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Background: Recurrent and unpredictable seizures characterize epilepsy, a

neurological disorder affecting millions worldwide. Epilepsy diagnosis is crucial

for timely treatment and better outcomes. Electroencephalography (EEG) time-

series data analysis is essential for epilepsy diagnosis and surveillance. Complex

signal processing methods used in traditional EEG analysis are computationally

demanding and difficult to generalize across patients. Researchers are using

machine learning to improve epilepsy detection, particularly visual feature

extraction from EEG time-series data.

Objective: This study examines the application of a Gramian Angular Summation

Field (GASF) approach for the analysis of EEG signals. Additionally, it explores the

utilization of image features, specifically the Scale-Invariant Feature Transform

(SIFT) and Oriented FAST and Rotated BRIEF (ORB) techniques, for the purpose

of epilepsy detection in EEG data.

Methods: The proposed methodology encompasses the transformation of EEG

signals into images based on GASF, followed by the extraction of features

utilizing SIFT and ORB techniques, and ultimately, the selection of relevant

features. A state-of-the-art machine learning classifier is employed to classify

GASF images into two categories: normal EEG patterns and focal EEG patterns.

Bern-Barcelona EEG recordings were used to test the proposed method.

Results: This method classifies EEG signals with 96% accuracy using SIFT

features and 94% using ORB features. The Random Forest (RF) classifier

surpasses state-of-the-art approaches in precision, recall, F1-score, specificity,

and Area Under Curve (AUC). The Receiver Operating Characteristic (ROC) curve

shows that Random Forest outperforms Support Vector Machine (SVM) and

k-Nearest Neighbors (k-NN) classifiers.

Significance: The suggested method has many advantages over time-series

EEG data analysis and machine learning classifiers used in epilepsy detection

studies. A novel image-based preprocessing pipeline using GASF for robust

image synthesis and SIFT and ORB for feature extraction is presented here. The
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study found that the suggested method can accurately discriminate between

normal and focal EEG signals, improving patient outcomes through early and

accurate epilepsy diagnosis.

KEYWORDS

epilepsy, EEG signal processing, image-based feature extraction, machine learning
classifiers, Gramian angular summation field, scale invariant feature transform, oriented
FAST and rotated BRIEF

Introduction

Periodic seizures are a hallmark of the neurological condition
known as epilepsy. Abnormal electrical activity in the brain is what
causes these seizures. A variety of illnesses or brain injuries can
increase the risk of epilepsy. Epilepsy affects an estimated global
population of around 50 million individuals (Epilepsy, n.d.; Fiest
et al., 2017; Chen et al., 2023). The diagnosis of epilepsy typically
involves the assessment of a patient’s medical history, physical
examination, as well as the utilization of diagnostic techniques
such as electroencephalography (EEG), magnetoencephalography
(MEG) and imaging procedures like magnetic resonance imaging
(MRI) or computed tomography (CT) scans (Adams et al., 1992).
Electrodes are precisely positioned on the scalp in a non-invasive
manner in EEG to evaluate and analyze brain activity. In contrast
to alternative techniques such as MEG, CT, and MRI, EEG possesses
notable merits, including its superior temporal resolution, cost-
effectiveness, and widespread availability, rendering it an invaluable
instrument (Drenthen et al., 2021). Its remarkable temporal
accuracy allows millisecond-scale fluctuations in brain activity to
be recorded. For the purpose of identifying dynamic processes and
potentials associated with events that are evolving quickly, this
degree of temporal resolution is essential. In addition, the EEG is a
vital diagnostic tool for epilepsy since it permits real-time tracking
of the start, progression, and end of seizures.

Electroencephalography signal processing provides the finest
understanding of the dynamic nature of brain illnesses, especially
epilepsy (Clarke et al., 2021). However, manual EEG signal analysis
and interpretation can be laborious and subjective, primarily
depending on the knowledge and skills of neurophysiologists.
Because of this, there is an increasing demand for computerized
techniques for detecting epilepsy that may automate the analysis
process and yield unbiased, precise results (Sharma et al., 2019).
In order to aid in the analysis and interpretation of EEG signals,
computerized techniques for the detection of epilepsy have been
created. These techniques identify EEG signals as either normal
or symptomatic of seizure activity by extracting key features
using powerful signal processing algorithms and machine learning
techniques. Machine learning algorithms are used by computerized
epilepsy detection systems to automatically analyze EEG signals
and categorize them into seizure and non-seizure categories
(Acharya et al., 2013).

Automated epilepsy identification can be greatly aided by
common signal processing techniques based on EEG signal
classification and machine learning detection. The goal of these
techniques is to reliably identify seizure activity from EEG signals

by experimenting with different feature extraction and signal
classification algorithms. In order to identify epileptic seizures
from EEG signals, time-domain techniques have been developed
(Fasil and Rajesh, 2019; Chakrabarti et al., 2020). These methods
use the temporal properties of EEG recordings to separate
normal brain activity from seizure activity (Andrzejak et al., 2001;
Tessy et al., 2017). There are also several methods that rely
on measures of complexity, like the entropy of an EEG signal
(McSharry et al., 2003). They entail calculating the EEG signal’s
complexity or unpredictability in order to identify anomalies
connected to seizure activity (Acharya et al., 2012; Paul, 2018).
Another method for extracting features from EEG recordings to
detect epilepsy is the use of local binary patterns (Kumar et al.,
2015). With these techniques, local variations in EEG signals are
recorded in order to spot patterns suggestive of seizure activity
(Kumar and Kanhangad, 2018).

In order to detect epileptic seizures, frequency-domain-based
characteristics derived from the Fourier transformation of EEG
signals are also essential (Srinivasan et al., 2005). The Fourier
transform is a frequently used method for signal processing
and feature extraction because it can change a signal from
the time domain to the frequency domain. Frequency-domain
characteristics derived from the Fourier transform have shown
promise in the field of epilepsy detection for detecting seizure
activity in EEG recordings (Khamis et al., 2013; Samiee et al., 2015).
These characteristics offer crucial details regarding the frequency
composition of the EEG signal, which can aid in differentiating
between seizures and regular brain activity. These characteristics
reveal details about the frequency content of the EEG data,
including whether aberrant high-frequency oscillations or seizure-
specific rhythmic patterns are present. Algorithms can differentiate
between seizure activity and regular brain activity by examining
these frequency-domain characteristics, which helps with the
precise identification and diagnosis of epilepsy (Tsipouras, 2019).

