the search after performing 25 operations and fails to find the

target within the given constraint.

119

 Figure 5.18: The search process using the EGS algorithm with the distance
constraint. From the left to right, a 2D representation of the 3D probability distribution
map and the top view of the environment. The robot completes searching three
locations after performing 14 actions.

120

Figure 5.19: The search process using the EGS algorithm with the distance
constraint. From the left to right, a 2D representation of the 3D probability distribution
map and the top view of the environment. The robot concludes the search and fails to
detect the target after exploring 5 locations.

121

The DLAS algorithm demonstrates a very different behaviour (see Figures 5.20-

21). It first generates an action sequence to be performed during the search. Based on

that, the robot only looks toward two directions and then moves to a new position. After

searching the second location, the robot places itself at the third one and searches only

one more direction. Thereafter, it attempts to reach the forth position but it fails to do

so because the navigation cost exceeds the overall constraint.

This example reveals two potential problems with DLAS. The first problem arises

from limiting the number of operations generated by DLAS (to save processing time

as described before). Applying a distance constraint to the search means if the robot

searches all the directions from a position, it does not incur any additional cost except

the cost of moving to that location. For the same reason in instances of the GSC and

EGS algorithms, the robot always fully searches its current location until the

probability values of all available actions are zero.

DLAS on the other hand, attempts to maximize the probability by performing a

limited number of actions in a given constraint. As a result, it prefers inspecting

locations with larger unexplored surroundings. Hence, instead of fully searching its

current location it moves to the next one. This is a potential problem for DLAS

algorithm because it explores a lower percentage of the environment during the search

in comparison to GSC and EGS.

122

Figure 5.20: The search process using the DLAS algorithm with the distance
constraint. From the left to right, a 2D representation of the 3D probability distribution
map and the top view of the environment. The robot commences the search by
performing the first four operations.

123

 Obviously, if time permits, one can calculate the complete solution using DLAS in

which the target could be found. Figure 5.22 shows the 8-action approximate and full

approximate solutions of DLAS to the search. The processing time of this solution is

359.2 seconds in comparison to 19.9 seconds for the 8 action approximation.

The second potential issue using DLAS is the difficulty to estimate the cost of each

action (in this case distance) prior to the search when there is no information available

regarding the environment. In the above example, DLAS produced an action sequence

commanding the robot to move to four locations and look toward a total of nine

Figure 5.21: The search process using the DLAS algorithm with the distance
constraint. From the left to right, a 2D representation of the 3D probability distribution
map and the top view of the environment. The robot finishes searching the third
location is unable to move any further.

124

directions. However, from the position 2 to 3, the robot faces an obstacle, therefore it

is must to travel a longer distance around the obstacle in order to arrive at the next

location. This causes the actual distance travelled to exceed the one forecasted by the

algorithm, therefore the robot fails to reach its final destination.

5.2.2.2 Energy consumption

The search examples with energy constraint were conducted in the same environment

as before. Figures 5.23-24 illustrate the process of the GCS algorithm to find the target.

Once again the search commences at the current location of the robot where it inspects

three directions. Then the robot chooses its next destination on the top and continues

the search from there.

One may notice that the number of actions performed at the start is significantly

fewer than the search with the distance constraint. This can be explained by the fact

Figure 5.22: The comparison of the approximate solution using

8 actions on the left and the complete solution on the right using
DLAS.

125

Figure 5.23: The search process using GSC with the energy constraint. From the
left to right, a 2D representation of the 3D probability distribution map and the top
view of the environment. The robot searches its initial location and moves to the
second one.

126

Figure 5.24: The search process using GSC with the energy constraint. From the
left to right, a 2D representation of the 3D probability distribution map and the top
view of the environment. The robot concludes the search and finds the target after
looking toward the first direction from the third location.

127

that each operation now incurs a cost even from a stationary position. It causes the

robot to expand the search faster to new locations in spite of inducing more costs.

After the robot fully searches its surroundings on the second position, it moves to

the next one, where it detects the target after executing only one more action. This

counts to a total of 9 actions to find the target using GSC.

The EGS algorithm (Figures 5.25-26) follows a similar route to GSC to perform the

search. The major difference, however, is it does this more conservatively. The robot

takes smaller steps to move forward each time it relocates to a new location. This makes

EGS very inefficient in terms of timing or energy consumption even though it detects

the target within the predefined energy constraint.

Using the EGS algorithm, the search begins by inspecting three directions. Then

the robot moves to a new position from where it searches two more directions. Once

more, it relocates to another position and performs three more actions after which it

fails to reach the next destination. At this point, a new action sequence is generated by

EGS defining a different route to be searched.

Following the new path and inspecting two more locations, the robot finally finds

the target. The entire process is completed after performing 11 operations and

relocating 4 times.

128

Figure 5.25: The search process using EGS with the energy constraint. From the left
to right, a 2D representation of the 3D probability distribution map and the top view
of the environment. The robot inspects the 3 locations and fails to move to the next
one.

129

Figure 5.26: The search process using EGS with the energy constraint. From the left
to right, a 2D representation of the 3D probability distribution map and the top view
of the environment. The robot executes the new operation sequence and detects the
target from the 5th location after inspecting one direction.

 The DLAS algorithm also detects the target but after performing only 9 actions (see

Figures 5.27-28). In this scenario, the robot explores two directions before deciding to

relocate at which point it is unable to do so. Hence, DLAS generates a new action

sequence through which the robot continues the search by exploring 4 directions at the

second position and 2 more at the third one. At the final spot, the object is seen by the

robot and the search is concluded.

