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Mapping urban tree species in a tropical environment 

using airborne multispectral and LiDAR data 

 

Abstract 

Accurate and up-to-date urban tree inventory is an essential resource for the 

development of strategies towards sustainable urban planning, as well as for 

effective management and preservation of biodiversity. Trees contribute to 

thermal comfort within urban centers by lessening heat island effect and have a 

direct impact in the reduction of air pollution. However, mapping individual trees 

species normally involves time-consuming field work over large areas or image 

interpretation performed by specialists. The integration of airborne LiDAR data 

with high-spatial resolution and multispectral aerial image is an alternative and 

effective approach to differentiate tree species at the individual crown level. This 

thesis aims to investigate the potential of such remotely sensed data to 

discriminate 5 common urban tree species using traditional Machine Learning 

classifiers (Random Forest, Support Vector Machine, and k-Nearest Neighbors) 

in the tropical environment of Salvador, Brazil. Vegetation indices and texture 

information were extracted from multispectral imagery, and LiDAR-derived 

variables for tree crowns, were tested separately and combined to perform tree 

species classification applying three different classifiers. Random Forest 

outperformed the other two classifiers, reaching overall accuracy of 82.5% when 

using combined multispectral and LiDAR data. The results indicate that (1) given 

the similarity in spectral signature, multispectral data alone is not sufficient to 

distinguish tropical tree species (only k-NN classifier could detect all species); (2) 

height values and intensity of crown returns points were the most relevant LiDAR 

features, combination of both datasets improved accuracy up to 20%; (3) 

generation of canopy height model derived from LiDAR point cloud is an effective 

method to delineate individual tree crowns in a semi-automatic approach. 
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1 Introduction 

1.1 Background 

The Atlantic Rainforest (ARF) is one of the most important biomes in America, 

hosting a huge diversity of tree species and animal species, yet it is still also the 

most endangered tropical biomes in the world. In Brazil, due to the impact of 

anthropogenic activities impact, urbanization and industrial activities, the ARF 

covers only 22% of its original area (1,3 million km²) in different stages of 

conservation, where only 7% of the reminiscent area is in good state of 

conservation and has over 100 hectares of area [1]. ARF fragments are also 

concentrated within urban centers, normally in conservation units protected by 

the Decree 11.428/2006, however the damages caused by human activities 

cannot be completed reverted, the preservation of urban forests and adequate 

management of urban trees (or trees outside of the forest, TOF) is extremely 

important for the biome’s conservation and partial recovery. In this context, the 

development of trustable and robust mapping techniques aiming the creation of 

a detailed urban tree species inventory is an essential step to provide information 

in several application, such as biodiversity monitoring, proposal of public incentive 

policies of planting and preservation of native species trees and evaluation of 

urban sprawl effects on trees and green areas.  

Traditionally, information collection regarding trees in urban areas and its 

respective species is related to tasks that include extensive field sampling, 

interpretation aerial or satellite imagery for manual classification of species by 

specialists, for example [2]. These methods, in general, are time-consuming, 

costly and, most of the times, not efficient to provide up-to-date information about 

the whole city tree coverage [3]. To overcome these limitation and issues, the 

adoption of remote sensing products such as aerial or satellite image provides 

highly detailed information to identify and to extract spectral information at the 

individual tree level. Additionally, from airborne LiDAR data it is possible to extract 

accurate measurements regarding tree height and other structural features useful 
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to differentiate tree species, above-ground biomass, and stand density for 

instance, based either on range or intensity of laser pulse returns [3]–[5]. Both 

sources of data are usually less expensive than a field sampling campaign.  

The association of remotely-sensed data with machine learning classifiers stand 

as an efficient and affordable alternative, however most of the studies available 

employing this approach are focused in tree species classification of temperate 

and boreal forests [6], [7], and the majority of studies performed in tropical 

location are related to tree species classification in forested areas and/or to a 

limited number of species [8]–[12] instead of aiming to detect and classify tree 

species in urban centers. The lack of studies in tropical forest is normally 

associated to the challenges regarding spectral response similarity among 

species, difficulty to delineate tree crowns due to overlapping between canopies 

and the presence of predominant species leading to imbalanced training sample 

[9].  

 

1.2 Problem Statement and Motivation 

In urban centers, trees have vital importance in efforts to reduce the impacts of 

air pollution since they produce oxygen and, as consequence, improve air quality 

[13]. It also helps in the reduction of discomfort caused by urban heat islands, 

acting as temperature regulator, and reduces impacts of stormwater runoff [14]. 

Therefore, mapping individual trees and cataloguing their respective species is 

an urgent necessity to monitor the effects on urbanization in the city’s natural 

landscape and to demand actions from authorities and population towards urban 

tree and biodiversity preservation. 

Salvador, a city located in the northeast coast of Brazil, is considered as the ARF 

capital since the city is completely inserted in this biome and its associated 

ecosystems (restinga and mangrove). Nonetheless, in the past 20 years the city 

has been transformed with the intervention of infrastructure advances on 

transportation means, with the construction of two metro lines and more recently 
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the ongoing construction of bus rapid transit brought public attention to the 

notable impact of such interventions for the ARF reminiscent in Salvador. Real 

estate speculation is another pressure agent for deforestation in Salvador, 

causing reduction of 40% in Pituaçu Metropolitan Park’ original area, due to the 

construction of both irregular housing and luxurious condos [15]. 

Góes and Oliveira (2011) analyzed 7 technical reports and studies regarding tree 

species inventory in Salvador, mainly in parkways in the city. From the studies on 

parkways, the authors found information of 2.469 trees from 82 different species, 

the analysis pointed to the predominance of exotic species (53,3%) and low 

representativeness of native regional species. Notwithstanding that these studies 

present a great overview regarding the city’s biodiversity, none of them has exact 

and precise location of the inventoried trees which makes difficult to monitor their 

preservation and they are restrict to only few locations. 

Given these circumstances and the fact that between 2016 and 2017 the City 

Hall of Salvador acquired airborne multispectral imagery (visible and near 

infrared) with high spatial resolution, and also high-density LiDAR data, the 

potential of these datasets associated with robust machine learning classifiers 

motivate the conduction of research to contribute to the mapping and 

conservation of Atlantic Rain Forest biome, as well as to understand the 

particularities of performing tree species classification in a tropical urban 

environment.  

1.3 Aims and Research Questions 

This study aims to assess the benefits of aerial imagery and airborne LiDAR data 

to perform tree species differentiation in urban environment by answering the 

outlined research questions: 

1. What is the impact of different dataset combination, in each machine 

learning classifier performance, for tree species classification in a tropical 

urban environment? 
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2. Which are the most significant LiDAR-derived variables to distinguish the 

tropical tree species in this study area? 

3. How effective it is to use LiDAR-derived Canopy Height Model to perform 

semi-automatic individual tree crown extraction? 

 

1.4 Objectives 

1) Evaluate and compare the performance of Random Forest, Support Vector 

Machine and k-Nearest Neighbor classifiers with features extracted from 

multispectral orthoimage and/or airborne LiDAR data. 

2) Assess the model’s ability to differentiate among tree species using different 

sets of variables (only multispectral features, only LiDAR features and 

combined features). 

3) Process point cloud to generate LiDAR-derived Canopy Height Model, then 

extract individual tree crowns accurately. 
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2 Literature Review 

2.1 Remote Sensing and Tree Species Classification 

In their systematic literature review, Fassnacht et al  (2016) in [6] selected and 

evaluated 101 peer-reviewed studies related to tree species classification 

published between January 1980 and December 2014. According to their 

analysis, hyperspectral sensors are the most used ones for tree species 

classification, followed by multispectral sensors that can range from moderate, 

high and super high spatial resolution (such as WorldView and IKNOS satellites 

or airborne sensors), the combination of data coming from both sensors type was 

also relevant in 28 of the evaluated studies. Besides, 99% of the studies have 

been conducted with the association of an active sensor (most of the studies 

using LiDAR) to the data coming from optical sensors. 

Hamamura (2020) in [7] analyzed 33 papers and articles published between 

2003 and 2018, stressing that the spatial distribution of such studies in the field 

of tree species classification is highly concentrated in places with temperate or 

boreal ecosystems, regions that present a homogeneous vegetation structure 

mainly aggregated in big urban parks. Unlike cities located in a tropical climate, 

where urban vegetation has a broader diversity of species and the spatial 

distribution is sparser. 

