250,732 research outputs found

    Safety Property Driven Test Generation from {JML} Specifications

    Get PDF
    International audienceThis paper describes the automated generation of test sequences derived from a JML specification and a safety property written in an ad hoc language, named JTPL. The functional JML model is animated to build the test sequences w.r.t. the safety properties, which represent the test targets. From these properties, we derive strategies that are used to guide the symbolic animation. Moreover, additional JML annotations reinforce the oracle in order to guarantee that the safety properties are not violated during the execution of the test suite. Finally, we illustrate this approach on an industrial JavaCard case study

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Chaining Test Cases for Reactive System Testing (extended version)

    Full text link
    Testing of synchronous reactive systems is challenging because long input sequences are often needed to drive them into a state at which a desired feature can be tested. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the time required for resetting is high. This paper presents an approach to discovering a test case chain---a single software execution that covers a group of test goals and minimises overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimise the number of test chains if a single test chain is infeasible. We report experimental results with a prototype tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators.Comment: extended version of paper published at ICTSS'1

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    Development of a framework for automated systematic testing of safety-critical embedded systems

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In this paper we introduce the development of a framework for testing safety-critical embedded systems based on the concepts of model-based testing. In model-based testing the test cases are derived from a model of the system under test. In our approach the model is an automaton model that is automatically extracted from the C-source code of the system under test. Beside random test data generation the test case generation uses formal methods, in detail model checking techniques. To find appropriate test cases we use the requirements defined in the system specification. To cover further execution paths we developed an additional, to our best knowledge, novel method based on special structural coverage criteria. We present preliminary results on the model extraction using a concrete industrial case study from the automotive domain

    A MDE-based process for the design, implementation and validation of safety critical systems

    Get PDF
    Distributed Real-Time Embedded (DRE) systems have critical requirements that need to be verified. They are either related to functional (e.g. stability of a furnace controller) or non-functional (e.g. meeting deadlines) aspects. Model-Driven Engineering (MDE) tools have emerged to ease DRE systems design. These tools are also capable of generating code. However, these tools either focus on the functional aspects or on the runtime architecture. Hence, the development cycle is partitioned into pieces with heterogeneous modeling notations and poor coordination. In this paper, we propose a MDE-based process to create DRE systems without manual coding. We show how to integrate functional and architecture concerns in a unified process. We use industry-proven modeling languages to design functional elements of the system, and automatically integrate them using our AADL toolchain
    corecore