The Fourier transform is a useful tool for long-term study
and real-time monitoring of epileptic seizures because it makes
enormous amounts of EEG data computationally and analytically
economical. Due to the non-stationary and non-linear nature of
EEG signals, complex signal processing techniques are needed, and
a key tool for managing these complexities is the Fourier transform
and other advanced multiresolution signal processing methods.
Moreover, the combination of non-linear parameters calculated
from EEG signals with time-frequency domain-based techniques
like wavelet transform (Nishad et al., 2020) and empirical mode
decomposition (Oweis and Abdulhay, 2011; Cura et al., 2020)
adds new dimensions to the categorization of EEG data related
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to epileptic seizures (Liu et al., 2012; Bajaj and Pachori, 2013).
These methods increase the precision of epilepsy identification by
accounting for the temporal, frequency, and non-linear properties
of EEG signals (Tzallas et al., 2009; Musselman and Djurdjanovic,
2012; Sharma and Pachori, 2015; Li et al., 2018; Wu et al., 2020;
Dutta et al., 2023).

Another popular method for detecting epilepsy from an EEG
signal is to turn the time series into images for additional
examination (Fu et al., 2014; Li et al., 2020; Ozdemir et al., 2021).
Among these is the transformation of EEG signals into scalograms
or spectrograms for feature extraction and visualization (Acharya
et al., 2013; Gómez et al., 2020; Liu et al., 2023). An interesting
alternative for epilepsy diagnosis is the use of computer vision
techniques in EEG signal analysis, which enables the use of machine
learning and pattern recognition algorithms to find unique patterns
or anomalies in the EEG data (Bajaj et al., 2017; Zhou et al., 2018).
Computer vision-based algorithms for finding epilepsy in EEG
signals depend on how well the temporal information of the EEG
is turned into spatial information in the form of images (Yogarajan
et al., 2023; Zeng et al., 2023). This is because EEG signals change
over time. In order to enable the application of modern advanced
image processing and machine learning techniques for precise and
effective epilepsy detection, we have therefore taken on the task of
improving picture-based EEG analysis. We have used a method in
this work to encode the EEG signal into images using the GASF
(Wang and Oates, 2015; Alsalemi et al., 2023), which is known to
preserve the temporal relationships of time series signals (Wang
and Oates, 2015; Alsalemi et al., 2023). The application of GASF-
based image feature extraction helps to enhance the identification
of epilepsy in EEG time-series data is a key component of this work.
This evolution may enable earlier diagnosis and treatment, which
could improve clinical practice and the quality of life for those
with epilepsy. As a result, this work presents a unique method for
detecting epilepsy using EEG time-series data and accomplishes its
goals by utilizing GASF-based image feature extraction.

Understanding the growing importance and potential of
computerized techniques in the detection of epileptic seizures,
there is a constant need for innovation and development
in this field. The integration of advanced signal processing
techniques, such as the GASF, provides a promising approach to
further enhance the accuracy and efficacy of epilepsy detection
from EEG time-series data. By leveraging GASF-based image
feature extraction, this proposed technique aims to preserve the
temporal relationships of EEG signals, thereby improving the
identification of epilepsy.

Objectives

In light of these advancements and the evolving landscape of
epilepsy detection methods, the objectives of this work encompass
the exploration of the GASF-based approach for EEG signal
analysis, the assessment of its efficacy in identifying epilepsy, and
the potential impact of this method on clinical practice and patient
outcomes. This paper endeavors to demonstrate the effectiveness of
GASF-based image feature extraction in automating the detection
of epilepsy and contributing to early diagnosis and treatment. The
specific objectives of this work include:

1. Investigating the GASF as a state-of-the-art technique for
obtaining visual features for the detection of epilepsy in EEG
time-series data.

2. Analyzing the effectiveness of the two well-known image
feature extractors, SIFT and ORB in detecting epilepsy in EEG
data when applied to GASF images.

3. Evaluating the accuracy and reliability of epileptic seizure
detection from EEG data using GASF-based image feature
extraction vs. more traditional methods.

Related work

Epilepsy, a prevalent neurological disorder with a global
impact, is distinguished by the occurrence of recurrent and
unpredictable seizures. The precise identification of epilepsy is of
utmost importance in order to promptly administer treatment and
enhance patient outcomes. The analysis of EEG time-series data is
a crucial component in the diagnosis and monitoring of epilepsy.
The analysis of traditional EEG typically depends on intricate
signal processing techniques, characterized by high computational
demands and limited generalizability across diverse patient
populations. Given the aforementioned difficulties, scientists are
increasingly turning to machine learning methods, particularly
those concerning the extraction of diverse features from EEG time-
series data, with the intention of enhancing the epilepsy diagnosis
process. This literature review examines the field of feature
extraction for the purpose of detecting epilepsy. It utilizes machine
learning classifiers in conjunction with the publicly accessible EEG
database. An extensive range of pertinent studies, methodologies,
and their results are thoroughly examined, providing insights
into the advancements achieved in this domain and pinpointing
possible avenues for enhancement.

Acharya et al. (2019) conducted a comprehensive exploration
of characterization of EEG signals with their study delving into
methods for the analysis of focal EEG signals. They employed
advanced signal processing and machine learning techniques
to distinguish focal EEG signals from non-focal ones. This
study is a significant Contribution To The Field, as it provides
insights into the challenges and potential applications of focal
EEG signal analysis (Acharya et al., 2019). Gupta and Pachori
presented an innovative approach employing advanced machine
intelligence and signal analysis algorithms to classify focal and non-
focal EEG signals. Their method demonstrated high accuracy in
distinguishing between these types of signals, offering a promising
avenue for epilepsy and neurological disorder diagnosis (Gupta and
Pachori, 2019).

