99 research outputs found

    Analysing Switch-Case Code with Abstract Execution

    Get PDF
    Constructing the control-flow graph (CFG) of machine code is made difficult by dynamic transfers of control (DTC), where the address of the next instruction is computed at run-time. Switchcase statements make compilers generate a large variety of machine-code forms with DTC. Two analysis approaches are commonly used: pattern-matching methods identify predefined instruction patterns to extract the target addresses, while analytical methods try to compute the set of target addresses using a general value-analysis. We tested the abstract execution method of the SWEET tool as a value analysis for switch-case code. SWEET is here used as a plugin to the Bound-T tool: thus our work can also be seen as an experiment in modular tool design, where a general value-analysis tool is used to aid the CFG construction in a WCET analysis tool. We find that the abstract-execution analysis works at least as well as the switch-case analyses in Bound-T itself, which are mostly based on pattern-matching. However, there are still some weaknesses: the abstract domains available in SWEET are not well suited to representing sets of DTC target addresses, which are small but sparse and irregular. Also, in some cases the abstract-execution analysis fails because the used domain is not relational, that is, does not model arithmetic relationships between the values of different variables. Future work will be directed towards the design of abstract domains eliminating these weaknesses

    The WCET Tool Challenge 2011

    Get PDF
    Following the successful WCET Tool Challenges in 2006 and 2008, the third event in this series was organized in 2011, again with support from the ARTIST DESIGN Network of Excellence. Following the practice established in the previous Challenges, the WCET Tool Challenge 2011 (WCC'11) defined two kinds of problems to be solved by the Challenge participants with their tools, WCET problems, which ask for bounds on the execution time, and flow-analysis problems, which ask for bounds on the number of times certain parts of the code can be executed. The benchmarks to be used in WCC'11 were debie1, PapaBench, and an industrial-strength application from the automotive domain provided by Daimler AG. Two default execution platforms were suggested to the participants, the ARM7 as "simple target'' and the MPC5553/5554 as a "complex target,'' but participants were free to use other platforms as well. Ten tools participated in WCC'11: aiT, Astr\'ee, Bound-T, FORTAS, METAMOC, OTAWA, SWEET, TimeWeaver, TuBound and WCA

    A Formally Verified WCET Estimation Tool

    Get PDF
    The application of formal methods in the development of safety-critical embedded software is recommended in order to provide strong guarantees about the absence of software errors. In this context, WCET estimation tools constitute an important element to be formally verified. We present a formally verified WCET estimation tool, integrated to the formally verified CompCert C compiler. Our tool comes with a machine-checked proof which ensures that its WCET estimates are safe. Our tool operates over C programs and is composed of two main parts, a loop bound estimation and an Implicit Path Enumeration Technique (IPET)-based WCET calculation method. We evaluated the precision of the WCET estimates on a reference benchmark and obtained results which are competitive with state-of-the-art WCET estimation techniques

    Principles for Value Annotation Languages

    Get PDF
    Tools for code-level program analysis need formats to express various properties, like relevant properties of the environment where the analysed code will execute, and the analysis results. Different WCET analysis tools typically use tool-specific annotation languages for this purpose. These languages are often geared towards expressing properties that the particular tool can handle rather than being general, and mostly their semantics is only specified informally. This makes it harder for tools to communicate, as well as for users to provide relevant information to them. Here, we propose a small but general assertion language for value constraints including IPET flow facts, which is an important class of annotations for WCET analysis tools. We show how to express interesting properties in this language, we propose some syntactic conveniences, and we give the language a formal semantics. The language could be used directly as a tool-independent annotation language, or as a meta-language to give exact semantics to existing value annotation and flow fact formats

    Merging Techniques for Faster Derivation of WCET Flow Information using Abstract Execution

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis derives upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. A key component in static WCET analysis is to derive flow information, such as loop bounds and infeasible paths. We have previously introduced abstract execution (AE), a method capable of deriving very precise flow information. This paper present different merging techniques that can be used by AE for trading analysis time for flow information precision. It also presents a new technique, ordered merging, which may radically shorten AE analysis times, especially when analyzing large programs with many possible input variable values

    Algorithms for Infeasible Path Calculation

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis is a technique to derive upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. One key component in static WCET analysis is to derive flow information, such as loop bounds and infeasible paths for the analysed program. Such flow information can be provided as either as annotations by the user, can be automatically calculated by a flow analysis, or by a combination of both. To make the analysis as simple, automatic and safe as possible, this flow information should be calculated automatically with no or very limited user interaction. In this paper we present three novel algorithms to calculate infeasible paths. The algorithms are all designed to be simple and efficient, both in terms of generated flow facts and in analysis running time. The algorithms have been implemented and tested for a set of WCET benchmarks programs
    • …
    corecore