130

Figure 5.27: The search process using DLAS with the energy constraint. From the
left to right, a 2D representation of the 3D probability distribution map and the top
view of the environment. The first two operations performed by the robot.

131

Figure 5-28. The search process using DLAS with the energy constraint. From the
left to right, a 2D representation of the 3D probability distribution map and the top
view of the environment. The robot concludes the search for the target by detecting it
from the 4th location.

It might be of interest to observe that how the 8-action approximate and complete

solutions are in terms of efficiency and the processing time. Figure 5.29 shows both

solutions from the left to right, the approximation using 8 actions and the complete

solution with the processing times of 29 and 3033.8 seconds respectively. It is easy to

see the superiority of the complete solution in terms of efficiency by observing the

intensity of the background or the percentage of the environment forecasted to be

Figure 5-29. The 8 action approximate (on the left) and complete
(on the right) solutions of DLAS.

132

searched by the robot. However, such performance comes with a significant cost,

increasing the processing time by more than 100 times, making the complete solution

impractical to be used in the search.

5.2.2.3 Time

The last example in this series is illustrated by applying the time constraint to the

search. We begin with an instance of the GSC algorithm in which the robot fails to

detect the target (see Figures 5.30-31). It is worth mentioning that the path selection of

the robot during the search is consistent with the previous examples, i.e. the robot

always goes toward the regions populated with more furniture.

In this example, the robot searches its initial position by performing 2 operations

followed by moving upward where it explores 5 additional directions. It continues by

approaching the third location and inspecting two more directions after which the 𝛼

threshold is triggered, thus, the robot changes behaviour and selects an operation with

the highest probability distribution with a cost less than the remaining time constraint.

As for the last operation, the robot moves downward to a position in the vicinity of the

previous one and searches one additional direction after which the search is terminated.

133

Figure 5.28: The search using the GSC algorithm with the time constraint. From
the left to right, a 2D representation of the 3D probability distribution map and the
top view of the environment. The robot inspects two locations.

134

Figure 5.29: The search using the GSC algorithm with the time constraint. From
the left to right, a 2D representation of the 3D probability distribution map and the
top view of the environment. The search is terminated and the robot fails to find the
target.

135

The EGS method (Figures 5.32-33) also fails to detect the target within the given

time constraint. The robot very slowly expands the search domain by conservatively

selecting the new locations. After conducting the search from three locations and

performing 7 operations, the robot fails to move to the 4th spot resulting in a new action

sequence to be generated.

In compliance with the new operation sequence, the robot executes another action

from its current location and then moves to the next one. From this position, three more

directions are inspected by the robot after which the search is terminated

unsuccessfully.

Applying the time constraint, the best performance was achieved by DLAS (see

Figures 5.34-35). The robot looks toward two directions from its initial location and

decides to relocate. Again the issue of destination and obstacle overlapping emerges,

forcing DLAS to generate an improved version of the operation sequence.

The robot follows the new sequence and moves to the far up and searches two more

directions. At the end, from the third location, the robot detects the object of interest

by performing a total of 7 actions.

136

Figure 5.30: The search using the EGS algorithm with the time constraint. From the
left to right, a 2D representation of the 3D probability distribution map and the top
view of the environment. The robot searches the first 3 locations by performing 8
operations.

137

Figure 5.31: The search using the EGS algorithm with the time constraint. From
the left to right, a 2D representation of the 3D probability distribution map and the
top view of the environment. The robot finishes the search and fails to find the target.

138

Figure 5.32: The search using the DLAS algorithm with the time constraint. From
the left to right, a 2D representation of the 3D probability distribution map and the
top view of the environment. The robot inspects its initial location.

139

Figure 5.33: The search using the DLAS algorithm with the time constraint. The
top view of the environment. The robot finds the target by looking toward the seventh
direction.

In this instance of the search, the advantage of the DLAS global optimization is

apparent. The search expands much faster and to more distant locations in comparison

to EGS and GSC. This is particularly important in the cases where the search constraint

is fairly low for the robot to explore an entire environment.

As of the previous subsections, a comparison of the approximate and complete

solutions of DLAS is presented in Figure 5.36. The processing time of the solutions are

23.9 and 1824.9 seconds respectively.

5.2.3 Quantitative results

The results of the experiments are summarized for each individual environment in

Tables 5.5-7 and the overall outcomes are reflected in table 5.8. The Tables are

140

categorized into 3 cost functions each divided into three sections reflecting the methods

of search. The values are reflected in terms of the average time of the search and the

energy spent by the system. Moreover, the average distance travelled by the robot and

the number of actions performed by it are also included.

 In addition, the percentage that each method found the target is indicated followed

by the average number of times action sequences were recalculated (ANAR) (only

applicable to EGS and DLAS). Finally, two additional measures are added to illustrate

the efficiency of each method: the average percentage of the environment searched

(APS) by each method and the units of cost incurred per APS (UCA). The UCA values

show that how efficient methods are in terms of the cost they incur for searching each

percentage of the environment. A lower rate of UCA means the method of the search

is more efficient.

Figure 5.34: The 8 action approximate (on the left) and complete
(on the right) solutions of DLAS.

141

Table 5.4: The table of the results acquired from the experiments conducted in
office a environment. The values that are colored green are the best in each category.
The abbreviations are as follows: Greedy Search with Constraint(GSC), Extended
Greedy Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of
Actions Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost
incurred per APS.