More recently, sensors embedded in Unmanned Aerial Vehicles (UAV) have 

become one of the main sources of data in the forestry management field, mostly 

due to the low operational cost, the capacity to plan and obtain multitemporal 

information according to weather conditions, the possibility to use a diversity of 

sensors and finer spatial resolution information [9]. According to Guimarães et al. 

in [16] the use of UAV to distinguish tree species is performed using mostly 

multispectral sensors, with few studies adding color infrared (CIR sensors). To 

help the identification of tree species, the author usually calculates spectral 

indices (for instance, NDVI, NGDRI, VARI, etc) and UAV-derived point clouds to 

extract structural information. Guimarães et al. also highlight the predominant use 
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of two machine learning methods: Support Vector Machine and Random Forest. 

The first is more suitable for cases with a low number of samples and high variety 

of classes, while the latter is better for applications with high data dimensionality. 

2.2 Object Based Image Analysis (OBIA) for Tree Species 

Classification 

Due to the improvement in spatial resolution of remotely sensed data, the 

conventional classification method based on pixel-level became inadequate due 

to the reduced size of this unit when compared with the target under analysis, 

consequently, the spectral information contained in a single pixel could not 

represent properly the features of an individual target (e.g. building). In this 

scenario, object-based image analysis (OBIA) appears as an alternative to 

overcome the limitations found in the former method [17].  

In OBIA, the basic unit of analysis is no longer the pixel but the ‘image object’, 

which corresponds to pixels grouped to form a shape that represents real-world 

objects. The method is divided into two main processes: (a)image segmentation, 

and (b) object extraction and classification [18]. Segmentation is a method to 

divide an image into distinguishable and homogenous regions that share similar 

properties such as color, shape, and texture. When compared to single pixels, 

the resulting objects of segmentation accumulate more spectral information such 

as mean values for each band, variance, minimum and maximum values, and, 

more importantly, it brings spatial information for each feature [19]. The success 

of object extraction and classification step is dependent on the performance and 

results of segmentation. The segmented objects will be used as input for training 

and testing the classification model, therefore the correct detection of features of 

interest plays an important role since the spectral information collected from 

those must be representative and consistent about the target. 

For tree species classification in urban area, the method used by many authors 

is called Individual Tree Crown (ITC) delineation, which is an automatic procedure 

to identify the location, tree crown size and shape of each tree in a remote sensed 
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image. This approach is commonly applied in very high spatial resolution (VHSR) 

image associated with LiDAR data and allows to obtain estimation of variables 

such as height, biomass, diameter of tree crown, for instance. However, this 

approach fails to detect very small trees or those that are close to trees with larger 

canopy [20]. Aiming to enhance the accuracy of tree crowns segmentation, some 

authors apply masks to exclude non-tree object, such as thematic layer with 

buildings [21] or filters based on spectral index like NDVI (e.g. values above 0.2) 

and height threshold based on average height for tree species under study [3].  

2.3 Light Detection And Ranging (LiDAR)  

Light Detection and Ranging, also known as laser altimetry, is a cutting-edge 

remote sensing technology based on an active sensor that used light in the form 

of a laser to measure distances between sensor and target objects. LiDAR 

systems are composed by laser scanner device, onboard Global Positioning 

System (GPS) receiver and Inertial Navigation System (INS) which allows the 

system to acquire three-dimensional coordinates of targeted objects [22].  

LiDAR carrying platforms can be divided into three main segments such as 

airborne, terrestrial, and space-borne, allowing this technology to fulfill the needs 

of different area coverage demands and levels of resolutions according to the 

subject of analysis. LiDAR observations are presented in two data types, point 

cloud and waveform. The first one is widely applied in forestry related studies and 

provide structural parameters such as tree height and canopy volume calculation. 

Whereas the waveform data brings distance information and also vertical 

distribution of targets and features about structure and physical properties [17]. 

Airborne LiDAR is the system most frequently used to collect data and to extract 

vegetation parameters, for instance, tree height, above-ground biomass, volume 

and Leaf Area Index at the stand level. Due to technology development, the 

LiDAR point cloud is becoming denser and enabling to recognize trees at the 

individual level, an essential asset for tree classification in urban environments 
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where the distribution is sparse and there is high spatial heterogeneity [3], [17], 

[21]. 

Individual tree crown (ITC) delineation using LiDAR datasets is usually conducted 

with the application of a Canopy Height Model (CHM), a raster product derived 

from the point cloud. A CHM is a digital elevation model which represents the 

canopy surface, it is obtained through the subtraction of a digital terrain model 

(DTM) from the digital surface model (DSM). Segmentation algorithms are 

applied in the CHM to extract the tree crowns, being marker-controlled watershed 

and region growing segmentation the most popular approaches, however the 

success of segmentation also relies in the pixel dimension of the CHM and its 

optimal size has to consider the average crown size and tree height (correlated 

variables about structural features of trees) [3], [23], [24]. 

2.4 Machine Learning 

Machine Learning (ML) is under the domain of Artificial Intelligence which imitates 

the way a human brain process information and gain knowledge. ML aims to 

detect and take advantage of hidden patterns in the input training data, then 

applying these patterns to analyze unknown data. Due to its ability to treat data 

of high dimensionality, to model complex class signatures, and the fact it does 

not make assumptions about the data distribution (non-parametric algorithms), 

ML is very efficient and widely used in classification of remote sensing products 

[25]–[27]. 

2.4.1 General Machine Learning Workflow  

The training of a machine learning algorithm follows a basic workflow (Figure 2.1) 

composed by the following main steps: data collection and preprocessing, 

dataset preparation, model building and model evaluation. 
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Figure 2.1 Machine Learning Workflow. 

The quality of a good model based on machine learning algorithm is highly 

dependent on the quality of the dataset used during the model training. Since 

data are collected for plenty different reasons, it is necessary to identify and 

extract the information that will meet a project’s need; therefore, data 

preprocessing is a key part in the machine learning process, often representing 

the most timing-consuming task during a project [28]. Data preprocessing is 

necessary since raw data usually comes from unprocessed, incomplete and noisy 

databases, containing problems such as redundant or obsolete fields, missing 

values, unsuitable data formats and inconsistent values [29]. 

Once the data is preprocessed and ready to use, it is divided into 60/20/20% for 

training dataset, testing data and validation dataset or 70/30% in case validation 

is not necessary. The training dataset is used as input to a learning system and 

should be able to provide consistent information and parameters from which the 

model will be created. Testing dataset contains the information used to assess 

the performance of chosen model. Validation dataset is only required when the 

machine learning model and its architecture are not pre-selected [27], [28]. 

During the “evaluation” step the model’s performance will be assessed in terms 

of its predictive efficacy and to compute the cost function of training and validation 

datasets, which is important to detect problems due to high bias or high variance 

in the dataset. The first problem causes under-fitting in the model, i.e. the model 

is not able to generalize the relation between training features and outcomes. 
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While high variance in dataset causes the opposite, occurrence of over-fitting, 

when the model understands the detail and noise in training data too well, in such 

way that it impacts negatively the model’s ability to generalize information and 

predict new data [25], [27], [28]. 

2.4.2 Random Forests (RF) 

Random forests classifier is an ensemble classifier that combines a multitude of 

classification and regression trees (CARTs), performing a prediction through their 

combined results [30], [31]. Each tree is created using the combination of 

Bagging algorithm and Random Subspace Method. The first aims to generate 

subsets of training samples through replacement, which is applied to reduce 

variance. The latter reduces the bias between estimators by increasing the 

diversity of features used to grow each tree [28], [30], [32]. 

Bagging (acronym for Bootstrap AGGregatING) is the first step in the 

classification process, it allows the creation of multiple subsets derived from the 

training sample, this approach may select the same element more than once and 

include it in different subsets dataset while other elements may not be selected 

at all. The training process applies in-bag samples (about two thirds of the training 

sample) to create the trees, followed by an internal cross-validation step using 

out-of-the bag samples (the last one third from training sample) to estimate the 

random forest model performance [31]. 

The number of trees (Ntree) is defined by the user, each tree is developed from 

the bootstrapped subset and it is produced independently without any pruning 

and node splitting is based on user-defined number of features (Mtry) selected at 

random [30], [31], [33]. Finally, the prediction results from each tree are counted 

as a “vote” and the final classification is decided using the majority vote of the 

trees in the forest. Figure 2.2 illustrates the scheme of random forests classifier.  
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Figure 2.2 Random Forest Classifier Scheme. Source: Wang et al, 2019 [33]. 

2.4.2.1 RF classification applied for remote sensing 

RF is among the top performing and most used classification algorithm for 

machine learning due to its flexibility on parameter optimization (only two user-

defined variables), low computational complexity when compared to other 

algorithms, accurate results and the maturity proved by the numerous studies 

that have been applying it for different purposes.  

