
 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 3663 

To cite this document : DELANGE, Julien and HUGUES, Jérôme and PAUTET, 
Laurent and DE NIZ, Diosisio. A MDE-based Process for the Design, 
Implementation and Validation of Safety Critical Systems. In : Proceedings of the 
5th UML AADL Workshop (UML AADL 2010), Oxford, 24 March 2010 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@inp-toulouse.fr 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


An MDE-based Process for the Design, Implementation and Validation of
Safety-Critical Systems

Julien Delange, Laurent Pautet
TELECOM ParisTech - LTCI

46, rue Barrault
F-75634 Paris CEDEX 13

{delange,pautet}@enst.fr

Jérôme Hugues
Université de Toulouse, ISAE

10, avenue E. Belin - BP 54032,
F-31055 Toulouse CEDEX 4
jerome.hugues@isae.fr

Dionisio de Niz
SEI/CMU

4500 Fifth Avenue
Pittsburgh, PA, USA

dionisio@sei.cmu.edu

Abstract

Distributed Real-Time Embedded (DRE) systems have
critical requirements that need to be verified. They are ei-
ther related to functional (e.g. stability of a furnace con-
troller) or non-functional (e.g. meeting deadlines) aspects.

Model-Driven Engineering (MDE) tools have emerged
to ease DRE systems design. These tools are also capable
of generating code. However, these tools either focus on the
functional aspects or on the runtime architecture. Hence,
the development cycle is partitioned into pieces with het-
erogeneous modeling notations and poor coordination.

In this paper, we propose a MDE-based process to cre-
ate DRE systems without manual coding. We show how to
integrate functional and architecture concerns in a unified
process. We use industry-proven modeling languages to de-
sign functional elements of the system, and automatically
integrate them using our AADL toolchain.

1 Introduction

The design of a DRE system involves multiple tightly
integrated domains. Cooperation from these domains is es-
sential for the successful development of these systems.

Model-Driven approaches [5, 9] seeks a solution to the
integration problem: all is model, representing either prob-
lem or solution artifacts. These approaches improve soft-
ware development and application reliability.

Two MDE development approaches had emerged for
DRE systems. The first one focuses on functional parts [2,
3] (application specific code) while the other details the
overall architecture [4, 1]. In this paper, we propose an
approach to integrate functional aspects with architecture
approaches and develop the whole system from models.

DRE systems are composed of functional (e.g. control
algorithms) and non-functional (e.g. threads) aspects that

are loosely coupled. An ideal development process would
integrate them to take benefits from both methods.

Architecture-driven approaches can partly generate im-
plementation code from high-level designs, yet the integra-
tion of functional code in an architectural skeleton remains
hand-made. For instance, Simulink or SCADE models can-
not be integrated automatically with RTOS drivers nor de-
ploy over a distributed system with specific hardware.

In this paper we describe an approach (see figure 1)
to integrate architecture and application models. It relies
on two modeling languages: an application-level language
(Simulink or SCADE) and an architecture-level language
(AADL [8]). Application code is generated using vendor-
specific tools (step 2) and architecture-level code that uses
application-level code is also generated (step 3). Merging
both approaches (step 4) produces the final implementation.

Application models
(Simulink, Lustre, ...)

Architecture models
(AADL)

Validation/simulation
Code generation

Validation
Code generation

Generated code Generated code

Code integration

Distributed application

integration of application models

1

2 3

4

Figure 1. Proposed development process

2 Architecture Modeling with AADL

AADL is a component-centric language which focuses
on the description of the non-functional aspects of the com-
ponents such as timing or memory concerns.

An AADL description is made out of hardware and

1



software components. The AADL standard defines basic
component types that must be extended to describe a sys-
tem. The software types are:data, thread, thread group,
subprogram, process. The execution platform compo-
nents types are memory, bus, processor, device, virtual
processor, virtual bus. Finally, there is one hybrid
component type (system).

