3,202 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation

    Get PDF
    The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints. Objective : We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter). Methods : We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency. Results : We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI). Conclusion : This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization. Significance : Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation

    A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation

    Get PDF
    The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints. Objective : We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter). Methods : We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency. Results : We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI). Conclusion : This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization. Significance : Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Coupled resonator based wireless power transfer for bioelectronics

    Get PDF
    Implantable and wearable bioelectronics provide the ability to monitor and modulate physiological processes. They represent a promising set of technologies that can provide new treatment for patients or new tools for scientific discovery, such as in long-term studies involving small animals. As these technologies advance, two trends are clear, miniaturization and increased sophistication i.e. multiple channels, wireless bi-directional communication, and responsiveness (closed-loop devices). One primary challenge in realizing miniaturized and sophisticated bioelectronics is powering. Integration and development of wireless power transfer (WPT) technology, however, can overcome this challenge. In this dissertation, I propose the use of coupled resonator WPT for bioelectronics and present a new generalized analysis and optimization methodology, derived from complex microwave bandpass filter synthesis, for maximizing and controlling coupled resonator based WPT performance. This newly developed set of analysis and optimization methods enables system miniaturization while simultaneously achieving the necessary performance to safely power sophisticated bioelectronics. As an application example, a novel coil to coil based coupled resonator arrangement to wirelessly operate eight surface electromyography sensing devices wrapped circumferentially around an able-bodied arm is developed and demonstrated. In addition to standard coil to coil based systems, this dissertation also presents a new form of coupled resonator WPT system built of a large hollow metallic cavity resonator. By leveraging the analysis and optimization methods developed here, I present a new cavity resonator WPT system for long-term experiments involving small rodents for the first time. The cavity resonator based WPT arena exhibits a volume of 60.96 x 60.96 x 30.0 cm3. In comparison to prior state of the art, this cavity resonator system enables nearly continuous wireless operation of a miniature sophisticated device implanted in a freely behaving rodent within the largest space. Finally, I present preliminary work, providing the foundation for future studies, to demonstrate the feasibility of treating segments of the human body as a dielectric waveguide resonator. This creates another form of a coupled resonator system. Preliminary experiments demonstrated optimized coupled resonator wireless energy transfer into human tissue. The WPT performance achieved to an ultra-miniature sized receive coil (2 mm diameter) is presented. Indeed, optimized coupled resonator systems, broadened to include cavity resonator structures and human formed dielectric resonators, can enable the effective use of coupled resonator based WPT technology to power miniaturized and sophisticated bioelectronics

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers

    A concurrent engineering approach to develop BioMEMS employed in a deep brain stimulator integrated with a drug delivery system

    Get PDF
    This paper presents an Integrated Product Development (IPD) based model to specifically develop bio-medical micro-electro-mechanical-systems (BioMEMS). The concurrent engineering model is based on the IPD model phases, which are presented and formulated by the Integration DEFinition (IDEF) model- ling language. To evaluate the IPD model, a case study concerning the development of a BioMEMS device for a deep brain stimulation (DBS) system was investigated. By following the relevant mechanisms and controls in the model, a design concept of a wireless head-mounted DBS implant integrated with a drug delivery system (DDS) was conceived. The contribution of this paper is the IDEF model, which provides a road map to the product development team members in order to take a concurrent engineering approach to develop Bio-MEMS. The qualitative feedback received from the identified stakeholders, together with the quality of the case study employed, namely, an integrated DBS and DDS solution, indicate a degree of evidence that the model provides a sound basis in this direction.peer-reviewe

    Review of flexible energy harvesting for bioengineering in alignment with SDG

    Get PDF
    To cater to the extensive body movements and deformations necessitated by biomedical equipment flexible piezoelectrics emerge as a promising solution for energy harvesting. This review research delves into the potential of Flexible Piezoelectric Materials (FPM) as a sustainable solution for clean and affordable energy, aligning with the United Nations' Sustainable Development Goals (SDGs). By systematically examining the secondary functions of stretchability, hybrid energy harvesting, and self-healing, the study aims to comprehensively understand these materials' mechanisms, strategies, and relationships between structural characteristics and properties. The research highlights the significance of designing piezoelectric materials that can conform to the curvilinear shape of the human body, enabling sustainable and efficient mechanical energy capture for various applications, such as biosensors and actuators. The study identifies critical areas for future investigation, including the commercialization of stretchable piezoelectric systems, prevention of unintended interference in hybrid energy harvesters, development of consistent wearability metrics, and enhancement of the elastic piezoelectric material, electrode circuit, and substrate for improved stretchability and comfort. In conclusion, this review research offers valuable insights into developing and implementing FPM as a promising and innovative approach to harnessing clean, affordable energy in line with the SDGs.</p

    Review of flexible energy harvesting for bioengineering in alignment with SDG

    Get PDF
    To cater to the extensive body movements and deformations necessitated by biomedical equipment flexible piezoelectrics emerge as a promising solution for energy harvesting. This review research delves into the potential of Flexible Piezoelectric Materials (FPM) as a sustainable solution for clean and affordable energy, aligning with the United Nations' Sustainable Development Goals (SDGs). By systematically examining the secondary functions of stretchability, hybrid energy harvesting, and self-healing, the study aims to comprehensively understand these materials' mechanisms, strategies, and relationships between structural characteristics and properties. The research highlights the significance of designing piezoelectric materials that can conform to the curvilinear shape of the human body, enabling sustainable and efficient mechanical energy capture for various applications, such as biosensors and actuators. The study identifies critical areas for future investigation, including the commercialization of stretchable piezoelectric systems, prevention of unintended interference in hybrid energy harvesters, development of consistent wearability metrics, and enhancement of the elastic piezoelectric material, electrode circuit, and substrate for improved stretchability and comfort. In conclusion, this review research offers valuable insights into developing and implementing FPM as a promising and innovative approach to harnessing clean, affordable energy in line with the SDGs.</p
    corecore