RF has been utilized in different context of remote sensing-based analysis, such 

as wetland complex classification in the Avalon Peninsula (Canada) using 

synthetic aperture radar data [34], to evaluate annual deforestation dynamics in 

two Brazilian states between 1984 and 2014 using Landsat archive data [35] and 

land cover classification of a large area (30 x 30 km²) in Vietnam using Sentinel-

2 imagery [36], these are few examples of the variety of studies and datasets 

where RF have been applied and showing accurate results. 
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In remote sensing studies, RF main advantages are related to (i) its ability to 

handle large data bases, (ii) provision of estimates of the most relevant variables 

in classification, (iii) it is relatively robust to outliers and noise, (iv) the algorithm 

generates internal unbiased estimation of the generalization error (out-of-bag 

error) [37]. However, the main drawbacks to be considered are the algorithm’s 

sensitivity to imbalanced training sample, tending to favor the most representative 

classes, and to spatial autocorrelated training classes. 

2.4.3 Support Vector Machines (SVMs) 

SVMs are non-parametric statistical approaches applied to regression and 

supervised classification problems, therefore no assumption is made on the 

underlying data distribution. The method’s principle is based on the classification 

of a set of data samples, the algorithm’s goal is to determine a hyperplane that 

separates the dataset into a discrete predefined number of classes in a 

compatible way with the given training examples distribution, as shown in Figure 

2.3 [38], [39].  

 

Figure 2.3 Example of linear SVM. Source: Mountrakis et al, 2011 [39]. 
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The decision boundary, obtained during the training step, is known as optimal 

separating hyperplane and it is used to minimize misclassification. Its learning 

method consists in an iterative process aiming to find an optimal decision 

boundary able to detect training patterns and then apply it to test data under the 

same configuration. SVMs classifiers are binary, working to identify a single 

boundary between two classes, when more classes are involved the classifier is 

repeatedly applied to each possible combination of classes [25], [38], [39]. 

Since SVMs were initially developed to identify linear class boundary, and data 

under classification can present high dimensionality, Kernel functions are used to 

project the feature space to a higher dimension, assuming that a linear boundary 

potentially exist in this higher dimensional space [25], [40]. 

2.4.3.1 SVMs classification applied for remote sensing 

SVMs have been successfully used in remote sensing images classification 

mainly due to its ability to produce good results even with small and/or imbalanced 

training samples, low sensitivity to the curse of dimensionality and, mainly by the 

fact that remote sensing data have unknown distribution and SVMs do not make 

assumptions on data distribution such as maximum likelihood classification does. 

In remote sensing, SVMs have been addressed to classification tasks using data 

from different sensors, for instance Vohra (2020) used airborne hyperspectral 

and VIS sensors to compare the effectiveness of SVM and Artificial Neural 

Networks (ANN) classifiers in multilevel fusion for urban land classification, where 

SVM outperformed the ANN when using combination of spatial and spectral 

features [41]. Han (2016) applied UAV data for classification of land cover and 

irrigated area, SVM also showed better results (overall accuracy of 82,2%) than 

other classifiers such as decision tree and K-nearest nearest neighbor. Syifa et al 

(2019) applied SVM classification to detect flood distribution in Brazil using 

Landsat-8 and Sentinel-2 imagery [42].  

Being a Kernel-based approach, the selection of correct kernel function and 

definition of parameter value (denoted by C) is a challenge in remotely sensed 
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imagery classification using SVMs. The parameter C controls the relationship 

between margin maximization and minimization of training error, this parameter 

tells the algorithm how much the user is concerned about misclassified points and 

has direct consequences on model overfitting. 

2.4.4 k-Nearest Neighbors (k-NN) 

k-NN is also a non-parametric classification and regression problems, it does not 

require a normal data distribution, it is a supervised machine learning with low 

training computational cost, and has no limitations in the number of independent 

variables and can be applied to generate estimates of both continuous and 

categorical variables [36], [43], [44]. The k-NN algorithm works under the 

assumption defined in Tobler’s First Law of Geography, which states that near 

things are more similar than distant things, therefore the principle behind the 

algorithm is to search and find a predefined number of training samples closest 

in distance to the unlabeled data and assign a class from these [45], [46]. 

In a classification problem, an instance has its label assigned by a plurality of 

votes based on its neighbors, the object is classified as the most common class 

among its k nearest neighbors, for instance, if k=1 then the object is classified 

according to its very closest neighbor. There is no particular rule to determinate 

the value of k, it really depends on the type of data, and some authors claim that 

large values can be helpful to reduce the effects of noise in classification, however 

it reduce the distinction of boundaries between classes [47]. 

2.4.4.1 k-NN classification applied for remote sensing 

The application of k-NN classifier for remote sensing problem is mostly motivated 

because it is easy-to-implement algorithm and it has been broadly in forest 

mapping studies, land cover and land use classification, as well as many other 

remote sensing related studies. 

Tianwei et al (2020) [48] used k-NN to develop a method to identify seed maize 

production fields with the use time-series of Sentinel-2 Images, where this 

classifier achieved overall accuracy between 72,5% to 89,3% for different 
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seasons, outperforming classifiers as SVM and RF sometimes. Cao et al (2018) 

proposed an object-based approach using k-NN to classify mangrove species in 

China, with the support of hyperspectral UAV imagery and digital surfaces models 

in [49], where the classifier’s overall accuracy reached 81,79%. 

Even with good results showed in the above-mentioned studies, k-NN is usually 

outperformed by other non-parametric machine learning algorithms, the main 

reasons are the classifier’s sensitivity to noise data and missing data, it does not 

work well with large dataset and performs poorly with high dimensionality. 

2.5 Related Work 

Some studies have been conducted to analyze the benefits of multi-seasonal data 

in tree species classification using WorldView-2 (WV-2) and/or WorldView-3 (WV-

3) data, due to their very high spatial resolution and the availability of Shortwave 

Infrared bands from WV-3 which provides more detailed information of vegetation 

such as water content, cellulose and lignin. Li et al. [50] in their study used both 

satellites data to classify five tree species in two urban areas of Beijing (China), 

the results showed a higher overall accuracy (92,4% with SVM) when using bi-

temporal, with differences up to 16,1% for SVM and 20% for RF on the overall 

accuracy for the same study area when compared to each image separately. In 

contrast, Ferreira et al. [51] study showed a depreciation in the accuracy when 

using WorldView-3 imagery from two different periods. However, this study 

analyzed the classification of 8 trees species in a tropical forest in Campinas 

(Brazil) and achieved higher overall accuracy of only 70 + 8% also with SVM 

classifier, but in this case adding texture information from panchromatic band to 

imagery from wet season. Such differences in the results need to consider 

variables like the number of species to be classified (higher diversity, more 

complexity to differentiate them) and the surroundings of study areas is also an 

important factor. In urban areas trees are usually distributed individually or in 

small and scattered clusters, which affects the spectral characteristics of tree 

crowns with the influence of non-tree objects (e.g. asphalt, buildings); while in 

forests and parks, trees are densely grouped and the background is mostly 
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homogenous, which could make tree differentiation more difficult and less 

accurate. 

Airborne hyperspectral sensors are preferred to perform analysis at the individual 

tree level due to its finer spatial resolution. In that case, airborne LiDAR data is 

usually associated to aggregate structural information about trees (e.g. height, 

crown shape, crown area, etc). Liu et al. [3] combined data from these sensors 

to classify 15 urban tree species in Surrey, British Columbia (Canada), even with 

high spatial resolution imagery of 1-m and dense LiDAR point cloud with 25 

points/m² the higher accuracy achieved was 70 + 3,1% using RF classifier. 

Authors attribute this result to the temporal distance between datasets and, as 

consequence, variability on tree conditions. Zhang et al. [21] combined these 

datasets to apply an object-based classification for 7 tree species in Seattle (USA) 

achieving 87% and 88,9% accuracies for RF and Multi Class Classifier, 

respectively. Authors reported that the coarse hyperspectral sensor’ spatial 

resolution of 3-m introduced errors into the classification. Both studies report the 

importance of spatial resolution compatibility between LiDAR-derived CHM and 

hyperspectral data (usually > 1m), due to its influence on the variable’s extraction. 

Another common factor is the need to reduce dimensionality of hyperspectral 

data using techniques such as Principal Component Analysis (PCA) or Minimum 

Noise Fraction (MNF), ensuring the use of essential information from original 

dataset while discarding redundant and irrelevant information. 