Hu et al. (2019) used multifractal analysis and several statistical
tools, such as the generalized Hurst exponent, the fluctuation index,
the mean, and the standard deviation, to find important features in
EEG data. Their results are promising, although these methods have
limitations, particularly in capturing non-linear EEG signals and
their computational burden when dealing with high sampling rates
(Hu et al., 2019). Rahman et al. (2019) looked at hybrid features that
are made up of improved composite multiscale fuzzy entropy and
autoregressive (AR) coefficients. These are derived from variational
mode decomposition (VMD), discrete wavelet transform (DWT),
and the VMD-DWT domain. This study finds that stacking
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support vector machine (SVM) and k-nearest neighbors (KNN)
classifiers enhances classification accuracy (Rahman et al., 2019).
In a related study, Tuncer et al. (2023) proposed a new feature-
based EEG signal classification model, including a local histogram-
based feature generation function called the cube pattern. Their
results highlighted the high performance of the cube pattern and
neighborhood component analysis-based model in EEG signal
classification (Tuncer et al., 2023).

Zeng et al. (2019) developed an epileptic seizure identification
algorithm incorporating empirical mode decomposition (EMD),
permutation-entropy-based spectral representation (PSR), and
neural networks. Their study involved decomposing EEG signals
into Intrinsic Mode Functions (IMFs) using EMD and computing
PSR from each IMF to capture relevant features, ultimately leading
to the successful classification of focal and non-focal EEG patterns
(Zeng et al., 2019).

Sharma et al. (2020) proposed an automated detection
approach for focal EEG signals based on the third-order cumulant
function. The method effectively identified the difference between
focal and non-focal EEG signals by looking at this higher-order
statistical property (Sharma et al., 2020). This makes it more
likely that an EEG-based neurological disorder diagnosis can
be done automatically. Sairamya et al. (2021) leveraged wavelet
packet decomposition and quad binary patterns to automatically
detect focal EEG signals. The use of quad binary patterns and
wavelet packet decomposition, extracts discriminative features
and significantly contributes to EEG-based neurological disorder
diagnosis (Sairamya et al., 2021).

Xuyang et al. (2021) explored a multi-feature fusion approach
for epileptic focus localization through tensor representation.
The fusion of features extracted from EEG signals enhanced
the accuracy of epileptic focus localization, offering potential
advancements in epilepsy diagnosis (Xuyang et al., 2021). Wang
et al. (2021) proposed a computer-aided intracranial EEG
signal identification method using a multi-branch deep learning
fusion model. This model uses a number of different deep
learning architectures to correctly identify intracranial EEG signals,
which showed promise for accurate EEG signal identification
(Wang et al., 2021).

Borowska introduced a novel multiscale permutation Lempel-
Ziv complexity measure for biomedical signal analysis. This
method improved the study of focal EEG signals by looking at
them at different scales and giving useful information about the
data’s complexity and patterns (Borowska and Syczewska, 2021).
Zhao et al. (2023) presented a classification method for the epileptic
seizure onset zone based on partial annotation. According to Zhao
et al. (2023), their method used partial annotations to accurately
find the area in EEG data where the seizure starts. This leads to
accurate classification and helps with cognitive neurodynamics and
epilepsy diagnosis.

In their paper, Al-Salman et al. (2022) suggested using a
dual-tree complex wavelet transform (DTCWT) along with a
classification algorithm to get information about epileptic features
from EEG signals. The DTCWT gets useful frequency-domain
data from EEG signals, which lets features of epilepsy be grouped
in a way that looks promising (Al-Salman et al., 2022). Sharma
(2023) introduced an automated hybrid approach for localizing the
epileptic surgical area. This method used higher-order statistics,
sensitivity analysis, and residual wavelet transforms to precisely

locate the surgical area. This makes it easier to find epileptic areas
in EEG signals (Sharma, 2023).

In contrast to the existing approaches for epilepsy identification
from EEG signals, our proposed method takes a novel and
innovative approach. Our approach distinguishes itself by
translating EEG signals into GASF images and employing SIFT
and ORB techniques for feature extraction. Whereas the traditional
methods typically involve intricate signal processing and direct
analysis of raw EEG time-series data. However, those approaches
often lead to increased computational overhead and limited capture
of spatial patterns. Our methodology bridges this gap by converting
EEG data into visual GASF images, allowing us to harness spatial
properties that are frequently overlooked in conventional analyses.
Feature extraction using SIFT and ORB introduces a new
dimension to our work, enabling the identification of significant
features within GASF images and providing access to the rich
spatial and structural information present in EEG data. This retreat
from traditional feature extraction techniques has the potential to
reveal previously undiscovered discriminative patterns, ultimately
improving classification accuracy and robustness.

An important shift in our approach pertains to the use of
machine learning (ML) methods to classify GASF images as
representing either normal or focal EEG patterns. This is a
departure from conventional methodologies that lack adaptability
and struggle with generalization, particularly in diverse patient
settings. The technical originality of our approach and its potential
therapeutic impact make it a significant contribution. The holistic
strategy, which leverages spatial patterns and image-based feature
extraction, holds the promise of improving epilepsy diagnosis
accuracy, facilitating faster interventions, and ultimately enhancing
patient outcomes. The adaptability of our approach to diverse
EEG patterns and patient demographics is crucial for personalized
neurological condition diagnosis. This innovation opens new
horizons in EEG-based epilepsy detection, augmenting diagnostic
precision, and the field of neurological disorder research.

Materials and methods

Muscle activity and external disturbance can disrupt EEG
signals. Noise from these sources can impair EEG signals and make
neurological diagnosis difficult. To address this issue, researchers
are developing more robust EEG signal representations that
preserve temporal correlations and improve diagnostic accuracy.
EEG signals can be converted into GASF pictures. The GASF time
series representation method uses cosine and sine modifications
to turn a sequential data stream like the EEG signal into a
picture. GASF images reduce noise while preserving EEG temporal
correlations. By extracting GASF images from EEG signals, we can
use image processing and analysis for classification.

These GASF images are processed with robust image feature
extraction methods like SIFT and ORB to find significant patterns
and discriminative features. After applying these reliable image
feature extractors, we can efficiently examine GASF images and
classify them into neurological or cognitive states. Thus, EEG
signal transformation to GASF pictures, followed by image feature
extraction and classification, can increase EEG-based diagnosis
accuracy and trustworthiness. The proposed method also improves
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noise handling and brain activity pattern recognition for specific
situations or states.