Office a

Constraint Method Factor Avg. Spent % Found ANAR APS UCA

Distance

GSC

Time (s) 1006

89% N/A 51.32% 59.43 (mm)
Energy (kj) 70.390

Distance (m) 3.050

No. Actions 17.44

EGS

Time (s) 984

67% 0.11 48.79% 68.12 (mm)
Energy (kj) 67.155

Distance (m) 3.324

No. Actions 15.44

DLAS

Time (s) 410

67% 0.44 37.97% 104.71 (mm)
Energy (kj) 36.831

Distance (m) 3.976

No. Actions 5.44

Energy

GSC

Time (s) 453

67% N/A 42.98% 818.68 (j)
Energy (kj) 35.187

Distance (m) 2.784

No. Actions 7.33

EGS

Time (s) 587

44% 0 46.04% 956.02 (j)
Energy (kj) 44.015

Distance (m) 3.224

No. Actions 8.67

DLAS

Time (s) 503

56% 0.78 45.39% 976.71 (j)
Energy (kj) 44.333

Distance (m) 4.299

No. Actions 6.89

Time

GSC

Time (s) 449

44% N/A 44.25% 10.14 (s)
Energy (kj) 35.563

Distance (m) 3.012

No. Actions 7.22

EGS

Time (s) 463

44% 0.44 38.88% 11.90 (s)
Energy (kj) 33.246

Distance (m) 2.357

No. Actions 7.44

DLAS

Time (s) 459

44% 1.11 43.65% 10.51 (s)
Energy (kj) 37.946

Distance (m) 3.471

No. Actions 6.56

142

Table 5.5: The table of the results acquired from the experiments conducted in
office b environment. The values that are colored green are the best in each category.
The abbreviations are as follows: Greedy Search with Constraint(GSC), Extended
Greedy Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of
Actions Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost
incurred per APS.

Office b

Constraint Method Factor Avg. Spent % Found ANAR APS UCA

Distance

GSC

Time (s) 720

89% N/A 46.24% 55.13 (mm)
Energy (kj) 51.150

Distance (m) 2.549

No. Actions 12.56

EGS

Time (s) 865

67% 0.78 50.34% 63.75 (mm)
Energy (kj) 61.843

Distance (m) 3.209

No. Actions 14.67

DLAS

Time (s) 410

89% 0.56 41.79% 81.93 (mm)
Energy (kj) 34.915

Distance (m) 3.424

No. Actions 5.67

Energy

GSC

Time (s) 391

100% N/A 42.34% 715.30 (j)
Energy (kj) 30.286

Distance (m) 2.541

No. Actions 6.22

EGS

Time (s) 441

89% 0.44 45.40% 726.67 (j)
Energy (kj) 32.991

Distance (m) 2.618

No. Actions 7.11

DLAS

Time (s) 445

78% 0.56 44.44% 831.72 (j)
Energy (kj) 36.962

Distance (m) 3.285

No. Actions 5.89

Time

GSC

Time (s) 374

89% N/A 42.26% 8.84 (s)
Energy (kj) 29.388

Distance (m) 2.555

No. Actions 6

EGS

Time (s) 407

89% 0.44 43.27% 9.40 (s)
Energy (kj) 30.221

Distance (m) 2.393

No. Actions 6.56

DLAS

Time (s) 443

78% 1.11 41.86% 10.58 (s)
Energy (kj) 36.202

Distance (m) 3.609

No. Actions 5.56

143

Table 5.6: The table of the results acquired from the experiments conducted in
office c environment. The values that are colored green are the best in each category.
The abbreviations are as follows: Greedy Search with Constraint(GSC), Extended
Greedy Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of
Actions Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost
incurred per APS.

Office c

Constraint Method Factor Avg. Spent % Found ANAR APS UCA

Distance

GSC

Time (s) 676

67% N/A 43% 62.07 (mm)
Energy (kj) 41.585

Distance (m) 2.669

No. Actions 11.83

EGS

Time (s) 706

67% 0.33 45.13% 63.68 (mm)
Energy (kj) 51.819

Distance (m) 2.874

No. Actions 12.17

DLAS

Time (s) 366

83% 0.33 40.48% 71.81 (mm)
Energy (kj) 31.073

Distance (m) 2.907

No. Actions 5.50

Energy

GSC

Time (s) 317

67% N/A 37.28% 686.59 (j)
Energy (kj) 25.596

Distance (m) 2.329

No. Actions 5.17

EGS

Time (s) 331

67% 0.33 37.89% 707.44 (j)
Energy (kj) 26.805

Distance (m) 2.548

No. Actions 5.33

DLAS

Time (s) 305

83% 0 38.39% 680.44 (j)
Energy (kj) 26.122

Distance (m) 2.747

No. Actions 4.33

Time

GSC

Time (s) 272

67% N/A 35.40% 7.68 (s)
Energy (kj) 22.911

Distance (m) 2.836

No. Actions 4.33

EGS

Time (s) 308

67% 0 33.15% 9.29 (s)
Energy (kj) 24.612

Distance (m) 2.337

No. Actions 4.33

DLAS

Time (s) 326

50% 1 35.69% 9.13 (s)
Energy (kj) 26.302

Distance (m) 2.327

No. Actions 5

144

In order to derive meaning from the data presented in the tables above, we start by

reviewing the performance of the search models in office environment a. In scenarios

where the distance and energy constraints were applied, GSC was able to achieve the

best performance in terms of the percentage it found the target and the efficiency of the

search.

GSC shared the same spot with the other algorithms by only detecting the target

44% of the times when the search was restricted by the time constraint. Despite the

similar detection rates, GSC had the best efficiency by spending on average 10.40 𝑠

for searching each percentage of the environment. In this instance, the worst

performance belongs to the EGS algorithm, which at its best did not outperform any of

the other two methods. It, however, yielded a better efficiency in comparison to DLAS

in the experiments with the distance and energy constraints.