Components describe well identified elements of the ac-
tual architecture. The Subprogram type models application
code and references another external (application) model.
The Thread type models the active part of an application
(such as POSIX threads). The Process type models an ad-
dress space that contains the threads. The Processor type
models aspects of both the processor and the operating sys-
tem relevant to the non-functional properties. The mem-
ory type models hard disks, RAMs, ROMs and other forms
of memory. The bus type models all kinds of networks
and hardware connections. Finally, the system type models
composite components that are made up of hardware and
software components. For example, a system may represent
a board with multiple processors and memory chips.

Components are organized in a hierarchy, i.e.: compo-
nents contain other components (called subcomponents in
this case). AADL models contain a topmost system compo-
nent that contains, hardware and software subcomponents
and the deployment of the software to the hardware.

The interface specification of a component is called its
type. An interface is a collection of features that can be con-
nected to other component’s features to model their com-
munication. Each component has a separate implementa-
tion description that is populated with subcomponents and
connections among them. An implementation of a thread or
a subprogram can specify call sequences to other subpro-
grams, thus describing the execution flows in the architec-
ture.

process_producer.i

thr_producer.i thr_consumer.i
process_consumer

ethernet_bus
distributed_system.i

Figure 2. Sample AADL model

AADL associates properties to model elements. Proper-
ties are name/value pairs that represent components charac-
teristics and constraints, such a the period of a thread, etc.

Figure 2 shows an AADL model using its graphical rep-
resentation. In this model, two processes communicate
through the network. Each process contains a thread, one
being a producer, the other a consumer.

Interested readers can find an introduction to this lan-
guage in [7].

3 Modeling functional blocks

3.1 Simulink

Simulink is one of the modeling languages of Matlab,
a simulation tool commonly used in the industry. One of
the key reasons for the popularity of Simulink is the math-
ematical toolboxes that enable the designer to simulate key
characteristics of the system.

Simulink is a dataflow language. A Simulink system is
composed of data-processing blocks and connections be-
tween their inputs and outputs A typical model in Simulink
includes both the system under control, and its associated
controller. As a result, both parts of the model can be ex-
ercised by the simulation engine, to focus on the evaluation
of the mathematical functions.

GetData

In1 Out1 In1 Out1

In1 Out1In1 Out1

Feedback Control C

+
+

+
+

Plant Disturbance GdFeedforward Control F

Heat Exchanger Plant Gp

0

SETPOINT

+
−

Disturbance d

Temperature T

Control Signal V

heatex_getdata

Figure 3. Simulink Example - Heat Exchanger

As an example, consider the heat exchanger system de-
picted in Figure 3. In this model both the controller mod-
ules (Feedback Control C and Feedfordward Control
F) and the controlled system (Heat Exchange Plant Gp)
are present. In this example, the steps of both, the com-
putations of the controller modules and the reactions of the
controlled system simulations, are advanced synchronously
by the simulation engine.

However, the final generated code to be used in the real
system has not controlled plant code but another piece of
software of hardware. Hence, we need to adapt the con-
troller algorithm to synchronize with the plant. On the one
hand, it needs to run periodically at a rate that can keep
up with the dynamism of the plant. On the other hand,
feedback loops need to be implemented to communicate its
value from one activation of the controller to the next.

Both, the periodicity of the controller, and the feedback
connections are part of an architectural model that comple-
ments this functional model. On the one hand, the period-
icity is modeled as periodic threads that call the appropriate
functional code. On the other hand, the feedback loops are
modeled as delayed connections that ensure consistency in
the communication between the threads. All these elements
are part of the concerns to be described in an AADL model.



Figure 4. SCADE code example

3.2 SCADE

“Safety Critical Application Development Environ-
ment” (SCADE) defines a simple and efficient textual for-
malism to design safety-critical software. SCADE relies on
a graphical notation to model data flows. The design of
SCADE programs is made out of computing blocks with
data flows that connect blocks inputs and outputs (see fig-
ure 4 for an example). State machines can also be used to
control program behavior.

Applications written with SCADE can be simulated,
which help the developers to test and ensure their correct-
ness. SCADE can automatically generates code from the
graphical notation using its code generator (kcg). This code
generator outputs potentially certified C code. Such a devel-
opment process help the developer to design its application
and reduce certification costs. SCADE was successfully
used in the industry, especially in the avionics domain.