Dataset

The Bern-Barcelona EEG database, a valuable resource for
epilepsy-related studies, provides a diverse collection of EEG
recordings from patients with epilepsy during seizure and normal
states. This database includes EEG data from different age groups,
seizure types, and various clinical scenarios, making it suitable
for training, validating, and testing machine learning models for
epilepsy detection. The database was created by Andrzejak et al.
(2012) and was published (The Bern-Barcelona Eeg database
- Nonlinear Time Series Analysis (UPF), n.d.). The database
comprises a total of 7,500 signal sets, which have been classified into
two distinct categories, namely normal signals and focal signals.
Non-focal signals are derived from the typical regions of the
brain, while focal signals are derived from the specific brain areas
observed during visual inspection of an ictal event. The database
is commonly used to test and validate computer-aided diagnosis
(CAD) systems for epilepsy detection. Research on epilepsy may
benefit greatly from the Bern-Barcelona EEG Database, especially
when examining the properties of focal and non-focal EEG signals.
Below is a summary of its salient features:

Subject count

• Five people with epilepsy have their recordings in the database.

Diversity

• Age range: at the time of recording, 24–42 years old.
• Men: three, women: two.
• Type of seizure: All patients had long-standing, drug-resistant

temporal lobe epilepsy.
• EEG recordings are made for a maximum of 7 h, with several

recordings made for each patient.
• A total of 64 electrodes are used in the intracranial EEG (iEEG)

recording system.

Potential biases

• Small sample size: The results limited capacity to be
generalized is hampered by the small number of individuals.
• Uniform group: The emphasis on medication-resistant

temporal lobe epilepsy restricts the relevance of the
findings to other forms of epilepsy or to more general
neuroscience studies.
• Limitations related to age and gender: The study’s emphasis is

on a particular age group and gender ratio, which may restrict
its applicability to larger age groups or other gender ratios.
• Extracranial vs. Intracranial EEG: Although iEEG data is

more intrusive and may not accurately reflect scalp EEG

recordings utilized in clinical settings, it does give a better
spatial resolution.

Particular reasons for selecting the Bern-Barcelona EEG
Database over alternatives are:

Relevance

• Emphasis on iEEG: Compared to scalp EEG, high-resolution
intracranial EEG (iEEG) recordings give more accurate spatial
information. Studying focal epilepsy, in which seizures start in
certain brain areas, is critical.
• Drug-resistant temporal lobe epilepsy is a frequent and

difficult kind of epilepsy that is the subject of this database.
This makes it possible for researchers to look at certain traits
and patterns associated with this kind of epilepsy.
• Long-standing epilepsy: Compared to freshly diagnosed

instances, the patients who were chosen had long-standing
epilepsy, which enhances the chance of recording a variety of
interesting seizure patterns.

Representativeness

• Comparing intracranial and extracranial EEG reveals that
while the former has benefits, the latter is an invasive process
unsuitable for therapeutic use. By supplying ground truth
iEEG data that can be utilized to evaluate and interpret scalp
EEG results, the database serves as a useful link between iEEG
and scalp EEG research.
• Each participant has numerous recordings in the database,

which captures diversity in seizure patterns and may improve
generalizability.
• Because the database is publicly accessible, researchers

may collaborate and advance their work more quickly by
duplicating and expanding upon earlier discoveries.

Figure 1 displays the EEG signal time series representation for
normal and focused participants using a 20-s time frame that yields
10,240 samples at 512 Hz sampling frequency.

Figure 2 displays the GASF of the EEG epochs which are
segmented into 256 samples. It leads to a GASF image of dimension
256 × 256 as shown in Figure 2 Moreover, we could also observe
that the image shows a difference in the field strength for the normal
and focal EEG signals, respectively. For the experimental work in
this study, we have selected 50 normal and 50 focal EEG signals
provided in the dataset repository. We have transformed each EEG
signal into 40 GASF images considering 256 samples. Thus, we
have created a total of 4,000 GASF images for both the classes. Out
of which we have used 90% (3600 GASF images) for training and
validation and the remaining 10% (400 GASF images) for testing
the proposed method.

Methodology

Electroencephalography is essential for diagnosing neurological
diseases and brain activity. However, EEG readings include both
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FIGURE 1

(A) Normal waves and (B) focal waves on a single channel EEG signal.

FIGURE 2

Two types of EEG signals, Normal and Focal, shown using GASF after the data was split: (A) normal GASF and (B) focal GASF. Since 256 samples are
used to make the GASF image, its size is 256 × 256.

appropriate cerebral activity and unwanted distortions, making
it difficult to distinguish between normal and focal data. This
work proposes a complete preprocessing strategy to address these
difficulties. The suggested pipeline includes data partitioning,
GASF signal transformation into image-like representations, SIFT
and ORB image-based feature extraction, and feature selection. To
maintain unbiased reporting, the EEG dataset is split into training
and testing sets. GASF converts EEG signals into images for SIFT
and ORB feature extraction. These image-based methods reveal
key patterns for identifying normal from focal EEG data. Later
feature selection keeps useful features, improving machine learning
classifier performance.

Experimental validation uses EEG data with Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN), and Random Forest
(RF) classifiers trained on extracted features. In Figure 3, the GASF-
based epilepsy detection system proceeds from data partitioning
to GASF image production, SIFT and ORB image-based feature

extraction, and feature selection. This preprocessing pipeline
improves EEG-based classification accuracy and efficacy, promising
neurological disease detection.

Formation of GASF images from time
series signals

To convert time-series signals into temporal images, Wang
and Oates proposed GASF where the input time series data is
normalized within the range [−1, 1] before being encoded (Wang
and Oates, 2015). Then through scaling, the time-series signal is
transformed from a Cartesian coordinate to a polar coordinate
thus preserving the input signal’s temporal information. Next,
the temporal association between the discrete-time points in the
polar coordinates are established through the application of the
trigonometric cosine function, resulting in a n×n dimensional
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FIGURE 3

Method proposed for developing an image-based system utilizing
the GASF images to extract and classify features from EEG signals.