The GSC algorithm attained the best search efficiency in office b along with the

highest detection rate, sharing the first place with DLAS and EGS in the search

instances with the distance and time constraints respectively.

The experiments in office c had very different outcomes. DLAS performed the best

overall by having the highest percentage of detection in the cases of the distance and

energy constraints. It was also the most efficient technique in terms of energy

consumption. However, DLAS performed poorly with only 50% success rate in

finding the target when the time constraint was applied.

145

Taking into account all the results, EGS exhibited the poorest performance thus far.

The algorithm’s rate of detection is the lowest overall despite having a better efficiency

in comparison to DLAS in the majority of the cases. DLAS performed at its best in the

environment c. It benefited from its global optimization, allowing the robot to spread

the search domain further away from its initial location, resulting in the higher chance

of detecting the target in far distances. Whereas relying on the greedy approaches, the

robot stuck in a local neighbourhood of its initial location and the regions far away

were ignored.

As it was anticipated, DLAS had its weakest performance when a time constraint

was applied to the search, primarily due to the high time consumption of generating

action sequences. This effect was less in the scenarios with the energy constraints

because the processing energy was significantly lower in comparison to performing

operations such as moving the pan-tilt unit or the robot. The operation generation cost

is also irrelevant when distance is the constraint of the search, therefore DLAS had its

best results in such cases.

The environments’ settings had strong impacts on the performance of DLAS. The

algorithm, as mentioned before, selects an initial operation sequence blindly without

any prior information regarding the search environment. It is easy to see that if an

environment is more cluttered, there is a higher chance of failure due to the

unreachability of an action’s location.

146

The aforementioned impact was apparent in the experiments. DLAS had the lowest

performance rate comparing to GSC in office a, which was populated with the most

number of furniture items in comparison to the other rooms. On average, DLAS

recalculated sequences 0.77 of the times. This value was less in office b, 0.74, in which

DLAS matched the performance of GSC in the search with the distance constraint.

As one would expect, DLAS regenerated operation sequences on average as low as

0.44 of the times in office c. This is why, it reached its highest performance comparing

to GSC in this environment, where the furniture were concentrated on only two edges

of the room leaving the central regions empty. This reduces the chance that operations’

locations to be chosen in the areas occupied by obstacles. Furthermore, searching in a

semi empty environment increases the accuracy of distance estimation when the search

operations are calculated by DLAS. As a result, there is a better chance that the actions

to be performed as predicted by the algorithm.

Figures 5.36 and 5.37 display the performance measures of the planning algorithms.

Without any doubts, the best performance belongs to the GSC algorithm. This method

achieved at least the highest percentage of finding the target in 7 out of 9 scenarios of

the search and with only one exception, the best overall cost efficiency.

147

Figure 5.36. The comparison of the proposed search methods in terms of the
percentage the target was detected. These results are presented for each cost
constraint, Distance (D), Energy (E) and Time (T).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D(env a) D(env b) D(env c) E(env a) E(env b) E(env c) T(env a) T(env b) T(env c)

GSC EGS DLAS

59.43 55.13 62.07 818.68 715.3 686.59 10.14 8.84 7.68

68.12
63.75

63.68 956.02 726.67
707.44 11.9 9.4 9.29

104.7 81.93 71.81 976.71 831.72 680.44 10.51 10.58 9.13

D(env a) D(env b) D(env c) E(env a) E(env b) E(env c) T(env a) T(env b) T(env c)

GSC EGS DLAS

Figure 5.35. The comparison of the proposed search methods in terms of cost
efficiency. The results are presented for each cost constraint, Distance (D), Energy (E)
and Time (T) with units in mm, joules and seconds respectively.

148

Table 5.8 presents the average performance of the sensor planning algorithms

across all the test environments. As anticipated, GSC stands out as the most cost

efficient search strategy. It also achieved the best detection percentage with a small

margin over DLAS in the experiments with distance and energy constraints, and shared

the first place with EGS in the search instances with the time constraints.

It is important to note that in order to better highlight the differences between the

detection ratios of the search models, it is necessary to conduct additional evaluations

with various constraint values in a similar search environment. In our experiments, the

constraints were set randomly and remained the same for experiments in each test

environment. Merely relying on such fixed values increases the chance that they are set

either too high or too low resulting in all the methods to whether find the target or not,

thus, yielding similar detection ratios.

 However, by taking into consideration the efficiency of the planning strategies in

addition to their detection rates, we can gain a better insight into the performance of

each model. Based on this approach, the GSC algorithm clearly stands out. On average,

GSC incurred approximately 1s, 100 j and 27 mm less cost to explore each percentage

of environment in comparison to DLAS, and similarly 1.30 s, 60 j, and 7 mm less than

EGS. Having a method with a better efficiency implies that it more likely can find a

target successfully in the situations with tighter constraints.

149

Moreover, the choice of the search strategy highly depends on the nature of the

environment. The use of the DLAS algorithm is only justifiable in the large

environments, where only a limited number of obstacles are available as was seen in

the case of the experiments in office c. To be efficient, DLAS requires a prior

knowledge of the environment assuming that there are no dynamic elements involved

at any point of the search. As a result, the DLAS algorithm certainly is not a reliable

option for conducting the search in unknown environments.

Nevertheless, GSC has the advantage to react to changes in the environment. It also

relies on the visual clues, which allow this model to foresee into the future and estimate

the outcome of its later actions with no significant cost of processing. To state this in a

different manner, through the use of saliency, GCS can literally “look ahead” of itself

in the environment and decide what to do next.

Moreover, the expanding radio of the search domain in GCS can be altered by

varying the parameters of the algorithm such as the 𝛼 threshold or the influence of

saliency responses on increasing the probability of interest regions. The higher these

values are, the larger the steps taken by the robot to explore new locations.

