9,984 research outputs found

    SUNNY with Algorithm Configuration

    Get PDF
    International audienceThe SUNNY algorithm is a portfolio technique originally tailored for Constraint Satisfaction Problems (CSPs). SUNNY allows to select a set of solvers to be run on a given CSP, and was proven to be effective in the MiniZinc Challenge, i.e., the yearly international competition for CP solvers. In 2015, SUNNY was compared with other solver selectors in the first ICON Challenge on algorithm selection with less satisfactory performance. In this paper we briefly describe the new version of the SUNNY approach for algorithm selection, that was submitted to the first Open Algorithm Selection Challenge

    sunny-as2: Enhancing SUNNY for Algorithm Selection

    Get PDF
    SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint Programming (CP). SUNNY enables to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP problem. This approach has proved to be effective for CP problems, and its parallel version won many gold medals in the Open category of the MiniZinc Challenge -- the yearly international competition for CP solvers. In 2015, the ASlib benchmarks were released for comparing AS systems coming from disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic AS problems. This led to the development of sunny-as2, an algorithm selector based on SUNNY for ASlib scenarios. A preliminary version of sunny-as2 was submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it turned out to be the best approach for the runtime minimization of decision problems. In this work, we present the technical advancements of sunny-as2, including: (i) wrapper-based feature selection; (ii) a training approach combining feature selection and neighbourhood size configuration; (iii) the application of nested cross-validation. We show how sunny-as2 performance varies depending on the considered AS scenarios, and we discuss its strengths and weaknesses. Finally, we also show how sunny-as2 improves on its preliminary version submitted to OASC

    A Multicore Tool for Constraint Solving

    Get PDF
    *** To appear in IJCAI 2015 proceedings *** In Constraint Programming (CP), a portfolio solver uses a variety of different solvers for solving a given Constraint Satisfaction / Optimization Problem. In this paper we introduce sunny-cp2: the first parallel CP portfolio solver that enables a dynamic, cooperative, and simultaneous execution of its solvers in a multicore setting. It incorporates state-of-the-art solvers, providing also a usable and configurable framework. Empirical results are very promising. sunny-cp2 can even outperform the performance of the oracle solver which always selects the best solver of the portfolio for a given problem

    A hierarchical architecture for increasing efficiency of large photovoltaic plants under non-homogeneous solar irradiation

    Get PDF
    Under non-homogeneous solar irradiation, photovoltaic (PV) panels receive different solar irradiance, resulting in a decrease in efficiency of the PV generation system. There are a few technical options to fix this issue that goes under the name of mismatch. One of these is the reconfiguration of the PV generation system, namely changing the connections of the PV panels from the initial configuration to the optimal one. Such technique has been widely considered for small systems, due to the excessive number of required switches. In this paper, the authors propose a new method for increasing the efficiency of large PV systems under non-homogeneous solar irradiation using Series-Parallel (SP) topology. In the first part of the paper, the authors propose a method containing two key points: a switching matrix to change the connection of PV panels based on SP topology and the proof that the SP-based reconfiguration method can increase the efficiency of the photovoltaic system up to 50%. In the second part, the authors propose the extension of the method proposed in the first part to improve the efficiency of large solar generation systems by means of a two-levels architecture to minimize the cost of fabrication of the switching matrix

    Experimental tests to recover the photovoltaic power by battery system

    Get PDF
    The uncertainty and variability of the Renewable Energy Sources (RES) power plants within the power grid is an open issue. The present study focuses on the use of batteries to overcome the limitations associated with the photovoltaic inverter operation, trying to maximize the global energy produced. A set of switches, was placed between a few photovoltaic modules and a commercial inverter, capable to change configuration of the plant dynamically. Such system stores the power that the inverter is not able to let into the grid inside batteries. At the base of this optimization, there is the achievement of two main configurations in which the batteries and the photovoltaic modules are electrically connected in an appropriate manner as a function of inverter efficiency and thus solar radiation. A control board and the relative program, to change the configuration, was designed and implemented, based on the value of the measured radiation, current, batteries voltage, and calculated inverter efficiency. Finally from the cost and impact analysis we can say that, today the technology of lithium batteries, for this application, is still too expensive in comparison with lead-acid batteries

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation
    • …
    corecore