Gramian matrix. Here, “n” denotes the sample points for the EEG
time period. This could be further explained as follows:

Let T = {t1, t2, . . . , tn} be a signal with “n” samples, and T be
rescaled to have an interval of [−1, 1]. This can be shown in the
following way Eq. 1:

T∼i
0 =

ti −min(T)

max(T)−min(T)
(1)

After that, the equation below is used to find the angle ϕ as
shown in Eq. 2.

ϕ = arccos
∼

( Ti
o) (2)

By adding up the angles of two points next to each other, “i” and
“j,” we can find their temporal correlations. This gives us the Gram
matrix called GASF. This can be written as in Eq. 3:

GASF =
[
cos

(
ϕi + ϕj

)]
(3)

Using this method, we can turn a specific time-series sample into
an image. This procedure allows for the extraction of important
features from the EEG data, which can then be used for further
analysis and classification. Additionally, GASF provides a compact

representation of the EEG signals, reducing the computational
complexity and memory requirements of the analysis process. The
Algorithm 1 summarizes the procedure of GASF.

Input:N epochs EEG Signal of length, I =256 samples
Output:GASF Matrix
Initialize square matrixGAFS[256,256]
for epoch→1, N do

Min - Max normalization of the time series data [−1,1]
Convertion of each time series ponts into Polar Co – ordinate
for time point→1, l do

Compute Correlation of the two ponts:cosine of the sum of
the angles of the two points

end for
end for

Algorithm 1 | Computation of GASF.

Once these steps are completed, we will have a GASF image
that represents our time series signal. This image can then be
used as input to machine learning algorithms for tasks such
as classification.

Image-based feature extraction with SIFT
and ORB

Our preprocessing pipeline leverages image-based feature
extraction with SIFT and ORB algorithms. The reason for selecting
these image-based features are their ability to capture local and
distinctive information from the EEG signals. The rationale behind
choosing these image-based features lies in their capability to
encapsulate localized and unique information from the EEG
signals. The robustness and adaptability of the SIFT and ORB
algorithms make them suitable choices for capturing intricate
details within the EEG signals, thereby enriching the feature set
used for further analysis and classification. These methods identify
keypoints in the EEG image, representing distinctive patterns in
the signal. By capturing scale-invariant and rotational-invariant
features, SIFT and ORB allow for robust feature extraction,
enabling accurate classification of normal and focal EEG signals.

SIFT feature extraction procedure

The four steps of the SIFT algorithm are described in more
detail below (Lowe, 2004):

1. Scale-space peak selection: This step involves constructing a
scale space to detect potential locations for finding features.
The Laplacian of Gaussian (LoG) is computed for the image
using different standard deviation (σ) values. The LoG serves
as a blob detector, capable of detecting blobs of different
sizes by utilizing variations in the scaling parameter, σ.
Nevertheless, due to its high computational cost, the SIFT
algorithm employs the Difference of Gaussians (DoG) method
as an approximation to the LoG. After the computation of
the DoG, a search is conducted on images to identify local
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extrema across both scale and space. This search aims to
identify potential locations of keypoints.

2. Keypoint Localization: After identifying the potential
keypoints locations, further refinement is performed to
enhance the accuracy of the outcomes. In order to enhance
the stability of the remaining keypoints, low-contrast
keypoints and edge responses are eliminated during the
process. Figure 4 shows the obtained feature points for the
normal and focal GASF images based on the SIFT method.

3. Orientation Assignment: The assignment of an orientation
is performed for each keypoints based on the local
image gradient directions. The operation achieves
invariance to rotation.

4. Keypoints Descriptor: The final step involves computing a
descriptor for each keypoints that captures the local image
information around it. The descriptor is then used for tasks
like image matching, object recognition, and image retrieval.

ORB feature extraction procedure

The ORB feature extraction technique is described in more
detail below (Rublee et al., 2011):

1. Convert the image to grayscale: Initially for ORB feature
extraction process the input image is converted to grayscale,
since like many image processing algorithms.

2. Initialize the ORB detector and detect the keypoints: ORB uses
the Features from Accelerated Segment Test (FAST) keypoint
detector to detect features in the image. FAST is employed to
detect corners and features points in the image. ORB also uses
a scale pyramid to produce multiscale features. Figure 4 shows

FIGURE 4

Feature Keypoint Representation based on SIFT and ORB feature
extraction methods for the normal and focal GASF images.

the obtained feature points for the normal and focal GASF
images based on ORB method.

3. Compute the descriptors: Once the keypoints have been
detected, the next step is to compute descriptors for each
keypoint. Descriptors capture information about the local
image region around each keypoint and are used for tasks such
as matching keypoints between images. For this, ORB uses
the Binary Robust Independent Elementary Features (BRIEF)
descriptor which takes a smoothed image patch and selects a
set of “nd (x,y)” location pairs in a unique way. Then, pixel
intensity comparisons are done on these location pairs. For
example, let the first location pair be “p” and “q.” If I(p) < I(q),
then its result is 1, else it is 0. This is applied for all the
“nd” location pairs to get an nd-dimensional bitstring. This
“nd” can be 128, 256 or 512. In this work, we have taken a
string length of 128. However, due to the poor performance
of BRIEF when rotated, ORB applies a rotation to the BRIEF
based on the keypoint orientation.

Bag of words

The Bag of Words (BoW) is a technique for representing images
as a set of unordered words, where each word corresponds to
a visual feature. In this case, 100 features were selected for the
classification of GASF images. Figure 5 shows a line graph with
two axes: the x-axis represents the visual words, and the y-axis
represents the frequency of each visual word in the image. The
higher the frequency of a visual word, the more likely it is that
the image contains that visual feature. The BoW representation of
an image is used for image classification. By comparing the BoW
representation of an image to the BoW representations of a set
of training images, it is possible to determine the class of the new
image or specifically a normal GASF or an abnormal GASF image.