Figure 4 depicts a SCADE sample program that adds the
value of its input to a global memory. The input add input
is added to the previous computed value. Then, the output
add output contains the computed value.

However, code generated by kcg still requires manual in-
tegration with other elements (such as drivers) as well as a
separate toolchain for integration on target hosts. Deploy-
ment/integration of verified applications in validated archi-
tectures would make the development process more robust.

4 Modeling process

4.1 Application-driven process

In this approach, the functional part of the system is
first designed and then, allocated to a runtime architecture.
Techniques to do this include the use of bin-packing algo-
rithms to allocate software to hardware, design exploration
to find the best assignments, and analysis to ensure the sys-
tem is schedulable. Each of these steps involves:

1. Functional blocks are defined using vendor-specific
tools. These tools allow the simulation and analysis of these
blocks to verify their correctness and properties.

2. An AADL runtime architecture is designed, listing
processor, memory and bus components. This architecture
defines hardware elements and their topology.

3. Functional blocks are imported as AADL
subprograms and data components.

4. Finally, the allocation is performed. It takes advantage
of the annotations in the AADL model that includes WCET,
bandwidth/memory consumption, etc.

This development process was used in our Simulink
case-study, detailed in section 6.1

4.2 Architecture-driven process

In this approach, the architecture is first designed de-
scribing the runtime components of the system, e.g. pro-
cesses, threads, processors, etc. Then, functional blocks are
then allocated to these components. This process is based
on these following steps:

1. An AADL architecture is designed and list available
resources (including threads with scheduling concerns,
root subprograms and data types).

2. Functional blocks are implemented. Their interface
should match the AADL interface.

3. AADL subprograms and data components are then
refined to reference these implementations.

Such a development process was used in our SCADE
case-study, detailed in section 6.2.

4.3 Integration challenges

The integration of the functional model with the runtime
architecture model allows us to validate and generate the
complete system.Using MDE principles (abstraction, model
transformation and analysis), this creates a complete path
from models to code, with integrated validation and simu-
lation.

However, the model-to-code process that integrates ar-
chitectural and functional model must ensure the consis-
tency of such integration. There are three types of consis-
tency:

• Data representation consistency: Data must have the
same representation in architecture and application models.

• Source-code interoperability: Application models
use a specific API to exchange data between blocks. This
API must be integrated in the architecture code to import/-
export data between architecture and application code.

• Semantics consistency: The integration process must
preserve models semantics and data flows.

5 Supporting the process

5.1 Import application data in AADL

In Simulink or SCADE, the designer specifies the data
types used on each component. This information should



be used to pre-allocate buffers to exchange data in the run-
time system. For this reason, it should be integreated in
AADL models so that data components of the architecture-
level models reflect types used in application level models.

In AADL, data are described using the data com-
ponent and their characteristics are described by adding
properties to it. So, AADL data components must en-
sure the data consistency between the application and ar-
chitecture models.

For example, the modeling of an SCADE integer in
AADL is achieved with a data component associated with
an appropriate property (see listing 1).

1data i n t e g e r
2properties
3Data Representat ion => I n t ege r ;
4Source Language => Scade ;
5end i n t e g e r ;

Listing 1. Map SCADE integer using AADL

5.2 Import application functions

Traditional code (written in Ada or C) integration in
AADL models is achieved with the subprogram compo-
nent. It models an instruction flow executed by a thread.
Application-level non-functional properties are described
by adding properties to AADL components. These prop-
erties are reused in the process development for compila-
tion or integration purposes. To integrate application-level
models into AADL models, we specify modeling patterns
that rely on specific properties. The mapping of SCADE or
Simulink application code is described below.

5.2.1 Simulink mapping

Integrating Simulink models in AADL is achieved by
adding some properties to a subprogram component:

• Source Language is set to Simulink .
• Source Name specifies the name of the Simulink block.
• The Source Text property specifies the directory that

contains the code generated by the Simulink code generator.
Finally, we define the association between subprogram

features and the Simulink block inputs/outputs so that the
architecture model know its mapping with Simulink com-
munication ports.

