102 research outputs found

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    EEG complexity as a biomarker for autism spectrum disorder risk

    Get PDF
    BACKGROUND: Complex neurodevelopmental disorders may be characterized by subtle brain function signatures early in life before behavioral symptoms are apparent. Such endophenotypes may be measurable biomarkers for later cognitive impairments. The nonlinear complexity of electroencephalography (EEG) signals is believed to contain information about the architecture of the neural networks in the brain on many scales. Early detection of abnormalities in EEG signals may be an early biomarker for developmental cognitive disorders. The goal of this paper is to demonstrate that the modified multiscale entropy (mMSE) computed on the basis of resting state EEG data can be used as a biomarker of normal brain development and distinguish typically developing children from a group of infants at high risk for autism spectrum disorder (ASD), defined on the basis of an older sibling with ASD. METHODS: Using mMSE as a feature vector, a multiclass support vector machine algorithm was used to classify typically developing and high-risk groups. Classification was computed separately within each age group from 6 to 24 months. RESULTS: Multiscale entropy appears to go through a different developmental trajectory in infants at high risk for autism (HRA) than it does in typically developing controls. Differences appear to be greatest at ages 9 to 12 months. Using several machine learning algorithms with mMSE as a feature vector, infants were classified with over 80% accuracy into control and HRA groups at age 9 months. Classification accuracy for boys was close to 100% at age 9 months and remains high (70% to 90%) at ages 12 and 18 months. For girls, classification accuracy was highest at age 6 months, but declines thereafter. CONCLUSIONS: This proof-of-principle study suggests that mMSE computed from resting state EEG signals may be a useful biomarker for early detection of risk for ASD and abnormalities in cognitive development in infants. To our knowledge, this is the first demonstration of an information theoretic analysis of EEG data for biomarkers in infants at risk for a complex neurodevelopmental disorder.This research was supported by a grant from Autism Speaks (to HTF), National Institute on Deafness and Other Communication Disorders (NIDCD) grant R21 DC08647 (to HTF), NIDCD grant R01 DC 10290 (to HTF and CAN) and a grant from the Simons Foundation (to CAN and WJB). We thank the following people for their help in data collection: Tara Augenstein, Leah Casner, Laura Kasparian, Nina Leezenbaum, Vanessa Vogel-Farley and Annemarie Zuluaga. We are especially grateful to the families who participated in this study. (Autism Speaks; R21 DC08647 - National Institute on Deafness and Other Communication Disorders (NIDCD); R01 DC 10290 - National Institute on Deafness and Other Communication Disorders (NIDCD); Simons Foundation

    Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition

    Get PDF
    Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; EspañaFil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; EspañaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Alcaraz, Raúl. Universidad de Castilla-La Mancha; EspañaFil: Fernández Caballero, Antonio. Biomedical Research Networking Centre in Mental Health; España. Universidad de Castilla-La Mancha; Españ

    Analysis of EEG signals using complex brain networks

    Get PDF
    The human brain is so complex that two mega projects, the Human Brain Project and the BRAIN Initiative project, are under way in the hope of answering important questions for peoples' health and wellbeing. Complex networks become powerful tools for studying brain function due to the fact that network topologies on real-world systems share small world properties. Examples of these networks are the Internet, biological networks, social networks, climate networks and complex brain networks. Complex brain networks in real time biomedical signal processing applications are limited because some graph algorithms (such as graph isomorphism), cannot be solved in polynomial time. In addition, they are hard to use in single-channel EEG applications, such as clinic applications in sleep scoring and depth of anaesthesia monitoring. The first contribution of this research is to present two novel algorithms and two graph models. A fast weighted horizontal visibility algorithm (FWHVA) overcoming the speed limitations for constructing a graph from a time series is presented. Experimental results show that the FWHVA can be 3.8 times faster than the Fast Fourier Transfer (FFT) algorithm when input signals exceed 4000 data points. A linear time graph isomorphism algorithm (HVGI) can determine the isomorphism of two horizontal visibility graphs (HVGs) in a linear time domain. This is an efficient way to measure the synchronized index between two time series. Difference visibility graphs (DVGs) inherit the advantages of horizontal visibility graphs. They are noise-robust, and they overcome a pitfall of visibility graphs (VG): that the degree distribution (DD) doesn't satisfy a pure power-law. Jump visibility graphs (JVGs) enhance brain graphs allowing the processing of non-stationary biomedical signals. This research shows that the DD of JVGs always satisfies a power-lower if the input signals are purely non-stationary. The second highlight of this work is the study of three clinical biomedical signals: alcoholic, epileptic and sleep EEGs. Based on a synchronization likelihood and maximal weighted matching method, this work finds that the processing repeated stimuli and unrepeated stimuli in the controlled drinkers is larger than that in the alcoholics. Seizure detections based on epileptic EEGs have also been investigated with three graph features: graph entropy of VGs, mean strength of HVGs, and mean degrees of JVGs. All of these features can achieve 100% accuracy in seizure identification and differentiation from healthy EEG signals. Sleep EEGs are evaluated based on VG and DVG methods. It is shown that the complex brain networks exhibit more small world structure during deep sleep. Based on DVG methods, the accuracy peaks at 88:9% in a 5-state sleep stage classification from 14; 943 segments from single-channel EEGs. This study also introduces two weighted complex network approaches to analyse the nonlinear EEG signals. A weighted horizontal visibility graph (WHVG) is proposed to enhance noise-robustness properties. Tested with two Chaos signals and an epileptic EEG database, the research shows that the mean strength of the WHVG is more stable and noise-robust than those features from FFT and entropy. Maximal weighted matching algorithms have been applied to evaluate the difference in complex brain networks of alcoholics and controlled drinkers. The last contribution of this dissertation is to develop an unsupervised classifier for biomedical signal pattern recognition. A Multi-Scale Means (MSK-Means) algorithm is proposed for solving the subject-dependent biomedical signals classification issue. Using JVG features from the epileptic EEG database, the MSK-Means algorithm is 4:7% higher in identifying seizures than those by the K-means algorithm and achieves 92:3% accuracy for localizing the epileptogenic zone. The findings suggest that the outcome of this thesis can improve the performance of complex brain networks for biomedical signal processing and nonlinear time series analysis