 

3 Methodology 

This section describes and locates the area used to develop this research (3.1), 

lists and provides details about all employed datasets (3.2), and explains the 

methods implemented to achieve research’s objectives (3.3). 
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3.1 Study Area 

Salvador is the capital of Bahia, state in the northeastern coast of Brazil, located 

in the bounding box defined by the following coordinates: 13°00’58” S, 38°51’53” 

W (lower left corner) and 12°44’01” S, 38°18’15” W (upper right corner). Its 

administrative area, which includes continental territory and two islands, covers 

approximately 415,00 km². The area considered in this study has 6,28 km² 

(Figure 3.1). 

 

Figure 3.1 Study Area. 

This specific area was chosen according to the concentration of trees registered 

in the municipality’s tree inventory, as well as species diversity, its topography 

that has elevation ranging from -11,70m to 149,67m, and its diversity in urban 

occupation. 
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3.2 Data Description 

3.2.1 Remote Sensing Data 

This research is performed using remotely sensed data from the project 

“Mapeamento Cartográfico de Salvador”, conducted by Salvador’s city hall 

aiming to update the municipal cartographic database. Data collection was done 

between August 2016 and February 2017, including acquisition of multispectral 

(visible and near infrared) imagery and LiDAR data. 

3.2.1.1 Multispectral Imagery 

Aerial images were collected using Vexcel Ultracam-Lp multispectral sensor on-

board of airplane, with 70% of overlapping area in both flight directions and 

average flight altitude of 1200m. From this product, an orthomosaic was 

generated with Red, Green, Blue and Near Infrared bands, 16 bits image and 

spatial resolution of 10cm. The data’s reference system is “Sistema de Referência 

Geocêntrico para as Américas” (SIRGAS 2000) and it is projected in Universal 

Transverse Mercator (UTM) Zone 24S coordinate system. 

3.2.1.2 LiDAR Data 

The LiDAR dataset were acquired in the same period as multispectral imagery 

with maximum temporal distance of 48 hours between imagery and LiDAR data. 

The flight was done using airborne Laser Scanner RIEGL VQ-480 (Table 3.1) 

sensor on-board of a helicopter flying about 1000m above ground.  

For the study area in analysis, the mean point density was 9 points/m² for all 

returns, nominal pulse spacing of 33cm and 70% area overlapping between flight 

lines. The final pre-processed point cloud was downloaded in LAS Format, 

version 1.2. 
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Acquisition Period 19/AUG/2016 - 13/FEB/2017 

Laser scanner model Riegl VQ480 

Laser pulse repetition rate 300 kHz 

Measurement rate Up to 150 000 s-1 

Laser wavelength Near infrared 

Beam divergence 0.3 mrad 

Laser beam footprint 150mm at 500m 

Field of view 60° (+ 30°) 

Scanning method Rotating multi-facet mirror 

Table 3.1 RIEGL VQ-480 Specifications 

3.2.2 Tree Inventory 

The data base with tree location and species was provided by the Secretaria 

Municipal de Manutenção (SEMAN), the municipality’s bureau responsible for 

maintenance services in the city such as pruning trees and removing those who 

are affected by diseases or causing problems to sidewalks or to overhead 

electrical wiring, for instance. This data base is not specially designed for tree 

inventory, but to keep track of tree maintenance using geographical coordinates 

and listing the tree species when possible.  

The data consists in a spreadsheet containing the geographical coordinates of 

trees in WGS84, scientific species name, popular species name, date of 

acquisition for each entry and other information regarding its localization 

(neighborhood, street name and point of reference). The extraction of information 

from database was done in August 25th, 2020. 

3.3 Methods 

The proposed methodology (Figure 3.2) consists in an evaluation of three 

different classifiers performance with three different dataset combinations to 

understand which of each will provide better results for tree species classification. 

Initially, the reference dataset containing the tree inventory data is examined to 

find possible inconsistencies and errors in data entry, followed by the 

determination of a study area according to sample distribution. After that, the 

individual tree crowns (ITC) are identified and manually delineated.  
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Still in the pre-processing stage, multispectral and LiDAR datasets are employed 

to extract spectral information, vegetation indices and texture information, and to 

generate a LiDAR-derived CHM as well as to extract metrics related to height and 

intensity. From the CHM, a semi-automatic extraction of tree crowns is done with 

watershed segmentation process. Both multispectral and LiDAR variables are 

assigned to manually delineated ITC and to the treetops found in the CHM. 

The supervised learning step consists in preparing the entire dataset collected, 

dividing into three types: only multispectral variables, only LiDAR variables and 

both sources of variables combined. These data are used to train the models (RF, 

SVM and k-NN), which undergo through model tuning to find optimal parameters. 

To evaluate and compare each model according to the dataset configuration, 

accuracy metrics such as overall accuracy, user’s accuracy, producer’s 

accuracy, and F1-score are applied. Confusion matrices are also used to 

enhance the results’ comprehension through a visual assessment of how the 

classification corresponded or not the ground-truth data. The best model is then 

applied to production data (tree crowns segmented from the CHM) to create a 

final map. 
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Figure 3.2 Methodology workflow. 
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3.3.1 Pre-processing 

3.3.1.1 Reference dataset (Tree Inventory) 

Initially, the dataset went through a thorough analysis where each relevant field 

was analyzed to detect potential inconsistencies. Firstly, the field “Científico”, 

which holds the scientific Latin name of tree species, was reviewed since some 

of the names presented typos or had small differences in the writing, e.g multiple 

entries with Pachira Aquatica Aubl or Pachira Aquatica AUBL. concerning the 

same species. After that, the field “Cadastro”, which shows the date of acquisition 

of a particular entry, presented incoherent values with entries registered between 

2021 and 2024 while the data were extracted before these years. However, using 

or discarding such entries was decided through individual inspection checked 

using orthoimage as reference. The last analysis consisted in the frequency of 

each species to select the ones with a higher number of individuals, as shown in 

Figure 3.3. 

 

Figure 3.3 Occurrence of main tree species from tree inventory. 

Once the tree inventory was evaluated and its consistencies were corrected, the 

corresponding tree crown of each entry was manually delineated using the 10cm-

resolution orthoimage. During this step, some entries were discarded when found 

to be duplicated (according to date and visual inspection), or when tree crowns 
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of different species had overlapping area becoming impossible to distinguish 

which one belonged to a specific class. The manually delineated ITC (specified in 

Table 3.2) correspond to the ground-truth data from which variables will be 

extracted to feed train and test samplings for classification models. 

Code Species Name Nº of ITC 

50 Delonix Regia 15 

70 Ficus Benjamina 21 

90 Licania Tomentosa 33 

130 Pachira Aquatica AUBL. 51 

150 Terminalia Catappa L. 146 

Table 3.2 Manually delineated ITC 

3.3.1.2 Multispectral Imagery 

This pre-processing step comprises the extraction of spectral information to 

support tree species differentiation during model development. Thus, reflectance 

of each band (red, green, blue and near infrared) was extracted, as well as the 

computation of two vegetation indices summarized in Table 3.3 

Index Band Combination Reference 

Normalized difference 

vegetation index (NDVI) 

(NIR – Red) / (NIR + Red) [52] 

Green normalized difference 

vegetation index (gNDVI) 

(NIR – Green) / (NIR + Green) [53] 

Table 3.3 Spectral indices calculated from multispectral imagery. 

Given the availability of such high spatial resolution data, a total of 6 texture 

features were calculated using Structural Feature Set (SFS) application from 

Orfeo Toolbox (OTB): length, width, pixel shape index (PSI), weighted mean, 

ratio, and standard deviation. This statistical measures were proposed by Huang 

et al (2007) [54] and are based on direction lines, which can be understood as a 

series of predetermined number of equally spaced lines through the central pixel. 

The extension of extension line is based on the neighboring gray level similarity 

and the lines radiating from the central pixel in different direction. The spectral 

difference measured between a pixel and its central pixel defines whether this 

pixel lies in the homogeneous area [54], [55]. In this research, default parameters 

from OTB were adopted to define spectral and spatial thresholds, set to 50 and 

100, respectively. 
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3.3.1.3 LiDAR data 

The LiDAR point cloud was first processed using software LAS Tools, initially, the 

original tiles were tiled into smaller tiles, size of 200m and buffer of 50m, to reduce 

the amount of data and be able to use the free version of LAS Tools. Since the 

original file had very basic classification, including only three classes (unclassified, 

ground, and water), the first step was to apply LAS Ground to identify ground and 

non-ground points, followed by LAS Classify to perform classification in the points 

above ground level and determine if they are vegetation or buildings. Afterward, 

visual inspection throughout the study area helped identification of misclassified 

points that could be fixed manually using LAS View and LAS Layer modules. 