150

Table 5.7: The overall results of the experiments using the proposed search
strategies. The values that are colored green are the best of each constraint. The
abbreviations are as follows: Greedy Search with Constraint(GSC), Extended Greedy
Search (EGS), Dynamic Look Ahead Search (DLAS), Average Number of Actions
Recalculated (ANAR), Average Percentage Searched (APS) and Unit of Cost incurred
per APS.

Total

Constraint Method Factor Avg. Spent % Found ANAR APS UCA

Distance

GSC

Time (s) 800

81.48% N/A 46.85% 58.82 (mm)
Energy (kj) 54.375

Distance (m) 2.756

No. Actions 13.94

EGS

Time (s) 840

66.67% 0.41 48.09% 65.19 (mm)
Energy (kj) 60.273

Distance (m) 3.135

No. Actions 14.09

DLAS

Time (s) 396

79.63% 0.44 40.08% 85.72 (mm)
Energy (kj) 34.273

Distance (m) 3.436

No. Actions 5.54

Energy

GSC

Time (s) 387

77.78% N/A 40.87% 742.76 (j)
Energy (kj) 30.356

Distance (m) 2.551

No. Actions 6.24

EGS

Time (s) 453

66.67% 0.26 43.11% 802.69 (j)
Energy (kj) 34.604

Distance (m) 2.797

No. Actions 7.04

DLAS

Time (s) 418

72.22% 0.44 42.74% 837.76 (j)
Energy (kj) 35.806

Distance (m) 3.443

No. Actions 5.70

Time

GSC

Time (s) 365

67% N/A 40.64% 8.90 (s)
Energy (kj) 29.287

Distance (m) 2.801

No. Actions 5.85

EGS

Time (s) 393

67% 0.30 38.43% 10.21 (s)
Energy (kj) 29.359

Distance (m) 2.362

No. Actions 6.11

DLAS

Time (s) 409

57% 1.07 40.40% 10.08 (s)
Energy (kj) 33.483

Distance (m) 3.135

No. Actions 5.70

151

6 Conclusion

In this thesis, we presented a framework of generating saliency to be used in robotic

visual search as a means of detecting regions with a higher chance of being spatially

related to the target object. The proposed model exploits the use of two saliency

techniques to produce clues regarding the structure of the environment that may contain

the target as well as the target itself.

The model of search used in this work has no prior knowledge of the environment

except those of its exterior boundaries. The knowledge describing the environment is

dynamically produced using saliency, as the robot progresses through the search. The

saliency responses are used to increase the importance of the regions yielding a higher

chance of detecting the target, inducing the robot to search those locations first.

Through the extensive empirical evaluations, we showed that how such attentive

processes benefit the search by reducing the overall time of the search, the distance

travelled by the robot and the number of operations performed to detect the target.

The efficiency of the saliency mapping is somewhat dependent on the structure of

the search environment. The presence and number of distractors in an environment can

greatly alter the performance of the search using saliency. The more such components

exist in an environment, the lower the effectiveness of saliency.

152

In the second part of this thesis, we tackled the problem of sensor planning for

object search with predefined cost constraints. Three strategies were proposed, namely

Greedy Search with Constraint (GSC), Extended Greedy Search (EGS) and Dynamic

Look Ahead Search (DLAS). The first two methods greedily select actions and attempt

to maximize the number of operations to be performed within the search constraint.

The DLAS algorithm, however, follows a more global approach to optimization at

the expense of a higher processing time. It is a form of tree search, which generates a

number of alternative solutions and selects the one that yields the highest probability

of detecting the target.

Experiments were conducted in the environments of various sizes and

configurations with the different values and types of constraints. The results indicate

that the GSC algorithm has the highest rate of detecting the target, and at the same time,

it is the most efficient method of the search. The GSC algorithm heavily relies on

saliency information and makes decisions one at a time, whereas DLAS and EGS

generate action sequences at the start of the search and only saliency comes into effect

if the algorithms regenerate the sequence at some point during the search.

153

6.1 Future work

The target specific saliency proposed in our model only relies on the color distributions

of an object. This can be easily distracted to other objects with similar colors within an

environment. One way of addressing this issue is to include additional object features

such as shape and orientation to filter out unwanted saliency responses.

Moreover, our assumption was that in a typical environment an object more likely

is placed on surfaces such as tables or shelves which may stand out applying a saliency

model. In this way, the saliency results can help in the form of indirect clues to guide

the robot to locations with higher chance of detecting the target. As for indirect search

applications, in search with saliency if such the spatial relation between objects does

not hold, e.g. the object is placed individually on the ground, saliency would not be

effective. In fact, in such scenarios saliency can rather be distracting. One way of

addressing this issue is the use of a highly tuned salient algorithm for a particular object.

The test environments used in our experiments were limited in size in the sense that

their dimensions did not significantly exceed the effective field of view of the

recognition algorithm. It is anticipated that the performance gap between the search

methods with and without saliency grows as a result of increasing the size of the

environment, something to be studied in the future.

154

To evaluate the proposed sensor planning techniques, only one constraint was

applied at a time to the search. In practice, however, more than one constraint might be

of interest depending on the nature of the application it is being used in. For instance,

in search and rescue missions, the timing of search is very vital but at the same time

the traveling distance of the robot should be minimized to avoid hazards and damaging

the hardware, which might jeopardize the mission. The proposed methods can be

extended to include multiple cost constraints. One way of achieving this is unifying

costs into a single unit with some bias which reflects the importance of each cost at a

given time.