Feature selection

After feature extraction, we perform feature selection to
retain the most informative keypoints. This step helps reduce
dimensionality, focusing on the most relevant features for EEG
signal classification. By retaining the most salient features, we
improve the efficiency of our subsequent machine learning
classifiers. The chi-square test was chosen for feature selection due
to its suitability for determining the association between categorical
variables, which is relevant in the context of feature selection for
machine learning. This statistical method is particularly well-suited
for datasets with categorical features, making it an appropriate
choice for the analysis of the extracted features from the EEG
data. We calculate the chi-square statistic between each feature and
the target variable and select the desired number of features with
the best chi-square scores. The idea is to select features that are
more strongly associated with the target variable, as indicated by
a low p-value. Figure 6 shows the selected discriminant features of
the SIFT and ORB features extracted from the GASF images. The
selected features alone are used for training the machine learning
classifiers (Zhou et al., 2013).
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FIGURE 5

Visual representation of the Bag of Words obtained from the (A) SIFT and (B) ORB feature extraction step. A total of 100 features are selected for the
classification of GASF images.

FIGURE 6

Top 10 features selected (A) SIFT (B) ORB for the training and validation of state-of-the-art classifiers.

Machine learning classifiers

Support Vector Machine, k-NN, and RF are the machine
learning classifiers implemented in this work. This is due to the
fact that these classifiers are all widely used and well-established
machine learning algorithms that have demonstrated excellent
performance in a variety of applications. SVMs are robust classifiers
that perform admirably with both linear and non-linear data. It is
especially advantageous when confronted with high-dimensional
data and possesses the capability to process extensive datasets.
Furthermore, SVM functions by identifying the most advantageous
hyperplane for class separation, with the objective of maximizing
the distance between this hyperplane and the data points that
are closest to each class. SVMs utilize support vectors, which are
the nearest data points, and employ kernel functions to represent
non-linear decision boundaries, making them well-suited for high-
dimensional data (Zhou and Li, 2020). In contrast, k-NN is a
straightforward and intuitive classifier that excels when the data
is represented as points in a space with multiple dimensions.

k-NN, which is simple but computationally demanding, operates
on the principle of data similarity. The process of binary image
categorization involves determining the class of a test example
by utilizing the majority class among its nearest neighbors and
identifying the “k” training examples that are closest to it in
feature space. The selection of the hyperparameter “k” is possible
via cross-validation; however, the computational requirements
may present difficulties when dealing with large datasets. In
contrast, RF is an ensemble learning technique that generates
predictions by combining multiple decision trees (Guerrero et al.,
2021). RF demonstrates exceptional performance in tasks involving
classification or regression. Multiple decision trees and their
predictions are utilized. By training each tree on a random subset
of the training data and features, overfitting is avoided and
generalization is improved. The ensemble methodology effectively
handles intricate decision boundaries, data with a high dimension,
and outliers.

The application of SVM, KNN, and RF in the context of
epilepsy identification from EEG recordings is influenced by a
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number of factors (Kumar et al., 2014). These classifiers enhance
the unique characteristics of the proposed method and offer evident
advantages over current state-of-the-art approaches (Kumar et al.,
2023).

Experimental results

We evaluate our preprocessing methodology by analyzing a
comprehensive collection of EEG recordings. The performance
of the classifier is evaluated for discrimination of normal and
GASF-based focal EEG patterns. A number of commonly employed
classifier metrics are utilized to evaluate the performance of the
three classifiers investigated in this study. Firstly, the confusion
matrix for three distinct machine learning algorithms—SVM, RF,
and k-NN—is depicted in Figure 7. A table that displays the
true and predicted classes for a given set of data is known as
the confusion matrix. The confusion matrix comprises numerical
values denoting the proportion of accurately classified data points
in comparison to the number of misclassified data points. To
determine the classifier’s overall accuracy, divide the sum of the
data points that were correctly classified by the total number of
data points. A valuable instrument for assessing the performance
of a machine learning algorithm is the confusion matrix. It can
be utilized to ascertain the accuracy of the classifier and identify
the classes that are being misclassified. The confusion matrix, as
illustrated in Figure 7, indicates that the quantity of accurate
predictions, specifically true positives (TP) and true negatives
(TN) (represented by the confusion matrix’s diagonal elements), is
relatively greater for both features in comparison to the number of
false positives (FP) and false negatives (FN) (off-diagonal elements).
Nevertheless, additional quantitative metrics are calculated in
accordance with the confusion matrix and are presented in Table 1.

The table provided here (Table 1) shows the performance of
different machine learning classifiers on two different feature sets
(SIFT and ORB) for image classification. The classifiers are SVM-
Radial Basis Function (SVM-RBF), RF, and k-NN. The Table 1
shows the following metrics for each classifier and feature set:

1. Accuracy (ACC): The ratio of correct predictions to the total
number of predictions made.

2. Precision (PRE): The ratio of TPs to the number of all
positive predictions.

3. Recall (RC): The ratio of TPs to the number of all
actual positives.

4. Specificity (SPEC): It measures how well a model correctly
identifies TNs out of all actual negatives in the data.

5. F1-Score (F1): A weighted average of PRE and RC.
6. AUC: The area under the ROC curve.
7. LogLoss: Log-loss measures the dissimilarity between the

actual target values and the predicted probabilities generated
by the classifier.

A higher value for each metric indicates better performance
except for Logloss, which measures the discrepancy between the
predicted and the actual probabilities. For the SIFT feature set, RF
has the highest ACC, PRE, RC, SPEC, F1-score and lowest Logloss
value. SVM has the second highest ACC, PRE, SPEC, RC, and F1-
score. k-NN has the lowest ACC, SPEC, PRE, RC, and F1-score.
Likewise, for the ORB feature set, RF has the highest AC, PRE,
SPEC, RC, and F1-score. Interestingly, k-NN has the second highest
ACC, PRE, SPEC, RC, and F1-score while SVM has the lowest ACC,
PRE, SPEC, RC, and F1-score. Overall, RF performs the best on
both feature sets, followed by SVM and k-NN.

Figure 8 illustrates the ROC-curves for the state-of-the-art
classifiers for the SIFT and ORB features. A ROC curve is a plot

FIGURE 7

Confusion Matrix for the state-of-the-art classifiers for the (A) SIFT and (B) ORB features.
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TABLE 1 Performance of the state-of-the-art classifiers for the SIFT and ORB based features.