Subsequently, the elevation value of each point in the point cloud was normalized 

and transformed into height values using ground points as reference, this step 

was ran using LAS Height module. 

To finalize point cloud classification, LAS Tiles was applied again in order to 

remove duplicated points created in the tiling and buffering procedure, followed 

by LAS Height process to remove points with heigh values above 30m and points 

belonging to class 6 (buildings) and class 9 (water), so that only relevant points 

would be used in the Canopy Height Model generation and LiDAR-derived 

variable extraction. 

Once the point cloud was properly classified and reviewed, the next step 

consisted in the generation of a pit-free CHM, following the workflow proposed by 

Khosravipour et al (2014) [56]. This process was also carried out using LAS Tools 

packages and the final merging of the tiled image used QGIS’ built-in GDAL 

functions. The final CHM has a spatial resolution of 0.33m, following the nominal 

pulse spacing distance to ensure accuracy compatible with the LiDAR sampling 

distance. 

With the resulting processed point cloud, height, and intensity metrics, as well as 

canopy cover metrics, were assigned to each tree crown manually delineated. A 

total of 19 LiDAR-related variables were obtained and are defined and 

summarized in Table 3.4. 
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Variable ID Definition 

Height 

Metrics 

min Minimum height value of crown return points 

max Maximum height value of crown return points 

avg Average height value of crown return points 

std Standard Deviation of height values of crown return points 

p25 25th height percentile of crown return points 

p50 50th height percentile of crown return points 

p75 75th height percentile of crown return points 

b30 Percentage of points below 30% of tree height (calculated 

by height cutoff, known as breast height = 2m, and the 

maximum height) 

b50 Percentage of points below 50% of tree height (calculated 

by height cutoff, known as breast height = 2m, and the 

maximum height) 

b80 Percentage of points below 80% of tree height (calculated 

by height cutoff, known as breast height = 2m, and the 

maximum height) 

Intensity 

Metrics 

int_min Minimum value of crown return intensity 

int_max Maximum value of crown return intensity 

int_avg Average value of crown return intensity 

int_std Standard Deviation of crown return intensity 

int_p25 25th percentile of crown return intensity 

int_p50 50th percentile of crown return intensity 

int_p75 75th percentile of crown return intensity 

Canopy 

Cover 

Metrics 

cov Number of first returns above the cover cutoff divided by 

the number of all first returns and output as a percentage 

dns Number of all points above the cover cutoff divided by the 

number of all returns 

Table 3.4 Structural features derived from Airborne Laser Scanner data. 

3.3.2 Crown Segmentation 

Individual tree crown detection can be a challenging and costly operation in urban 

environments, mainly due to the existence of infrastructure elements and builds 

which can interfere in the performance of algorithms based on height ranges 

estimations to extract tree heights and, consequently, to delineate its crown. That 

is the reason why, prior to crown segmentation, points classified as buildings and 

water, and with elevation higher than 30 meters were removed from the point 

cloud used to generate the CHM. 

Subsequently, the resulting CHM raster was submitted to morphological 

operations to remove noises the image and to smooth object outlines. Dilation 
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and erosion are basic image operations widely known in image processing, the 

first one is applied to remove cracks in objects and to eliminate “salt” noise inside 

an object, while erosion shrinks objects and removes “pepper” noise [57]. 

Secondary operations play a key role in image processing and they are created 

by combining erosion followed by dilation (known as Opening) or dilation followed 

by erosion (named as Closing). Opening operation is used to remove small object 

and to preserve the shape and size of larger objects in the image space, while 

Closing eliminates salt noise and fills small holes inside image objects [58]. 

Therefore, the CHM went through an opening operation followed by closing using 

a disk as structuring element with size 0.33m (corresponding to pixel size), 

successfully reducing the noise and filling gaps holes in image, as shown in Figure 

3.4. 

   
(a) (b) (c) 

Figure 3.4 Morphological operations in CHM. (a) Original data, (b) Data after Opening operation, (c) Data 

after Closing operation. 

3.3.2.1 Watershed Segmentation 

A watershed segmentation algorithm was applied to extract tree crowns from the 

LiDAR-based CHM. This image operation is based on the idea of a grayscale 

image as a representation topographic relief, flooded with water, in which 

watersheds are represented by lines that divides the water from distinct basins 

[59]. The algorithm is implemented in System for Automated Geoscientific 

Analyses (SAGA-GIS) and it was ran using local maxima values method to identify 

seeds where the elevation is higher (treetops), the rule chosen to join segments 

is based on the difference between seed and saddle with a threshold value of 

0.5m. This configuration was found after several trials with the different options to 



27 

join segments (e.g. do not join and seeds difference) and threshold values. The 

raster output was then converted into vector file for further operations. 

Finally, the vector file went to a last filtering and cleaning, aiming to remove non-

relevant objects, this step followed some constraints such as to remove objects 

with area values inferior to 3m², objects with negative NDVI values and tree 

crowns falling into polygons of highly concentrated vegetation (obtained from 

Salvador Mapping vector WFS service) which represents small forests and are 

not interesting for this research. This process represented a reduction of 55,73% 

of objects and assured that objects represent only tree crowns indeed. 

3.3.2.2 Evaluation of semi-automatic tree crown segmentation 

Crown segmentation results was assessed by comparing the tree crowns 

detected automatically with the manually delineated tree crowns using the 

multispectral imagery. Accuracy metrics for this task were errors of omission and 

commission, where the first occurs when no treetop is identified within the 

boundary of reference data, while commission error happens when more than 

one treetop is incorrectly detected, this procedure is similar to the one adopted 

by Khosravipour et al (2014) in [56]. 

3.3.3 Supervised Learning 

This subsection covers the processes directly related to implementation and 

analysis of random forests, support vector machine and k-nearest neighbor 

classifiers. It includes dataset preparation to perform three tests with different set 

of features, model training and hyperparameter tuning strategy and definition of 

metrics adopted to evaluate each classifier’s performance.  Machine Learning 

classifiers and accuracy metrics were implemented using Scikit-learn [46]. 

3.3.3.1 Dataset preparation 

A set of 32 features were obtained from the above-mentioned datasets after 

preprocessing, for each of the 266 samples representing five tree species. 

Multispectral-derived features were retrieved using QGIS 3.10.4 through Zonal 

Statistics Plugin, where the mean value of all pixels pertaining a tree crown was 
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assigned according to each variable. LiDAR-derived variables were assigned to 

manually delineated tree crown area using LAS Canopy’s “plot metrics” 

functionality. After feature extraction, all information was stored in a tabular data 

frame to allow faster queries and operations using Python functions and libraries. 

The complete data frame is shown in Figure 3.5, however it was divided into three 

files: all variables, only multispectral variables, and only LiDAR variables, so each 

classifier would be run to these three distinct scenarios.  

 

Figure 3.5 Data frame with training and testing datasets containing 266 samples and 32 features. 

3.3.3.2 Model training and tuning 

One of this research’s goals is to evaluate and compare the performance of three 

different ML classifiers, therefore RF, SVM and k-NN models were implemented 

and tuned accordingly. 

Before creating each model, data is split into training and testing using 

sklearn.model_selection.train_test_split function, wherein the testing dataset is 

set to correspond to 30% of all features. This strategy is a traditional approach to 

evaluate the performance of classifiers, a crucial task when dealing with machine 

learning algorithm. Another relevant step to implement successful and reliable 

machine learning models is to perform model tuning, which consists in finding 

optimal values to a set hyperparameters that controls how a model will behave.  

Hyperparameter optimization consists in the testing of several combinations of a 

model’s-controlled parameters to evaluate which one is the best candidate to 
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provide the best result before the actual model training. This task can be done 

manually, but the most basic and straightforward technique is Grid Search (GS) 

in which a list of candidates for each hyperparameter is set and evaluated, 

creating a grid of possible combinations in the search space. Then, the 

combination that yields better results is selected and applied to the training 

model. However, depending on the number of hyperparameters and size of 

search space, GS can become very time consuming and demands a list of 

candidates set a priori.  

Alternatively, Random Search (RS) is used to find optimal hyperparameters 

values to each model, this technique finds better models by effectively searching 

a larger, less promising configuration space, according to Bergstra and Bengio 

(2012) in [60]. Additionally, RS usually requires less computational cost. Tn this 

research, this technique is implemented using 

sklearn.model_selection.RandomizedSearchCV from Scikit-learn, setting 10-fold 

cross-validation, to find optimal values for Random Forest and SVM classifiers, k-

NN does not need random search since it has only one hyperparameter to be set 

which can be done in a simpler way. 

