395 research outputs found

    A thread-tag based semantics for sequence diagrams

    Get PDF
    The sequence diagram is one of the most popular behaviour modelling languages which offers an intuitive and visual way of describing expected behaviour of object-oriented software. Much research work has investigated ways of providing a formal semantics for sequence diagrams. However, these proposed semantics may not properly interpret sequence diagrams when lifelines do not correspond to threads of controls. In this paper, we address this problem and propose a thread-tag based sequence diagram as a solution. A formal, partially ordered multiset based semantics for the thread-tag based sequence diagrams is proposed

    Runtime Monitoring of Web Service Conversations

    Full text link

    cmUML - A UML based framework for formal specification of concurrent, reactive systems

    Get PDF
    Complex software systems possess concurrent and reactive behaviors requiring precise specifications prior to development. Lamport's transition axiom method is a formal specification method which combines axiomatic and operational approaches. On the other hand Unified Modeling Language (UML), a de facto industry standard visual language, lacks suitable constructs and semantics regarding concurrency aspects. Though UML includes action semantics, its higher level constructs and object semantics are inconsistent. Motivated by Lamport's approach, this paper proposes a UML based specification framework 'cmUML' ('cm' for concurrent modules) for formal specification of concurrent, reactive systems without object level diagrams and OCL. The framework integrates higher level diagrams of UML and addresses various concurrency issues including exception handling. It combines UML-RT and UML// SPT profile as the latter defines a core package for concurrency and causality. Further the framework includes the characteristic safety and liveness aspects of concurrent systems. The proposed framework is in contrast with existing approaches based on low level primitives (semaphore, monitors). The paper includes several specification examples validating the proposed framework

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    UML 2.0 interactions with OCL/RT constraints

    Get PDF
    The use of formal methods at early stages of software development contributes to the reliability and robustness of the system to be constructed. Int his context, real-time system development benefits from the construction of behavioral models in order to verify the correct satisfaction of time constraints. The Unified Modeling Language (UML) is a software specification language widely used by the industry and the academia. Nevertheless, its version 2.0 lacks a formal semantics for the development of provably-correct models. In addition, its constraint specification language, Object Constraint Language (OCL), has limitations for its use in behavioral models of real-time systems. This work concerns the inter-component behavioral specification of real-time systems. Such behavior is described using the UML 2.0 Interactions language extended for the inclusion of time constraints using the OCL for Real Time (OCL/RT) language. The main problem addressed in this work is the definition of a formal semantics for the fusion of both languages. The semantics allows recognizing valid and invalid behaviors of a system with time constraints. Intended for formal verification, an analysis of the properties derived from the semantics is also done. In particular, the notions of refinement of interactions and refinement of constraints are explored. Finally, the proposal is compared with related works and its practical application is studied in order to analyze its benefits and weaknesses. This work contributes to the formalization of concepts widely used in practice and, inconsequence, to its inclusion in modeling and formal reasoning tools. More-over, the expressivity of the UML 2.0 Interactions language is augmented in order to support complex real-time constraints, not expressable until this moment

    STAIRS - Understanding and Developing Specifications Expressed as UML Interaction Diagrams

    Get PDF
    STAIRS is a method for the step-wise, compositional development of interactions in the setting of UML 2.x. UML 2.x interactions, such as sequence diagrams and interaction overview diagrams, are seen as intuitive ways of describing communication between different parts of a system, and between a system and its users. STAIRS addresses the challenges of harmonizing intuition and formal reasoning by providing a precise understanding of the partial nature of interactions, and of how this kind of incomplete specifications may be consistently refined into more complete specifications. For understanding individual interaction diagrams, STAIRS defines a denotational trace semantics for the main constructs of UML 2.x interactions. The semantic model takes into account the partiality of interactions, and the formal semantics of STAIRS is faithful to the informal semantics given in the UML 2.x standard. For developing UML 2.x interactions, STAIRS defines a number of refinement relations corresponding to basic system development steps. STAIRS also defines matching compliance relations, for relating interactions to real computer systems. An important feature of STAIRS is the distinction between underspecification and inherent nondeterminism. Underspecification means that there are several possible behaviours serving the same overall purpose, and that it is sufficient for a computer system to perform only one of these. On the other hand, inherent nondeterminism is used to capture alternative behaviours that must all be possible for an implementation. A typical example is the tossing of a coin, where both heads and tails should be possible outcomes. In some cases, using inherent nondeterminism may also be essential for ensuring the necessary security properties of a system

    A model driven approach to analysis and synthesis of sequence diagrams

    Get PDF
    Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms
    corecore