Classifier/metrics Accuracy Precision Recall Specificity F1-score AUC LogLoss

SIFT

SVM 0.80 0.92 0.74 0.89 0.82 0.86 0.14231

RF 0.96 0.97 0.97 0.95 0.97 0.97 0.01274

k-NN 0.72 0.84 0.68 0.79 0.75 0.74 0.24960

ORB

SVM 0.72 0.87 0.65 0.84 0.74 0.83 0.25425

RF 0.94 0.97 0.94 0.95 0.95 0.95 0.02597

k-NN 0.78 0.96 0.68 0.95 0.79 0.81 0.18721

FIGURE 8

Receiver Operating Characteristic (ROC)-curve for the state-of-the-art classifiers for the (A) SIFT and (B) ORB features.

of the true positive rate (TPR) against the false positive rate (FPR).
The TPR is the ratio of true positives to the number of all actual
positives, and the FPR is the ratio of false positives to the number
of all actual negatives. In the Figure 8, the ROC curves for the SIFT
and ORB features are shown in (a) and (b), respectively. The SVM
classifier is shown in green, the RF classifier is shown in blue, and
the k-NN classifier is shown in orange.

The ROC curves show that the RF classifier performs the best
on both the SIFT and ORB features. The RF classifier has the highest
TPR at all FPR values, which means that it is the best at detecting
true positives while minimizing false positives. The SVM classifier
performs the second best on both the SIFT and ORB features. The
SVM classifier has a slightly lower TPR than the RF classifier, but
it also has a slightly lower FPR. This means that the SVM classifier
is slightly less likely to detect true positives, but it is also slightly
less likely to generate false positives. The k-NN classifier performs
comparatively less on both the SIFT and ORB features. The k-NN
classifier has a much lower TPR than the SVM and RF classifiers,
and it also has a much higher FPR. This means that the k-NN
classifier is much more likely to generate false positives, and it is also
much less likely to detect true positives. Overall, the RF classifier is
the best choice for image classification when using the SIFT or ORB
features. The SVM classifier is a good second choice, and the k-NN
classifier shall be avoided.

The experimental findings indicate that the classification
accuracy of our proposed pipeline is considerably enhanced
in comparison to baseline methods. The results of our study
demonstrate that the implementation of GASF, image-based
feature extraction utilizing SIFT, and feature selection significantly
improve the performance of EEG signal classification.

Noise analysis

In the field of EEG signal classification, noise is a common
problem that can make it difficult to extract meaningful
information from the data. In this study, we investigated the effects
of Gaussian noise on the accuracy of our proposed method of
image-based feature extraction and classification of EEG signals.
We first corrupted EEG signals with Gaussian noise at different
signal-to-noise ratios (SNRs). We then used GASF to convert the
EEG signals to images, SIFT and ORB to extract features from the
images, and RF to classify the features. As shown in Figure 9, the
GASF images of EEG signals corrupted with noise at high levels
(e.g., SNR = 5.0 dB) are significantly distorted compared to the
GASF images generated with low noise levels (e.g., SNR = 20.0 dB).
We computed the performance metrics of such noise EEG samples
(40 normal and 40 focal) using the proposed method and tabulated
in Table 2. The table shows the average ACC and F1-score for the

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1336157
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1336157 January 17, 2024 Time: 15:31 # 12

Krishnan et al. 10.3389/fnhum.2024.1336157

FIGURE 9

Electroencephalography (EEG) signals corrupted by Gaussian noise and its representation in GASF images (A) normal (B) Focal signals.

SIFT and ORB feature extractors at four different SNRs (5, 10, 15,
and 20 dBs). We found that the detection performance decreased as
the noise level increased. However, the accuracy remained relatively
high even at low SNRs (5 dB). This suggests that EEG signals can
still be used to accurately predict epilepsy conditions even in the
presence of noise using the proposed system. The results of this
study can be used to improve the robustness of EEG-based epilepsy
detection algorithms.

Discussion

The field of seizure detection has witnessed significant
advancements, as evidenced by the diverse methods presented
in this comparative study as shown in Table 3. The evaluated
methods employ various feature extraction techniques to enhance
the accuracy of seizure detection. In this discussion, we delve into
the strengths and limitations of each method, considering their
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TABLE 2 Validation of the proposed system for EEG signals corrupted by
Gaussian noise at different Signal to Noise Ratio (SNR).

Metrics/SNR 5 10 15 20

SIFT

Normal

Accuracy 93.3 93.8 94.6 95.2

F1-score 93.2 93.4 93.9 94.3

Focal

Accuracy 92.1 93.5 94.1 94.6

F1-score 92.6 92.8 93.7 94.4

ORB

Normal

Accuracy 91.4 91.7 92.1 92.8

F1-score 90.5 91.4 92.6 93.1

Focal

Accuracy 90.1 90.5 91.1 91.9

F1-score 89.3 90.4 91.0 91.6

implications for real-world applications and the broader landscape
of medical signal processing. It’s important to note that while other
schemes used EEG time series directly or transformed to other
domains such as Time-Frequency or binary patterns for epilepsy
detection, the proposed scheme in our work utilized image-based
analysis based on GASF images from the EEG signal. Therefore,
a direct comparison between the proposed method and the other
schemes is limited due to the difference in the nature of the data
used for analysis. However, we have included the results of other
schemes for reference and to provide context within the field.

The Third Order Cumulant was used by Sharma et al. (2020)
to generate statistical features for Higher Order Statistics (HOS).
With a sensitivity of 99.33%, specificity of 98.66%, and overall
accuracy of 99%, this approach performs quite well. The use of
HOS suggests a study of higher-order statistical moments, which
can identify complex patterns in the data. This method works very
well for identifying minute alterations linked to seizure activity.
Nevertheless, real-time applications may face difficulties due to the
computational cost of HOS-based approaches, requiring additional
optimization. Using entropy-based characteristics, Sairamya et al.
(2021) introduced the Quad Binary Pattern technique. The
technique yielded an accuracy of 95.74% with balanced sensitivity

(95.74%) and specificity (95.73%). An emphasis on capturing local
spatial correlations within the signal is suggested by the use of
binary patterns. Although the approach works well overall, it may
be vulnerable to signal artifacts or noise because of its reliance on
entropy properties. More research is necessary to determine how
reliable the Quad Binary Pattern approach is in the presence of
noise, particularly in situations where the quality of the data may
be at risk.