 

3.3.3.2.1 Random Forest 

The RF classifier was implemented using sklearn.ensemble. 

RandomForestClassifier, model tuning for this algorithm aimed to find optimal 

values of hyperparameters such as number of trees, maximum depth and 

maximum number of features, the configuration for hyperparameter tuning are 

show in Table 3.5. 

PARAMETER VALUE(S) 

CRITERION Gini 

N_TREES 100 to 500 

MAX_DEPTH None to 50 

Table 3.5 User-defined RF hyperparameters for randomized search. 

The Gini impurity is the default criterion used by scikit-learn RF classifier to 

measure the quality of a split, it is used to minimize the probability of 
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misclassification. The number of trees or number of estimators defines how many 

decision trees will be created from the dataset available, a large number of trees 

will generate more sub-samples and will help to reduce the bias in the data. 

Nevertheless, sometimes increasing the number of trees only will only spend 

more computational power for little or no performance gain [61]. Therefore, the 

number of trees varied from 100 to 500, which the literature states to be the 

recommended for RF [31]. Maximum depth represents the depth of each tree in 

the forest, a larger number implies deeper trees, in consequence, more splits to 

capture more information about the data. Here the maximum depth was set from 

None (it is possible to avoid pruning trees since RF does not overfit) to 50 splits. 

3.3.3.2.2 Support Vector Classifier (SVC) 

The sklearn.svm.SVC function supported the development of SVM classifier, 

which mainly relies in two hyperparameters: Regularization parameter (C) and 

gamma. The first one defines the amount of misclassification permitted for non-

separable training data, allowing the adjustment of rigidity of training data. If C is 

large, SVM will try to minimize the number of misclassified examples and that 

results in a decision boundary with smaller margins[36], [39]. Kernel width 

parameter, also known as gamma, has direct relation with the smoothing of class-

dividing hyperplane shape. Finally, the kernel type used in this research is Radial 

Basis Function (RBF) due to its usual good performance with remote sensing 

datasets. The input parameters for randomized search and respective ranges are 

summarized in Table 3.6. 

PARAMETER VALUES 

C 0.1, 1, 10, 100, 1000 

GAMMA 0.1, 1, 10, 100, 1000 

Table 3.6 User-defined SVM hyperparameters for randomized search. 
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3.3.3.2.3 k-NN Classifier 

For k-Nearest Neighbor, the only parameter to set is the k-value which defines 

the number of neighbors “voting” on the possible class for a specific data sample. 

For example, if k = 1 then the sample under evaluation will be assigned the same 

class the closest neighbor (or example from the validation dataset), when k = 3, 

then the three nearest neighbors are evaluated and the most common class 

among them is assigned to the sample being analyzed. For this hyperparameter, 

k-values ranging from 1 to 40 were tried for the dataset and a graph with k-value 

versus mean error was plotted to analyze the optimal value. 

3.3.3.3 Feature Importance 

Feature importance is a resource in Machine Learning used to measure and 

understand the impact of each feature in a model’s performance, assigning 

scores based on how useful they are at predicting the target variable. It provides 

important information to perform dimensionality reduction and feature selection 

that can enhance the effectiveness of a classifier algorithm. 

After the best hyperparameters were found, the RF classifier was trained 

accordingly and applied to the training dataset containing variables from both 

multispectral and LiDAR data. To understand which LiDAR variables are the most 

contributing in the model’s performance, SHAP values were used to compute the 

feature importance in the RF model. This method is based on the Shapley values 

from game theory that represent the magnitude of the contribution of each feature 

to the model’s prediction, as well as direction (sign) [62]. 

For SVM classifier, it would not be possible to compute feature importance given 

the fact that non-linear kernel functions (e.g. radial basis function, used in this 

research) projects the data to a space with higher dimensionality than the original 

feature space, being able to define boundaries in a non-linear decision surface.  

3.3.3.4 Accuracy metrics 

Assessing the performance of a classification model applied to remote sensing 

data includes the adoption of accuracy metrics, these are used to understand 
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how close to reality are the model’s predictions. Therefore, accuracy assessment 

aims to compare the predicted labels assigned to an object using ML classifier 

and its actual label from the ground-truth data (test dataset). Table 3.7 illustrates 

an example of confusion matrix for a two-class problem, positive and negative. 

True positive (TP) values refer to samples correctly classified as Positive class, 

and False Positive (FP) are instances from Negative class but classified as 

Positive. Following the same concept, True Negatives (TN) are Negative samples 

correctly classified, and False Negatives (FN) represents Positive instances 

misclassified as negative [28]. 

  
PREDICTED CLASS   

Positive Negative 

ACTUAL 

CLASS 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Table 3.7 Binary confusion matrix 

From the binary confusion matrix, it is possible to exemplify how to compute 

several metrics for each class. For this research, the adopted accuracy metrics 

are implemented in python using the functions available in Scikit-learn, such as: 

overall accuracy, user’s accuracy, producer’s accuracy, and F1-score. 

▪ Overall Accuracy: represents the proportion of correctly classified 

reference sites (elements in diagonal) divided by the total number of 

reference sites. It is presented as percentage and calculated as follows: 

𝑂𝐴 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)
 

▪ User’s Accuracy (UA): shows the accuracy from the perspective of a map 

user, this metric tells us how often the class on the map will actually be 

present on the ground. 

𝑈𝐴 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

▪ Producer’s Accuracy (PA): map’s accuracy from the map maker point of 

view, it represents how often are actual features correctly represented on 

the predicted map. 



33 

𝑃𝐴 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

▪ F1-score: weighted average of the precision and recall 

𝐹1 =  2
(𝑂𝐴 ∗ 𝑃𝐴) 

(𝑂𝐴 + 𝑃𝐴)
 

4 Results 

4.1 Semi-automatic crown segmentation evaluation 

This evaluation consisted in the individual analysis of 276 tree crowns, manually 

delineated using the very high spatial resolution orthoimage, in comparison with 

the objects resulting of the watershed segmentation using the LiDAR-derived 

CHM. Figure 4.1 brings examples of the errors found. 

 

Figure 4.1 Evaluation of semi-automatic crown segmentation, gray objects with borders in magenta 

represent the segmentation results. (a) correctly segmented, (b) omitted objects, (c) under-segmented 

objects, (d) over-segmented objects. 
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The least common error was omission, only five treetops from the reference 

dataset were not detected in the segmentation process, perhaps these features 

could have been excluded in the filtering process if it were composed of multiple 

objects with area inferior to 3m² or even if the NDVI value for those were lower 

than the applied mask. 

When analyzing commission error, it was proven the need of breaking down this 

error into two more specific classification: over-segmentation and under-

segmentation. The first accounted for 4,71% of reference dataset, which 

exemplify the segmentation’s inability to correctly identify single object and, as 

consequence, creating multiple polygons to represent an individual tree crown, 

as shown in Figure 4.1 d. In the opposite idea, under-segmented objects 

(35,15%) are representations of segmented feature that should have been 

separated into two or more objects to correctly objects to represent the tree 

crowns within its borders, as shown in (Figure 4.1 d). 

Nevertheless, the 161 tree crowns correctly segmented instances (Figure 4.1 a) 

stand for the process’s reliability to identify treetops, success supported also by 

the application of filters based on vegetation indices and height values from LiDAR 

point cloud. It is important to highlight that the CHM’s resolution (33cm) is smaller 

than the orthoimage’s (10cm), therefore slight differences in the shape and size 

of tree crowns is to be expected, which is also related to the fact that reference 

data was extracted manually. A visual assessment of the objects also points out 

to the outstanding capability to segregate overlapping tree crowns. 

4.2 Hyperparameter Tuning and Feature Importance 

For the RF classifier, initially all models were trained using nº of trees equals to 

100, and maximum depth equals to none. When accounting only multispectral 

features, tuning RF’s hyperparameters slightly increased the overall accuracy in 

2,5%, however it remained unable to identify and label one the species (Delonix 

Regia). In the second test, the model could predict all classes using only LiDAR 

variables, the decrease in overall accuracy benefitted intra-class accuracy. The 
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best outcome of this model tuning appeared in the third dataset combination, in 

which the overall accuracy increased in 6,3%.  

In the support vector classifier, the default parameters before model tuning 

corresponded to C equals to 1, gamma value was set to ‘scale’1. SVM classifier 

had a similar issue as RF classifier, as it was not able to identify one class (Ficus 

Benjamina this time) even after model tuning when using only multispectral 

features. Slight increase in OA is noticed with the model ran with LiDAR features, 

whereas the third test increased OA in 4% when optimal parameters were set. 