Furthermore, the GSC model can be tested with different strategies of operation

selection after reaching the 𝛼 threshold such as the actions with minimum cost, search

locations closest to the robot or the next best greedy action.

Both series of the experiments presented in this thesis indicated that saliency plays

an important role in the efficiency of visual search. Perhaps limiting the number of

actions generated by DLAS and EGS and including saliency information in their

decision making processes more frequently can enhance the performance of these

techniques.

Finally, search strategies were evaluated with fixed constraint values within each

environment. One may consider altering the constraints in the search spaces to gain a

better insight into the behavior of each planning strategy.

155

Bibliography

[1] T. D. Garvey, Perceptual strategies for purposive vision, Technical

Report, SRI International, 1976.

[2] A. Aydemir, K. Sjoo, J. Folkesson, A. Pronobis, "Search in the real world:

Active visual object search based on spatial relations," in ICRA, Shanghai,

2011.

[3] M. Göbelbecker, A. Aydemir, A. Pronobis, K. Sjöö, and P. Jensfelt, "A

planning approach to active visual search in large environments," in

Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence,

San Franseco, 2011.

[4] L. Kunze and N. Hawes, "Indirect Object Search based on Qualitative

Spatial Relations," in IROS, Workshop on AI-based Robotics, Tokyo, 2013.

[5] R. Bajcsy, "Active Perception," Proceedings of the IEEE,, vol. 6, no. 8, p.

996–1005, 1988.

[6] D. Wilkes, and J. K. Tsotsos, "Active Object Recognition," in CVPR,

Urbana, 1992.

156

[7] S. J. Dickinson, H. I. Christenen, J. K. Tsotsos, and G. Olofsson, "Active

object recognition integrating attention and viewpoint control," COMPUTER

VISION AND IMAGE UNDERSTANDING, vol. 67, no. 3, pp. 239-260, 1997.

[8] B. Browatzki, V. Tikhanoff, G. Metta, H. H. Bulthoff, and C. Wallraven,

"Active Object Recognition on a Humanoid Robot," in IEEE International

Conference on Robotics and Automation, Saint Paul, 2012.

[9] G. De Cubber, D. Serrano, K. Berns, K. Chintamani, R. Sabino, S.

Ourevitch, D. Doroftei, C. Armbrust, T. Flamma, and Y. Baudoi, "Search And

Rescue Robots Developed By The European Icarus Project," in RISE

workshop on Robotics for Risky Environments - Extreme Robotic, Saint-

Petersburg, 2013.

[10] C. Marques, J. Cristovao, P. Lima, J. Frazao, I. Ribiro, and R. Vecntura,

"RAPOSA: Semi-Autonomous Robot for Rescue Operations," in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Chicago, 2006.

[11] R. Wegner and J. Anderson, "An Agent-Based support to Balancing

Teleoperation and Autonomy for Robotic Search and Rescue," International

Journal of Robotics and Automation, vol. 21, no. 2, pp. 120-128, 2006.

157

[12] JPL_NASA, "NASA's Mars Curiosity debuts autonomous," 27 Aug 2013.

[Online]. Available: http://www.jpl.nasa.gov/news/news.php?release=2013-

259. [Accessed 15 Jun 2014].

[13] Y. Fukazwa, H. Yuasa, T. Arai, and H. Asama, "Controling a Mobile

Robot That Searches for and Rearranges Obejcts with Unknown Locations

and Shapes," in IEEE/RSJ international Conference on INtelligent Robots

and Systems, Las Vegas, 2003.

[14] B. Tovar, S. M. LaValle, and R. Murrieta, "Optimal Navigation and

Object Finding without Geometric Maps or Localization," in ICRA, Taipei,

2003.

[15] H. Lau, S. Huang and G. Dissanayake, "Optimal Search for Multiple

Targets in a Built Environment," in IROS, Edmonton, 2005.

[16] S. A. Mehdi and K.Berns, "Probabilistic Search of Human by

Autonomous Mobile Robot," in PETRA, New York, 2011.

[17] Y. Ye, Sensor Planning For Object Search, PhD. Thesis, University of

Toronto, 1997.

158

[18] K. Shubina and J. K. Tsotsos, "Visual search for an object in a 3D

environment using a mobile robot," Computer Vision and Image

Understanding, vol. 114, pp. 535-547, 2010.

[19] F. Saidi, O. Stasse, and K. Yokoi, "Active Visual Search by a Humanoid

Robot," Recent Progress in Robotics: Viable Robotic Service for Human, vol.

370, pp. 171-184, 2008.

[20] J. K. Tsotsos and K. Shubina, "Attention and Visual Search: Active

Robotic Vision Systems that Search," in The 5th International Conference on

Computer Vision Systems, Bielefeld, 2007.

[21] X. Hou and L. Zhang, "Saliency Detection: A Spectral Residual

Approach," in CVPR, Minneapolis, 2007.

[22] A. Oliva, A. Torralba, M. S. Castelhano, J. M. Henderson, "TOP-DOWN

CONTROL OF VISUAL ATTENTION IN OBJECT DETECTION," in

IEEE Proceedings of the International Conference on Image Processing,

Catalonia, 2003.

[23] N. J. Butko, L. Zhang, G. W. Cottrell, and J. R. Movellan, "Visual

Saliency Model for Robot Cameras," in ICVR, Passadena, 2008.

159

[24] F. Orabona, G. Metta and G. Sandini, "Object-based Visual Attention: a

Model for a Behaving Robot," in CVPR Workshops, San Diego, 2005.

[25] C. J. Chang, C. Siagian, and L. Itti, "Mobile Robot Vision Navigation &

Localization Using Gist and Saliency," in IROS, Taipei, 2010.