Listing 2 corresponds to the integration of the Heat
Exchanger block (shown in figure 3). We map this appli-
cation in an AADL subprogram and specify the name of
the mapped Simulink block using the Source Name prop-
erty. Then, we map Simulink output signals to AADL
subprogram features using the Source Name property on
each feature. Here, the AADL dist feature corresponds

to the disturbance Simulink signal, the AADL temp fea-
ture corresponds to the temperature Simulink signal and
the AADL csignal feature corresponds to the Control
Signal Simulink signal.

1subprogram spg s imu l ink
2features
3d i s t : out parameter s i m u l i n k r e a l
4{Source Name => ” d is tu rbance ” ;} ;
5temp : out parameter s i m u l i n k r e a l
6{Source Name => ” temperature ” ;} ;
7cs igna l : out parameter s i m u l i n k r e a l
8{Source Name => ” Cont ro l S igna l ” ;} ;
9properties
10source name => ” Heater Exchanger ” ;
11source language => Simul ink ;
12sou rce loca t i on => ” / path / to / s imu l ink−code / ” ;
13end spg s imu l ink ;

Listing 2. Simulink’s Heat exchanger in AADL

5.2.2 SCADE mapping

Importing a SCADE node with AADL is achieved using an
subprogram component with the following properties:

• Source Language is set to Scade.
• Source Name specifies the name of the SCADE node.
• Source Location points the location of the SCADE

code on the filesystem.
We also indicate the mapping of AADL features onto

SCADE parameter by adding the Source Name property on
each feature. The value of this property is set the their cor-
responding inputs/outputs in the SCADE model.

The listing 3 shows the integration of the SCADE adder
example (shown in figure 4). The property Source Name is
added on each parameter to describe the mapping between
the AADL subprogram features and SCADE inputs/out-
puts. Here, the input parameter from the AADL compo-
nent corresponds to the add input input of the SCADE
node and the output parameter corresponds to the
add output output of the SCADE model.

1subprogram spg scade
2features
3i npu t : in parameter i n t e g e r {Source Name => ” add input ” ;} ;
4output : out parameter i n t e g e r {Source Name => ” add output ” ;} ;
5properties
6source name => ” i nc ” ;
7source language => Scade ;
8sou rce loca t i on => ” / path / to / scade−code / ” ;
9end spg scade ;

Listing 3. inc SCADE node with AADL

5.3 Code generation and integration

This section details the characteristics of architecture and
application generated code and explains their integration.



5.3.1 Architecture-level code overview

Architecture-level generated code provides resources to ex-
ecute functional code and can be seen in three parts:

•Thread part reflects AADL thread components. This
part performs calls to the application-level code, as de-
scribed in the subprogram components.

• Process part creates resources (threads or shared
data) and establishes communication channels with the
other nodes of the distributed system.

•OS and network configuration part is generated using
information from the processor and system components.
It configures the underlying operating systems of each node
to execute the generated code (for example, RTEMS [6]
needs declarations to enable specific functionalities).

5.3.2 Application-level code overview

Application-level code generators (as in Simulink or
SCADE) provides two important functionalities:

• An initialization function that instantiates resources.
•A reaction function that computes outputs from inputs

values. Calling this function is the execution of one step in
the computation of the application model.

These code generators provide mechanisms to interoper-
ate with the generated functions (get/put data into the appli-
cation code, call the reaction function, . . . ). In our case, we
use these features to exchange data between application and
architecture levels and trigger application reaction.

Generated
Application code

(Simulink/Lustre)

Thread

Generated
Application code

(Simulink/Lustre)

Process

Thread

Process

OS and network configuration 

A
p

p
li
c
a
ti

o
n

le
v
e
l 
c
o
d

e
A

rc
h

it
e
c
tu

re
le

v
e
l 
c
o
d

e

callscalls

Figure 5. Interaction between application and
architecture generated code

5.3.3 Integration of the code from both generators

Application level code is described using AADL
subprogram components so that there is no differ-
ence between traditional subprogram and application
model subprograms: application code resides on top of
the thread part of the architecture code, as shown in figure
5. Architecture code remains unchanged. Changes are
only made in the generated subprogram: this part enables

interactions (data exchange) with application code and calls
the reaction function.