Finally, k-NN’s performance upgraded 1,25% for the first test using only 

multispectral variables, being the only model to predict all classes in this case. 

The default k-value to train each model was 5.  

Results of each classifier, including optimal hyperparameters and overall 

accuracy values pre- and post-model tuning, are summarized in Table 4.1. 

 RF SVM K-NN 

Variables 
source 

OA 
before 
tuning 

nº of 
trees 

Max 
depth 

OA 
after 

tuning 

OA 
before 
tuning 

C gamma 
OA 

after 
tuning 

OA 
before 
tuning 

k 
value 

OA after 
tuning 

Multispectral 73,8% 144 25 72,5% 73,8% 100 0,01 68,8% 71,3% 6 72,5% 

LiDAR 62,5% 100 35 62,5% 61,3% 1000 0,001 67,5% 62,5 12 63,75 

Multispectral 
+ Lidar 

75,0% 144 10 82,5% 78,8% 10 0,01 81,3% 76,3% 12 77,5% 

Table 4.1 Optimal hyperparameters for classifier models. 

After finding optimal parameters, the most relevant features for RF model were 

ranked using SHAP values.  

From the 20 most important features ranked in Figure 4.2, the 5 most important 

LiDAR variables are standard deviation of crown return intensity (int_std), 

minimum height value of crown returns (min), average height value of crown 

return points (avg), 75th height percentile of crown return points (p75) and 

percentage of points below 30% of tree height (b30). In relation to the 

multispectral-derived variables, near infrared band, vegetation indices (gNDVI 

 

 

1 scale = 1 / (n_features * X.var()) in Scikit-learn 
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and NDVI) and green band are in top of feature importance, along with the pixel 

shape index from the texture analysis.  

 

Figure 4.2 SHAP values to rank the most important features in the classification with RF applied to 

multispectral and LiDAR data combined. 

4.3 Tree Species Classification 

Confusion matrices for each classifier’s performance is shown in Figure 4.3 

grouped by dataset combination, while user’s and producer’s accuracies are 

displayed in three different tables briefly discussed in the following paragraphs. 
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Figure 4.3 Confusion Matrices illustrating the performance of each model to classify 5 tree species using 

three datasets combinations. 50 – Delonix Regia, 70 – Ficus Benjamina, 90 – Licania Tomentosa, 130 – 

Pachira Aquatica Aubl., and 150 – Terminalia Catappa L. 

Table 4.2 compares the results for tree species classification using the three 

selected models trained using only multispectral variables, with highlights in gray 

to the species that an algorithm was not capable to obtain enough information to 

classify it correctly in testing dataset. k-NN showed a better performance in terms 

of overall accuracy, being also the only model able to detect all classes, even 

though species like Delonix Regia and Ficus Benjamina showed a poor 

performance when analyzing user’s and producer’s accuracy metrics values 

(lower than 35%), these are the classes with lower number of samples. 

Figure 4.4 shows the average reflectance curves for each of the 5 selected 

species along the visible and near-infrared bands, as expected they show high 

similarity in the visible part of the spectrum with some considerable differences 

between reflectance values in the red band for Pachira Aquatica Aubl in 

comparison to all other species. From the graph, Terminalia Catappa L. shows 

higher values in the near-infrared portion and it is in accordance with the 
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contribution of that band in for that species’ discrimination as shown in the 

variable importance analysis (Figure 4.2) for the RF classifier. 

Species Name 

RF 

OA=72,50% 

SVM 

OA=68,75% 

k-NN 

OA=72,50% 

UA PA F1 UA PA F1 UA PA F1 

Delonix Regia 0,0% 0,0% 0,0% 40,0% 40,0% 40,0% 33,3% 20,0% 25,0% 

Ficus Benjamina 100% 16,7% 28,6% 0,00% 0,00% 0,0% 33,3% 16,7% 22,2% 

Licania Tomentosa  50,0% 80,0% 61,5% 54,6% 60,0% 57,1% 46,7% 70,0% 56,0% 

Pachira Acquatica 
Aubl. 

62,5% 66,7% 64,5% 52,9% 60,0% 56,3% 64,3% 60,0% 62,1% 

Terminalia Catappa 

L. 
82,9% 88,6% 85,7% 86,4% 86,4% 86,4% 88,9% 90,9% 89,9% 

Table 4.2 Classifiers' performance using only multispectral features (OA=overall accuracy, UA=user’s 

accuracy, PA=producer’s accuracy, and F1=F1-score). 

When using only LiDAR-derived variables, the three models were able to perform 

classification to all 5 species (Table 4.3), even though the overall accuracy was 

lower in general. Large differences in accuracy could be noted between species, 

producer’s accuracy ranged from 16,6% (Ficus Benjamina in SVM and k-NN) to 

95,5% (Terminalia Catappa L.). Best performances in user’s accuracy were 

80,0% and 66,7%, both values registered for Terminalia Catappa L., when using 

SVM and RF, respectively. In terms of overall accuracy, SVM had a greater value 

but a tad different from k-NN (-3,75%). 

 

Figure 4.4 Average reflectance value (x10000) of all 5 species at visible and near-infrared bands. 
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Species Name 

RF 

OA=62,50% 

SVM 

OA=67,50% 

k-NN 

OA=63,75% 

UA PA F1 UA PA F1 UA PA F1 

Delonix Regia 42,9% 60,0% 50% 50,0% 60,0% 54,5% 33,3% 20,0% 25,0% 

Ficus Benjamina 50,0% 16,7% 25% 16,7% 16,7% 16,7% 100% 33,3% 50,0% 

Licania 
Tomentosa 

50,0% 30,0% 37,5% 54,5% 60,0% 57,1% 40,0% 20,0% 26,7% 

Pachira 
Acquatica Aubl. 

60,0% 20,0% 30% 66,7% 53,3% 59,3% 57,1% 26,7% 36,4% 

Terminalia 
Catappa L. 

66,7% 90,9% 76,9% 80,0% 81,8% 80,9% 66,7% 95,5% 78,5% 

Table 4.3 Classifiers' performance using only airborne LiDAR features. 

Lastly, the combination of both datasets brought a considerable improvement in 

performance, as shown in Table 4.4. RF classified improved 20% in its overall 

accuracy when compared to results using only LiDAR features, SVM classification 

accuracy increased from 68,75% with multispectral variables to 81,25% with 

combined datasets, while k-NN had a variation of 13,75% between the LiDAR 

and combination of both datasets. Not only the classification accuracies were 

benefited from this configuration of variables, but also user’s and producer’s 

accuracy for some of the species had a better performance such as Delonix Regia 

exceeded user’s accuracy in all previous tests, reaching the mark of 75% for 

Random Forest. However, producer’s accuracy did not improve for Ficus 

Benjamina, a class that persistently performed poorly throughout all possible sets 

of variables and models trained in this research. 

Species Name 

RF 

OA=82,50% 

SVM 

OA=81,25% 

k-NN 

OA=77,5% 

UA PA F1 UA PA F1 UA PA F1 

Delonix Regia 75,0% 60,0% 66,7% 50,0% 80,0% 61,5% 66,7% 80,0% 72,3% 

Ficus Benjamina 66,7% 33,3% 44,4% 60,0% 50,0% 54,6% 50,0% 16,7% 25,0% 

Licania Tomentosa  61,5% 80,0% 69,6% 66,7% 60,0% 63,2% 66,7% 60,0% 63,2% 

Pachira Acquatica 
Aubl. 

84,6% 73,3% 78,6% 85,7% 80,0% 82,8% 76,9% 66,7% 71,4% 

Terminalia Catappa 
L. 

87,2% 93,2% 90,1% 93,2% 93,2% 93,2% 82,0% 93,2% 87,2% 

Table 4.4 Classifiers' performance using multispectral and airborne LiDAR features. 

 

Given the best overall performance of RF classifier in the latter dataset 

combination, when compared to the two other classifiers and to previous 

variables configuration, this trained model was applied to the production data 
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(meaning the tree crowns segmented from the LiDAR-derived CHM) and an 

example of the result is illustrated in Figure 4.5. 

 

Figure 4.5 Random Forest classification applied to production data. 