A method combining 1D-Convolutional Neural Network
(CNN) and Short-Time Fourier Transform (STFT) with multi-
feature fusion was presented by Xuyang et al. (2021). With
competitive sensitivity (92.50%), specificity (94.38%), and an
overall accuracy of 93.44%, the approach was successful. The
temporal and frequency information is captured by STFT, and the
model’s capacity to learn hierarchical features is improved by its
integration with 1D-CNN. Deep learning models’ interpretability
is still an issue, though, especially in medical applications where
getting the support of medical specialists requires being able
to comprehend the reasons behind a choice. A Deep Fusion
approach incorporating time, frequency, time-frequency, and
entropy information was presented by Wang et al. (2021). High
sensitivity (97.78%), specificity (97.42%), and accuracy (97.60%)
were obtained with this method. The model is able to utilize
complementary information from several areas because of the
deep fusion of distinct properties. Deep learning models, however,
frequently depend on vast quantities of labeled data, which can be
a constraint when it comes to medical datasets because obtaining
labeled samples can be resource-intensive.

In their seizure detection method, Zhao et al. (2023)
utilized STFT and a Fully Connected Neural Network (FCNN)
incorporating entropy and frequency domain characteristics. The
reported accuracy was 88.14%, yet comprehensive information on
sensitivity and specificity values was not provided. This absence
of specific metrics restricts a thorough evaluation of the overall
performance of the method. Furthermore, without detailed insights
into the features employed, a comprehensive assessment of the
strengths and weaknesses of the proposed strategy becomes limited.

With a sensitivity of 97% (SIFT) and 94% (ORB), our proposed
approach shows promising results with fewer false negatives.
With 95% as the specificity values for SIFT and ORB features
the proposed work provides good classification performance with
fewer false positives. Seizures can now be detected with an
additional dimension because of the incorporation of image-based
features. The suggested method makes a significant Contribution

TABLE 3 Comparison of the proposed GASF based epilepsy detection and state-of-the art methods on Bern Barcelona EEG dataset.

References Method Extracted features Sensitivity Specificity Accuracy

Sharma et al., 2020 Higher order statistics Statistical features from third
order Cumulant

99.33% 98.66% 99%

Sairamya et al., 2021 Quad binary pattern Entropy-based features 95.74% 95.73% 95.74%

Xuyang et al., 2021 STFT, 1D-CNN Multi-feature fusion 92.50% 94.38% 93.44%

Wang et al., 2021 Deep fusion Combination of time, frequency,
T-F and entropy features

97.78% 97.42% 97.60%

Zhao et al., 2023 STFT, FCNN Entropy, frequency domain
features

– – 88.14%

Proposed method GASF SIFT/ORB image features 97% (SIFT) 94% (ORB) 95% (SIFT/ORB) 96% (SIFT) 94% (ORB)
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To The Field because of its high sensitivity and specificity as
well as the interpretability of image-based elements. When these
techniques are taken as a whole, a number of general patterns
and issues become apparent. The trend toward integrating deep
learning techniques—as shown in the methodologies of Wang
et al. (2021) and Xuyang et al. (2021)—highlights neural networks
capacity to identify intricate patterns in EEG data. Nonetheless,
these models interpretability and explainability continue to be
important factors, especially in medical applications where choices
have an impact on patient care.

The selection of feature extraction methods is also crucial.
Conventional signal processing methods, such as frequency
analysis in Xuyang et al. (2021), and HOS in Sharma et al.
(2020), offer important insights into the spectral and temporal
properties of EEG signals. However, the suggested method’s use
of image-based properties marks a divergence from traditional
methods and creates opportunities for cross-disciplinary research.
Even with the progress demonstrated by these techniques, seizure
detection remains a chronic difficulty. Finding publicly accessible
benchmark datasets containing documented seizure occurrences
is difficult, which makes studies harder to replicate and compare.
The creation of benchmark datasets and the standardization
of assessment criteria can enable more thorough technique
comparisons, promoting cooperation and quickening the field’s
advancement.

Furthermore, there is a concern about how well these
techniques are suited to manage variability among subjects
and sessions. Since seizure patterns can differ greatly amongst
individuals, it is essential to modify models to accommodate a
wide range of patient demographics when using seizure detection
systems in clinical settings. Subsequent investigations ought to
concentrate on augmenting the applicability of models and tackling
the obstacles presented by the intrinsic fluctuations in EEG signals.
To sum up, this discussion’s comparative analysis of seizure
detection techniques offers a thorough picture of the state of
the art. Whether through conventional signal processing, deep
learning, or novel feature extraction approaches, each method
offers distinctive insights. Despite ongoing difficulties, the area’s
aggregate advancements have positioned seizure detection as a
dynamic, developing discipline that has the potential to have a
big influence on clinical practice. The future of seizure detection
will surely be shaped by ongoing cooperation, standardization,
and the investigation of interdisciplinary approaches, ultimately
helping those who have epilepsy and furthering the field of medical
signal processing.

Conclusion

In this work, our paper findings demonstrate the significant
improvements in classification accuracy achieved through the
proposed EEG signal preprocessing approach. The incorporation
of GASF robust image formation, image-based feature extraction
using SIFT and ORB, and feature selection has resulted in a
classification accuracy of 96% using SIFT features and 94%
using ORB features. These results are comparable to the state-
of-the-art approaches in accuracy, precision, recall, F1-score,
specificity, and AUC metrics. The implications of these findings
are substantial, as they underscore the potential of the proposed

methodology to advance the field of epilepsy detection and EEG-
based diagnosis. The enhanced classification accuracy achieved
through the proposed approach signifies a significant step forward
in improving the diagnostic precision of EEG-based neurological
disorders. The validation of the proposed system for EEG signals
corrupted by Gaussian noise at different Signal to Noise Ratio
(SNR) further highlights the robustness of the proposed approach.
However, it is imperative to note that further research is essential
to explore alternative feature extraction techniques, integrate deep
learning models, investigate preprocessing parameters, and assess
the generalizability of the proposed approach to larger and more
diverse datasets. These avenues of future research hold promise
for advancing the field of epilepsy detection and EEG-based
diagnosis, ultimately benefiting individuals affected by epilepsy and
contributing to the progression of medical signal processing.
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