[26] L. Itti, C. Koch, and E. Niebur, "A model of Saliency-based Visua Attentio

for Rapid Scene Analysis," Pattern Analysis and Machine Intelligence, vol.

20, no. 11, pp. 1254-1259, 1998.

[27] R. Roberts, D. N. Ta, J. Straub, K. Ok, and F. Dellaert, "Saliency

Detection and Model-based Tracking: a Two Part Vision System for Small

Robot Navigation in Forested Environments," in SPIE, San Diego, 2012.

[28] Y. Ye and J. K. Tsotsos, "Sensor Planning in 3D Object Search: its

Formulation and Complexity," in Artificial Intelligence and Mathematics,

Florida, 1996.

[29] A. Sarmiento, R. Murrieta, and S. A. Huchinson, "An Efficient Strategy

for Rapidly Finding an Object in a Polygonal World," in IEEE/RJS

international Conference on Intelligent Robots and Systems, Las Vegas,

2003.

160

[30] K. Shubina, Sensor Planning for 3D Object Search, Masters Thesis, York

University, 2007.

[31] N. Bruce and J. K. Tsotsos, "Attention based on information

maximization," Journal of Vision, vol. 7, no. 9, p. 950, 2007.

[32] M. J. Swain and D. H. Ballard, "Color Indexing," International Journal of

Computer Vision, vol. 7, no. 1, pp. 11-32, 1991.

[33] R. Achanta, Finding Objects of Interest in Images using Saliency and

superpixel, PhD Thesis, Ecole Poythechnique Fedeale de Lausanne, 2011.

[34] L. Itti and C. Koch, "A saliency-based search mechanism for overt and

covert shifts of visual attention," Vision Research, vol. 40, pp. 1489-1506,

2000.

[35] Y. Jia and M. Han, "Category-Independent Object-level Saliency

Detection," in ICCV2013, Sydney, 2013.

[36] F. Moosmann, D. Larulus and F. Jurie, "Learning Saliency Maps for

Object Categorization," in ECCV Workshop on the Representation and Use

of Prior Knowledge in Vision, Graz, 2006.

161

[37] H. J. Seo and P. Milanfar, "Nonparametric Bottom-Up Saliency Detection

by Self-Resemblance," in CVPR, Miami, 2009.

[38] V. Olesova and V. Benesova, "Modified Methods of Generating Saliency

Maps Based on Superpixels," in CESCG, Smolenice, 2014.

[39] L. Zhang, T. K. Mark, M. H. Tong,H. Shan and G. W. Cottrell, "SUN: A

Bayesian Framework for Saliency Using Natural Statistics," Journal of

Vision, vol. 8, no. 7, pp. 1-20, 2008.

[40] S. Goferman, L. Zelnik-Manor, and A. Tal, "Context-Aware Saliency

Detection," Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp.

1915-1926, 2012.

[41] K.Y. Chang, T.L Liu, H.T. Chen, and S.H. Lai, "Fusing Generic

Objectness and Visual Saliency for Salient Object Detection," in ICCV,

Barcelona, 2011.

[42] H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li, "Automatic

Salient Object Segmentation Based on Context and Shape Prior," in in Proc,

The British Machine Vision Conference, Dundee, 2011.

162

[43] A. Borji , D. N. Sihite, and L. Itti, "Quantitative Analysis of Human-

Model Agreement in Visual Saliency Modeling: A Comparative Study,"

IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 22, no. 1, 2013.

[44] Zhang, X. Hou and L., "Dynamic Visual Attention: Searching for coding

length increments," in In Proc. NIPS, Vancouver, 2008.

[45] X. H. a. L. Zhang, "Saliency Detection: A Spectral Residual Approach,"

in In Proc. CVPR, Minneapolis, 2007.

[46] J. Harel, C. Koch, and P. Perona, "Graph-Based Visual Saliency," in

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS,

Cambridge, MIT Press, 2007, pp. 545-552.

[47] A. Borji, D. N. Sihite and L. Itti, "Salient Object Detection: A

Benchmark," in ECCV, Florence, 2012.

[48] M. Cerf, E. P. Frady and C. Koch, "Faces and text attract gaze independent

of the task: Experimental data and computer model," Journal of Vision, vol.

9, no. 12, pp. 1-15, 2009.

[49] D. Swets and J. Green , Signal Detection Theory and Psychophysics, New

York: Wuley, 1966.

163

[50] J. Zhu, Y. Qiu, R. Zhang, and J. Huang, "Top-Down Saliency Detection

via Contextual Pooling," Journal of Signal Processing Systems, vol. 74, no.

1, pp. 33-46, 2014.

[51] D. Gao, S. Han, and N. Vasconcelos, "Discriminant Saliency, the

Detection of Suspicious Coincidences, and Applications to Visual

Recognition," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE, vol. 31, no. 6, pp. 989-1005, 2009.

[52] j. Yang, and M.H. Yangm , "Top-Down Visual Saliency via Joint CRF

and Dictionary Learning," in CVPR, Providence, 2012.

[53] D. Langli, S. Chartier, and D. Gosselin, "An Introduction to Independent

Component Analysis: InfoMax and FastICA algorithms," Tutorials in

Quantitative Methods for Psychology, vol. 6, no. 1, pp. 31-38, 2010.

[54] G. R. Naik and D. K. Kumar, "An Overview of Independent Component

Analysis and Its Applications," Infomatica, vol. 35, pp. 63-81, 2011.

[55] C. Bugli and P. Lambert, "Comparison between Principal Component

Analysis and Independent Component Analysis in Electroencephalograms

Modelling," Biometrical Journal, vol. 48, no. 5, pp. 1-16, 2006.

