491 research outputs found

    Semantic Modeling of Outdoor Scenes for the Creation of Virtual Environments and Simulations

    Get PDF
    Efforts from both academia and industry have adopted photogrammetric techniques to generate visually compelling 3D models for the creation of virtual environments and simulations. However, such generated meshes do not contain semantic information for distinguishing between objects. To allow both user- and system-level interaction with the meshes, and enhance the visual acuity of the scene, classifying the generated point clouds and associated meshes is a necessary step. This paper presents a point cloud/mesh classification and segmentation framework. The proposed framework provides a novel way of extracting object information – i.e., individual tree locations and related features while considering the data quality issues presented in a photogrammetric-generated point cloud. A case study has been conducted using data that were collected at the University of Southern California to evaluate the proposed framework

    Toward knowledge-based automatic 3D spatial topological modeling from LiDAR point clouds for urban areas

    Get PDF
    Le traitement d'un très grand nombre de données LiDAR demeure très coûteux et nécessite des approches de modélisation 3D automatisée. De plus, les nuages de points incomplets causés par l'occlusion et la densité ainsi que les incertitudes liées au traitement des données LiDAR compliquent la création automatique de modèles 3D enrichis sémantiquement. Ce travail de recherche vise à développer de nouvelles solutions pour la création automatique de modèles géométriques 3D complets avec des étiquettes sémantiques à partir de nuages de points incomplets. Un cadre intégrant la connaissance des objets à la modélisation 3D est proposé pour améliorer la complétude des modèles géométriques 3D en utilisant un raisonnement qualitatif basé sur les informations sémantiques des objets et de leurs composants, leurs relations géométriques et spatiales. De plus, nous visons à tirer parti de la connaissance qualitative des objets en reconnaissance automatique des objets et à la création de modèles géométriques 3D complets à partir de nuages de points incomplets. Pour atteindre cet objectif, plusieurs solutions sont proposées pour la segmentation automatique, l'identification des relations topologiques entre les composants de l'objet, la reconnaissance des caractéristiques et la création de modèles géométriques 3D complets. (1) Des solutions d'apprentissage automatique ont été proposées pour la segmentation sémantique automatique et la segmentation de type CAO afin de segmenter des objets aux structures complexes. (2) Nous avons proposé un algorithme pour identifier efficacement les relations topologiques entre les composants d'objet extraits des nuages de points afin d'assembler un modèle de Représentation Frontière. (3) L'intégration des connaissances sur les objets et la reconnaissance des caractéristiques a été développée pour inférer automatiquement les étiquettes sémantiques des objets et de leurs composants. Afin de traiter les informations incertitudes, une solution de raisonnement automatique incertain, basée sur des règles représentant la connaissance, a été développée pour reconnaître les composants du bâtiment à partir d'informations incertaines extraites des nuages de points. (4) Une méthode heuristique pour la création de modèles géométriques 3D complets a été conçue en utilisant les connaissances relatives aux bâtiments, les informations géométriques et topologiques des composants du bâtiment et les informations sémantiques obtenues à partir de la reconnaissance des caractéristiques. Enfin, le cadre proposé pour améliorer la modélisation 3D automatique à partir de nuages de points de zones urbaines a été validé par une étude de cas visant à créer un modèle de bâtiment 3D complet. L'expérimentation démontre que l'intégration des connaissances dans les étapes de la modélisation 3D est efficace pour créer un modèle de construction complet à partir de nuages de points incomplets.The processing of a very large set of LiDAR data is very costly and necessitates automatic 3D modeling approaches. In addition, incomplete point clouds caused by occlusion and uneven density and the uncertainties in the processing of LiDAR data make it difficult to automatic creation of semantically enriched 3D models. This research work aims at developing new solutions for the automatic creation of complete 3D geometric models with semantic labels from incomplete point clouds. A framework integrating knowledge about objects in urban scenes into 3D modeling is proposed for improving the completeness of 3D geometric models using qualitative reasoning based on semantic information of objects and their components, their geometric and spatial relations. Moreover, we aim at taking advantage of the qualitative knowledge of objects in automatic feature recognition and further in the creation of complete 3D geometric models from incomplete point clouds. To achieve this goal, several algorithms are proposed for automatic segmentation, the identification of the topological relations between object components, feature recognition and the creation of complete 3D geometric models. (1) Machine learning solutions have been proposed for automatic semantic segmentation and CAD-like segmentation to segment objects with complex structures. (2) We proposed an algorithm to efficiently identify topological relationships between object components extracted from point clouds to assemble a Boundary Representation model. (3) The integration of object knowledge and feature recognition has been developed to automatically obtain semantic labels of objects and their components. In order to deal with uncertain information, a rule-based automatic uncertain reasoning solution was developed to recognize building components from uncertain information extracted from point clouds. (4) A heuristic method for creating complete 3D geometric models was designed using building knowledge, geometric and topological relations of building components, and semantic information obtained from feature recognition. Finally, the proposed framework for improving automatic 3D modeling from point clouds of urban areas has been validated by a case study aimed at creating a complete 3D building model. Experiments demonstrate that the integration of knowledge into the steps of 3D modeling is effective in creating a complete building model from incomplete point clouds

    Building extraction for 3D city modelling using airborne laser scanning data and high-resolution aerial photo