 

5 Discussion 

The output from semi-automatic tree crown segmentation proved the efficiency 

of the process carried out using a LiDAR-derived CHM, even though its evaluation 

pointed to a tendency of aggregating multiple tree crowns into single objects, the 

watershed segmentation can be fine-tuned to meet the user’s need. However, 

searching for optimal values is time-consuming and it is difficult to notice slight 

differences through visual inspection. In addition, the structure and shape of trees 

also had an impact in the CHM segmentation process to detect treetops,  Zhen 

et al (2016, [63]) point out to the fact that most of the algorithms for individual 

tree crown detection assume a basic conical crown shape, which does not benefit 

the tree species in this research. 
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Manual delineation of individual tree crowns was a very sensitive task, even with 

very high-resolution images. The morphology of the trees did not favor this task, 

the constant occurrence of overlapping crowns made it harder to distinguish the 

limits, and the presence of shadows from buildings also had impact on the visual 

inspection to delineate individual tree crowns, which impacted in the final 

sampling size. Considering that, the OBIA approach with segmented objects from 

the LiDAR-derived CHM brings the advantage of using the point cloud distribution 

to detect tree crowns, which does not suffer from interference of shadows.  

One of the main goals of this research was to understand the impact of dataset 

combination in the classification accuracy for three different machine learning 

models. The results revealed that the combination of both multispectral and 

LiDAR variables increased the performance of all classifiers, with improvements 

in overall accuracy up to 13% when comparing the findings with only one of the 

sources of information. The outstanding performance was shown by Random 

Forest classifier, yielding overall accuracy of 82,50% and user’s and producer’s 

accuracy higher than 60%, except for Ficus Benjamina which is the species with 

the worst performance regardless of the dataset combination or classifier. 

This improvement in accuracy, brought by the combination of datasets, was 

expected since many studies related to tree species classification were benefited 

by the combination of datasets, however most of them are performed using 

hyperspectral data which provides more detailed information, therefore leads to 

better results found by Sothe et al (2019, [9]), Shen and Cao (2017,[23]),and 

Ferreira et al (2019, [51]), for example.  

Using only LiDAR variables as input proved to be more efficient for all models to 

correctly identify the five tree species elected in this research. This can be related 

to the fact that LiDAR data provides information about the tree crown's structure, 

as it was stated by Liu et al (2017,[3]) about variables that relate to the 

characteristics of laser point distribution are valuable assets for tree species 

classification. Such features were ranked among the top 15 most important 

features in the RF classifier, including minimum and average height value of crown 
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return points, standard deviation and 75th percentile of crown return intensity. 

Canopy cover, canopy density and crown size variables did not contribute much 

to the model’s performance, this fact can be attributed to the regular tree pruning 

that urban management and maintenance bureau performs to control tree growth 

and prevent problems with overhead electrical wiring, for instance. 

The performance of classification for tree species such as Delonix Regia could 

have been compromised due the tree's structure, majorly composed by tree 

trunks and small leaves, which can lead to background reflectance effect where 

both spectral reflectance and laser pulse return can provide information about 

the bare ground and/or grass below the tree. Also, the data acquisition happened 

before its blooming season, when the red-orange flowers that characterize this 

tree appear and could have been a good way to easily distinguish this species 

from the other ones. 

Ficus Benjamina was the species with worst performance, as highlighted earlier, 

and the reason for that could be associated to this species’ similarity with every 

other species in terms of spectral reflectance values in both visible and near-

infrared bands (Figure 4.4). The results shown by the confusion matrices (Figure 

4.3) reveals that this class is persistently mislabeled and associated to other 

classes, showing no pattern in the misclassification. Lastly, from the feature 

importance rank using SHAP values, it is also possible to notice that none of the 

multispectral or LiDAR variables had a relevant contribution for Ficus Benjamina. 

Therefore, it is possible to say that multispectral data does not provide enough 

information to distinguish this species and it could perform better with the addition 

of physiological aspects, which cannot be computed with the available dataset. 

Finally, the RF classifier (as well as the other two) yielded higher classification 

accuracies for the two most represented classes (Terminalia Catappa L. and 

Pachira Aquatica Aubl), this fact rises a red flag to the influence of the imbalanced 

dataset in the model’s efficiency. Other studies also reported the limitation 

imposed by the difficulty in acquiring similar number of samples per tree species, 

given the high cost associated to ground-truth data collection [9], [64]. 
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The results are consistent and promising, especially considering that most of 

similar studies have the advantage of using hyperspectral data to achieve similar 

results, however the reproducibility and application of the methodology proposed 

in this research to the whole city or similar environments face some challenges.  

Firstly, the existing tree inventory is far from being representative of the species 

diversity held by Salvador, over 50 species were registered but the population is 

quite low and scattered all over the city, plus the data acquisition does not provide 

a precise location or has other inconsistencies that make the tree identification 

process harder. Therefore, it is important to dedicate some additional time to 

increase the sample size and represent better the diversity of species. 

Moreover, the number of species selected for this research can also have an 

impact in the relatively high overall accuracy values found. Sothe et al (2019, [9]) 

performed classification using 12 tree species and achieved accuracy of 72,4% 

using UAV point cloud and hyperspectral data. Ferreira et al (2016, [65]) applied 

machine learning algorithms to classify 8 species in a Brazilian subtropical forest 

and accomplished 84% of accuracy when associating VNIR hyperspectral bands 

and shortwave infrared bands. In their pixel-based classification, Féret and Asner 

(2013, in [64]) mapped 17 tree species in a tropical forest located in Hawaii, with 

sampling ranging from 1 to 168 tree crowns, achieved overall accuracy of 73,2% 

using airborne hyperspectral data. Therefore, future work for this study area 

should include other species, even with small number of available samples, to 

analyze the performance of classifiers and consider the extrapolation of the 

models to other areas of the city. 

Another challenge is the processing of LiDAR point cloud for an entire metropole 

like Salvador, it would require more computational power and perhaps another 

software to process such an amount of data considering also the specificities 

related to the city’s elevation profile. Still concerning the point cloud, during the 

pre-processing stage, it was noticed that the nominal pulsing space is not the 

same for the whole city, the reason for that is the mapping’s final elevation 

products were specified to have a spatial resolution of 50cm. Therefore, 
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generating the CHM with this spatial resolution will impact the information quality 

and segmentation outputs. 

6 Conclusions 

This thesis demonstrated the application of multispectral aerial image and 

airborne LiDAR data to identify and classify five urban tree species, in a tropical 

environment in the city of Salvador (Brazil), focusing on the detection of individual 

trees. The research was conducted using three different machine learning 

classifiers (random forest, support vector machine and k-nearest neighbor) 

assigned to three sets data inputs (multispectral variables, LiDAR variables and 

combination of both datasets) to evaluate the performance and which 

arrangement would yield better results. The highest overall accuracy found was 

82,50% when applying random forest classifier to the combination of 

multispectral and LiDAR-derived features. The outlined research questions for 

this research have been discussed in more detail in the previous section and the 

findings are summarized in the following paragraphs. 

Regarding the first research question, all the classifiers’ performance were similar 

in terms of overall accuracy since the discrepancies did not exceed 5%, 

classification accuracy for most species were satisfactory except for Ficus 

Benjamina that consistently performed poorly in all scenarios and classifiers. 

Random forest and support vector machine classifiers outperformed k-nearest 

neighbor in most of the cases, except when using only multispectral variables, in 

which case k-NN had better overall accuracy as well as it was the only model able 

to detect every single tree species in the dataset (while RF was not able to identify 

Delonix Regia and SVM failed to distinguish Ficus Benjamina). 

The answer to the second research question was supported by the feature 

importance analysis done with random forest model applied to both multispectral 

and LiDAR datasets, in which it was possible to notice that amongst the 19 

metrics extracted from the LiDAR point cloud, the most contributing features were 

the standard deviation of crown return intensity, height-related metrics (minimum, 
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average and 75th percentile), and height bincentile that delivers the percentage 

of points between the breast height and a tree’s maximum height. 

The application of a LiDAR-derived CHM was proved to be an effective method 

towards the semi-automatic extraction of tree crowns in an urban environment, 

where the presence the of buildings and infrastructure elements make this task 

more complex. However, this approach relies heavily in the correctness of point 

cloud classification which is a time-consuming task that requires the setting of 

many parameters to be successful. 

Lastly, the results found in this research are relevant for urban forestry inventory 

and management for many reasons. First, it can provide a consistent overview of 

predominant tree species in the city, with that information local authorities and 

specialists can define strategies to plant native species to replace invasive ones 

such as Terminalia Catappa L., originally from Asian and Australian coastal 

environments, which is harmful to sidewalks and cause damages to both public 

roads and electrical wiring. Second, this approach can be used to support the 

implementation of a structured tree inventory using geographic database 

systems, with integrated use by many public sectors such as maintenance 

bureau, real state, environmental policy makers.  
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