658 research outputs found

    Techniques for Aging, Soft Errors and Temperature to Increase the Reliability of Embedded On-Chip Systems

    Get PDF
    This thesis investigates the challenge of providing an abstracted, yet sufficiently accurate reliability estimation for embedded on-chip systems. In addition, it also proposes new techniques to increase the reliability of register files within processors against aging effects and soft errors. It also introduces a novel thermal measurement setup that perspicuously captures the infrared images of modern multi-core processors

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Design of Negative Bias Temperature Instability (NBTI) Tolerant Register File

    Get PDF
    Degradation of transistor parameter values due to Negative Bias Temperature Instability (NBTI) has emerged as a major reliability problem in current and future technology generations. NBTI Aging of a Static Random Access Memory (SRAM) cell leads to a lower noise margin, thereby increasing the failure rate. The register file, which consists of an array of SRAM cells, can suffer from data loss, leading to a system failure. In this work, we study the source of NBTI stress in an architecture and physical register file. Based on our study, we modified the register file structure to reduce the NBTI degradation and improve the overall system reliability. Having evaluated new register file structures, we find that our techniques substantially improve reliability of the register files. The new register files have small overhead, while in some cases they provide saving in area and power

    Multi-criteria optimization for energy-efficient multi-core systems-on-chip

    Get PDF
    The steady down-scaling of transistor dimensions has made possible the evolutionary progress leading to today’s high-performance multi-GHz microprocessors and core based System-on-Chip (SoC) that offer superior performance, dramatically reduced cost per function, and much-reduced physical size compared to their predecessors. On the negative side, this rapid scaling however also translates to high power densities, higher operating temperatures and reduced reliability making it imperative to address design issues that have cropped up in its wake. In particular, the aggressive physical miniaturization have increased CMOS fault sensitivity to the extent that many reliability constraints pose threat to the device normal operation and accelerate the onset of wearout-based failures. Among various wearout-based failure mechanisms, Negative biased temperature instability (NBTI) has been recognized as the most critical source of device aging. The urge of reliable, low-power circuits is driving the EDA community to develop new design techniques, circuit solutions, algorithms, and software, that can address these critical issues. Unfortunately, this challenge is complicated by the fact that power and reliability are known to be intrinsically conflicting metrics: traditional solutions to improve reliability such as redundancy, increase of voltage levels, and up-sizing of critical devices do contrast with traditional low-power solutions, which rely on compact architectures, scaled supply voltages, and small devices. This dissertation focuses on methodologies to bridge this gap and establishes an important link between low-power solutions and aging effects. More specifically, we proposed new architectural solutions based on power management strategies to enable the design of low-power, aging aware cache memories. Cache memories are one of the most critical components for warranting reliable and timely operation. However, they are also more susceptible to aging effects. Due to symmetric structure of a memory cell, aging occurs regardless of the fact that a cell (or word) is accessed or not. Moreover, aging is a worst-case matric and line with worst-case access pattern determines the aging of the entire cache. In order to stop the aging of a memory cell, it must be put into a proper idle state when a cell (or word) is not accessed which require proper management of the idleness of each atomic unit of power management. We have proposed several reliability management techniques based on the idea of cache partitioning to alleviate NBTI-induced aging and obtain joint energy and lifetime benefits. We introduce graceful degradation mechanism which allows different cache blocks into which a cache is partitioned to age at different rates. This implies that various sub-blocks become unreliable at different times, and the cache keeps functioning with reduced efficiency. We extended the capabilities of this architecture by integrating the concept of reconfigurable caches to maintain the performance of the cache throughout its lifetime. By this strategy, whenever a block becomes unreliable, the remaining cache is reconfigured to work as a smaller size cache with only a marginal degradation of performance. Many mission-critical applications require guaranteed lifetime of their operations and therefore the hardware implementing their functionality. Such constraints are usually enforced by means of various reliability enhancing solutions mostly based on redundancy which are not energy-friendly. In our work, we have proposed a novel cache architecture in which a smart use of cache partitions for redundancy allows us to obtain cache that meet a desired lifetime target with minimal energy consumption

    Thermal Management for Dependable On-Chip Systems

    Get PDF
    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements
    corecore