    Get PDF
    Light detection and ranging (LiDAR) technology has become a standard tool for three-dimensional mapping because it offers fast rate of data acquisition with unprecedented level of accuracy. This study presents an approach to accurately extract and model building in three-dimensional space from airborne laser scanning data acquired over Universiti Putra Malaysia in 2015. First, the point cloud was classified into ground and non-ground xyz points. The ground points was used to generate digital terrain model (DTM) while digital surface model (DSM) was  produced from the entire point cloud. From DSM and DTM, we obtained normalise DSM (nDSM) representing the height of features above the terrain surface.  Thereafter, the DSM, DTM, nDSM, laser intensity image and orthophoto were  combined as a single data file by layer stacking. After integrating the data, it was segmented into image objects using Object Based Image Analysis (OBIA) and subsequently, the resulting image object classified into four land cover classes: building, road, waterbody and pavement. Assessment of the classification accuracy produced overall accuracy and Kappa coefficient of 94.02% and 0.88 respectively. Then the extracted building footprints from the building class were further processed to generate 3D model. The model provides 3D visual perception of the spatial pattern of the buildings which is useful for simulating disaster scenario for  emergency management

    Mapping urban tree species in a tropical environment using airborne multispectral and LiDAR data

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesAccurate and up-to-date urban tree inventory is an essential resource for the development of strategies towards sustainable urban planning, as well as for effective management and preservation of biodiversity. Trees contribute to thermal comfort within urban centers by lessening heat island effect and have a direct impact in the reduction of air pollution. However, mapping individual trees species normally involves time-consuming field work over large areas or image interpretation performed by specialists. The integration of airborne LiDAR data with high-spatial resolution and multispectral aerial image is an alternative and effective approach to differentiate tree species at the individual crown level. This thesis aims to investigate the potential of such remotely sensed data to discriminate 5 common urban tree species using traditional Machine Learning classifiers (Random Forest, Support Vector Machine, and k-Nearest Neighbors) in the tropical environment of Salvador, Brazil. Vegetation indices and texture information were extracted from multispectral imagery, and LiDAR-derived variables for tree crowns, were tested separately and combined to perform tree species classification applying three different classifiers. Random Forest outperformed the other two classifiers, reaching overall accuracy of 82.5% when using combined multispectral and LiDAR data. The results indicate that (1) given the similarity in spectral signature, multispectral data alone is not sufficient to distinguish tropical tree species (only k-NN classifier could detect all species); (2) height values and intensity of crown returns points were the most relevant LiDAR features, combination of both datasets improved accuracy up to 20%; (3) generation of canopy height model derived from LiDAR point cloud is an effective method to delineate individual tree crowns in a semi-automatic approach

    Towards Automated Analysis of Urban Infrastructure after Natural Disasters using Remote Sensing

    Get PDF
    Natural disasters, such as earthquakes and hurricanes, are an unpreventable component of the complex and changing environment we live in. Continued research and advancement in disaster mitigation through prediction of and preparation for impacts have undoubtedly saved many lives and prevented significant amounts of damage, but it is inevitable that some events will cause destruction and loss of life due to their sheer magnitude and proximity to built-up areas. Consequently, development of effective and efficient disaster response methodologies is a research topic of great interest. A successful emergency response is dependent on a comprehensive understanding of the scenario at hand. It is crucial to assess the state of the infrastructure and transportation network, so that resources can be allocated efficiently. Obstructions to the roadways are one of the biggest inhibitors to effective emergency response. To this end, airborne and satellite remote sensing platforms have been used extensively to collect overhead imagery and other types of data in the event of a natural disaster. The ability of these platforms to rapidly probe large areas is ideal in a situation where a timely response could result in saving lives. Typically, imagery is delivered to emergency management officials who then visually inspect it to determine where roads are obstructed and buildings have collapsed. Manual interpretation of imagery is a slow process and is limited by the quality of the imagery and what the human eye can perceive. In order to overcome the time and resource limitations of manual interpretation, this dissertation inves- tigated the feasibility of performing fully automated post-disaster analysis of roadways and buildings using airborne remote sensing data. First, a novel algorithm for detecting roadway debris piles from airborne light detection and ranging (lidar) point clouds and estimating their volumes is presented. Next, a method for detecting roadway flooding in aerial imagery and estimating the depth of the water using digital elevation models (DEMs) is introduced. Finally, a technique for assessing building damage from airborne lidar point clouds is presented. All three methods are demonstrated using remotely sensed data that were collected in the wake of recent natural disasters. The research presented in this dissertation builds a case for the use of automatic, algorithmic analysis of road networks and buildings after a disaster. By reducing the latency between the disaster and the delivery of damage maps needed to make executive decisions about resource allocation and performing search and rescue missions, significant loss reductions could be achieved

    Urban tree classification using discrete-return LiDAR and an object-level local binary pattern algorithm

    Full text link
    © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. Urban trees have the potential to mitigate some of the harm brought about by rapid urbanization and population growth, as well as serious environmental degradation (e.g. soil erosion, carbon pollution and species extirpation), in cities. This paper presents a novel urban tree extraction modelling approach that uses discrete laser scanning point clouds and object-based textural analysis to (1) develop a model characterised by four sub-models, including (a) height-based split segmentation, (b) feature extraction, (c) texture analysis and (d) classification, and (2) apply this model to classify urban trees. The canopy height model is integrated with the object-level local binary pattern algorithm (LBP) to achieve high classification accuracy. The results of each sub-model reveal that the classification of urban trees based on the height at 47.14 (high) and 2.12 m (low), respectively, while based on crown widths were highest and lowest at 22.5 and 2.55 m, respectively. Results also indicate that the proposed algorithm of urban tree modelling is effective for practical use
    corecore