    Advanced framework for epilepsy detection through image-based EEG signal analysis

    Get PDF
    BackgroundRecurrent and unpredictable seizures characterize epilepsy, a neurological disorder affecting millions worldwide. Epilepsy diagnosis is crucial for timely treatment and better outcomes. Electroencephalography (EEG) time-series data analysis is essential for epilepsy diagnosis and surveillance. Complex signal processing methods used in traditional EEG analysis are computationally demanding and difficult to generalize across patients. Researchers are using machine learning to improve epilepsy detection, particularly visual feature extraction from EEG time-series data.ObjectiveThis study examines the application of a Gramian Angular Summation Field (GASF) approach for the analysis of EEG signals. Additionally, it explores the utilization of image features, specifically the Scale-Invariant Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) techniques, for the purpose of epilepsy detection in EEG data.MethodsThe proposed methodology encompasses the transformation of EEG signals into images based on GASF, followed by the extraction of features utilizing SIFT and ORB techniques, and ultimately, the selection of relevant features. A state-of-the-art machine learning classifier is employed to classify GASF images into two categories: normal EEG patterns and focal EEG patterns. Bern-Barcelona EEG recordings were used to test the proposed method.ResultsThis method classifies EEG signals with 96% accuracy using SIFT features and 94% using ORB features. The Random Forest (RF) classifier surpasses state-of-the-art approaches in precision, recall, F1-score, specificity, and Area Under Curve (AUC). The Receiver Operating Characteristic (ROC) curve shows that Random Forest outperforms Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN) classifiers.SignificanceThe suggested method has many advantages over time-series EEG data analysis and machine learning classifiers used in epilepsy detection studies. A novel image-based preprocessing pipeline using GASF for robust image synthesis and SIFT and ORB for feature extraction is presented here. The study found that the suggested method can accurately discriminate between normal and focal EEG signals, improving patient outcomes through early and accurate epilepsy diagnosis

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers

    Get PDF
    IntroductionIn the clinical setting, it becomes increasingly important to detect epileptic seizures automatically since it could significantly reduce the burden for the care of patients suffering from intractable epilepsy. Electroencephalography (EEG) signals record the brain's electrical activity and contain rich information about brain dysfunction. As a non-invasive and inexpensive tool for detecting epileptic seizures, visual evaluation of EEG recordings is labor-intensive and subjective and requires significant improvement.MethodsThis study aims to develop a new approach to recognize seizures automatically using EEG recordings. During feature extraction of EEG input from raw data, we construct a new deep neural network (DNN) model. Deep feature maps derived from layers placed hierarchically in a convolution neural network are put into different kinds of shallow classifiers to detect the anomaly. Feature maps are reduced in dimensionality using Principal Component Analysis (PCA).ResultsBy analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy, we conclude that our proposed method is both effective and robust. These datasets vary significantly in the acquisition of data, the formulation of clinical protocols, and the storage of digital information, making processing and analysis challenging. On both datasets, extensive experiments are performed using a cross-validation by 10 folds strategy to demonstrate approximately 100% accuracy for binary and multi-category classification.DiscussionIn addition to demonstrating that our methodology outperforms other up-to-date approaches, the results of this study also suggest that it can be applied in clinical practice as well
    corecore