To do so, the code generator creates a function from the
AADL subprogram that follows this pattern:

1 It injects the in parameters of the AADL subprogram
into the application.

2 It calls the reaction function of the application-level
code to compute new output values.

3 It retrieves application-level outputs injects them into
the AADL subprogram output parameters

Figure 6. Simulink model of our case-study

6 Case studies

During our tests, application code was generated with
dedicated tools (Real-Time Workshop for Simulink, KCG
for SCADE) and architecture code was generated using the
OCARINA tool suite. It generates C code with the appropri-
ate glue code detailed in section 5.

6.1 Simulink case-study

This case-study follows an application-driven process: a
flight control application (illustrated in figure 6 and avail-
able in Simulink releases) was divided in three parts (con-
troller, aircraft control and pilot calculation) and deployed
on a distributed architecture (illustrated in 7).

We take into account the requirements of the application
(feedback loops, data flows, . . . ) to preserve application
requirements in the architecture.

6.2 SCADE case study

The SCADE case study follows an architecture-driven
process: we first designed a distributed architecture (shown



pilot

aircraftcontroller

controller
processor

aircraft
processor

pilot
processor

Figure 7. Simulink case-study architecture

in figure 8) with the appropriate requirements and integrate
an application model (a cruise control system and available
in SCADE releases). Application inputs are simulated by a
separate node (src process).

In the architecture side, one node (src process) sim-
ulates application values and send them to another node
through the network. This node (scade process) receives
the values, computes a new value and sends it to a third
node. It dst process) executes a subprogram that prints
the speed value on the screen.

src_process scade_process dst_process

simulator
processor

computation
processor

command board
processor

Figure 8. SCADE case-study architecture

6.3 Integration validation

We validated our approach by comparing simulation and
execution. The simulated values were obtained with dedi-
cated tools (Matlab or SCADE toolsuite). To collect values
during execution we instrumented the code to get values
sent/received over data ports. Then, we compare simu-
lation and execution values according to the mapping rules
between application and architecture models.

During our experiments, we found that values from sim-
ulation and execution were the same. It shows the correct-
ness of our approach and demonstrates that application and
architecture code are correctly integrated.

7 Conclusion

In this article, we presented a full MDE approach to de-
sign and implement DRE systems. We detailed different
modeling approaches (architecture- or application-driven)

and explained how architecture and application models are
integrated from design to implementation. Code was au-
tomatically generated from integrated models to create dis-
tributed applications without manual coding. This develop-
ment process avoids error from traditional coding methods
and preserves the analysis results from the modeling tools.

An additional advantage of using AADL is the continu-
ous flow of analysis tools that are based on this language.
That is, both the research community and the industry are
using AADL as a platform to explore new analysis tech-
niques. The use of these analysis tools, combined with an
appropriate development process (such as the one detailed
in this paper) would ease DRE systems development.

References

[1] P. Binns, M. Englehart, M. Jackson, and S. Vestal.
Domain-specific software architectures for guidance,
navigation and control. 6(2):201–227, June 1996.

[2] K. Hales. Matlab/simulink model as a tool for process
design and commissioning. May 2004.

[3] R. H. Martin and D. Raffo. A model of the software de-
velopment process using both continuous and discrete
models. Software Process: Improvement and Practice,
5(2-3):147–157, 2000.

[4] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture de-
scription languages. IEEE Transactions on Software
Engineering, 26:70–93, 2000.

[5] J. Miller and J. Mukerji. Mda guide version 1.0.1. Tech-
nical report, Object Management Group (OMG), 2003.

[6] OARCorp. Rtems - http://www.rtems.com.

[7] Peter H. Feiler, David P. Gluch, and John J. Hudak. The
Architecture Analysis and Design Language (AADL) :
An introduction. Technical report, 02 2006.

[8] SAE. Architecture Analysis & Design Language v2.0
(AS5506), September 2008.

[9] D. C. Schmidt. Guest Editor’s Introduction: Model-
Driven Engineering. Computer, 39(2):25–31, 2006.


	Hugues_3663
	Hugues_3663.pdf
	Hugues_3663
	Hugues_3663.pdf