164

[56] A. Hyvarinen and E. Oja, "Independent Component Analysis� A Tutorial

," Neural Networks, vol. 13, no. 4-5, pp. 411-430, 2000.

[57] S. Amari, A. Cichocki, and H. H. Yang, "A new Learning Algorthm for

Blind Signal Seperation," Advances in Neural Information Processing

Systems, vol. 8, pp. 757-763, 1996.

[58] C. E. Shannon, "A Mathematical Theory of Commuiation," The Bell

System Technica Journal, vol. 27, pp. 379-423, 1948.

[59] I. Robertson, "Calculating Percentile," Stanford University, 09 Jan. 2004.

[Online]. Available:

web.stanford.edu/class/archive/anthsci/.../calculating%20percentiles.pdf.

[Accessed 15 Jun 2014].

[60] J. A. Bilme, "A Gentle Tutorial of the EM Algorithm and its Application

to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,"

University of California, Berkeley, 1998.

[61] G. D. Finlayson, B. Schiele, J. L. Crowley, "Comprehesive Colour Image

Normalization," in ECCV, Freiburg, 1998.

165

[62] Y. Ye and J. K. Tsotsos, "A Complexity-Level Analysis of The Sensor

Planning Task for Object Search," Computational Intelligence, vol. 17, no. 4,

2001.

[63] Y. Ye and J. K. Tsotsos, "Sensor planning for 3D Object Search,"

Computer Vision and Image Understanding, vol. 73, no. 2, pp. 145-168, 1999.

[64] S. Martello and P. Toth, KANPSAK PROBLEMS, Chichester: John

Wiley & Sons Ltd., 1990.

[65] C. Cotta and J. M. Troya, "A Hybrid Genetic Algorithm for the 0-1

Multiple Knapsack Problem," Artificial Neural Nets and Genetic Algorithms,

vol. 3, pp. 250-254, 1998.

[66] D. Pisinger, "A Minimal Algorithm for the Bounded Knapsack Problem,"

Journal on Computing, vol. 12, no. 1, pp. 75-82, 2000.

[67] L. Moura and F. Dos Santos, An Efficient Dynamic Programming

Algorithm For The Unbounded Knapsack problem`, Porto Alegre: Journal on

Computing, 2012.

[68] J. Puchinger, G. R. Raidl, and U. Pferschy, "The Multidimensional

Knapsack Problem: Structure and Algorithms," INFORMS Journal on

Computing, vol. 22, no. 2, pp. 250-265, 2010.

166

[69] J. Noga and V. Sarbua, "An Online Partially Fractional Knapsack

Problem," in ISPAN, Las Vegas, 2005.

[70] M. Bartlett, A. M. Frisch, Y. hamadi, I. Miguel, S. A. Tarim, and C.

Unsworth, "The temporal knapsack problem and its soution," in CPAIOR,

Berlin, 2005.

[71] I. Aho, "Interactive Knapsacks," Fundamenta Infmaticae, vol. 44, no. 1-

2, pp. 1-23, 2000.

[72] A. J. Kleywegt and J. D. Papastavrou, "The Dynamic and Stochastic

Knapsack Problem," Operations Research, vol. 46, pp. 17-25, 1998.

[73] S. G. Kolliopoulos and G. Steiner, "Partially-Ordered Knapsack and

Applications to Scheduling," Discrete Applied Mathematics, vol. 155, no. 8,

pp. 889-897, 2007.

[74] Y. Merzifonluoglu, J. Geunes, and H. E. Romeijn, "The static stochastic

knapsack problem with normally distributed item sizes," Mathematical

Programming, vol. 134, no. 2, pp. 459-489, 2012.

[75] D. Kozen and S. Zaks, Automata, Languages and Programming, vol. 700,

pp. 150-161, 1993.

167

[76] B. Bhowmik, "DYNAMIC PROGRAMMING – ITS PRINCIPLES,

APPLICATIONS, STRENGTHS, AND LIMITATIONS," International

Journal of Engineering Science and Technology, vol. 2, no. 9, pp. 4822-4826,

2010.

[77] E. Horowitz and S. Sahni, "Computing Partitions with Applications to the

Knapsack Poblem," Journal of the ACM, vol. 21, no. 2, pp. 277-292, 1974.

[78] J. Csirik, J. B. G. Frenk, M. Labbe, and S. Zhang, "Heuristics for the 0–1

min-knapsack problem," Acta Cybernetica, vol. 10, no. 1-2, pp. 15-20, 1991.

[79] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Poblems, Berlin:

Springer-Verlag, 2004.

[80] D. Stefankovic, S. Vempala, and E. Vigoda, "A Deterministic

Polynomial-Time Approximation Scheme for Counting Knapsack Solutions,"

SIAM Journal on Computing, vol. 41, no. 2, pp. 356-366, 2012.

[81] P. Gopalan, A. Klivans, R. Meka, D. Stefankovic, S. Vempala, adn E.

Vigoda, "An FPTAS for #Knapsack and Related Counting Problems," in

IEEE FOCS, Palm Springs, 2011.

168

[82] J. MacLean and J. K. Tsotsos, "Fast Pattern Recognition Using Gradient-

Descent Search in an Image Pyramid," Pattern Recognition, vol. 2, pp. 873-

877, 2000.

[83] P. Hoyer, A. Hyvarinen, and N. Group, "Independent Component

Analysis and its Extensions as Models of Natural Image Statistics of Natural

Image Statistics," University of Helsink, 15 Feb 2000. [Online]. Available:

http://research.ics.aalto.fi/ica/imageica/. [Accessed 15 June 2014].

