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Abstract

Design of Negative Bias Temperature Instability (NBTI) Tolerant Register File

by

Saurabh Kothawade, Master of Science

Utah State University, 2011

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

Degradation of transistor parameter values due to Negative Bias Temperature Insta-

bility (NBTI) has emerged as a major reliability problem in current and future technology

generations. NBTI Aging of a Static Random Access Memory (SRAM) cell leads to a lower

noise margin, thereby increasing the failure rate. The register file, which consists of an

array of SRAM cells, can suffer from data loss, leading to a system failure. In this work, we

study the source of NBTI stress in an architecture and physical register file. Based on our

study, we modified the register file structure to reduce the NBTI degradation and improve

the overall system reliability. Having evaluated new register file structures, we find that our

techniques substantially improve reliability of the register files. The new register files have

small overhead, while in some cases they provide saving in area and power.

(58 pages)
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Public Abstract

Design of Negative Bias Temperature Instability (NBTI) Tolerant Register File

by

Saurabh Kothawade, Master of Science

Utah State University, 2011

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

Negative Bias Temperature Instability (NBTI) is becoming a major reliability problem

in the semiconductor industry. As time passes, NBTI reduces the capacity of performing

correct computations in the microprocessor. Hence, after certain time period, the micro-

processor may fail to work as we expect, causing failure of the entire system it is part of.

In this research, we study the root cause of the failure due to NBTI effect. Based on our

findings, we propose multiple methods to reduce the negative impact of NBTI on a micro-

processor. We build a comprehensive experimental setup to consider real world effects in

a microprocessor. We evaluate our methods against the previous work and find that our

methods substantially improve the processor reliability. This research could be useful in

the future to extend lifetime of the processor.
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Chapter 1

Introduction

Negative Bias Temperature Instability (NBTI) has emerged as a major reliability chal-

lenge for the semiconductor industry in recent years. NBTI impact is getting worse in each

technology generation with greater performance and reliability loss. When a negative volt-

age is applied at a p-channel transistor (PMOS) gate, interface traps are formed near oxide

layer, causing a change in transistor characteristics. When the input to a PMOS is low (logic

zero), the transistor is in a stress phase. During the stress phase, the transistor parameters

slowly deviate from the nominal value. When the input to the PMOS is high (logic one), the

transistor is in a recovery phase. During the recovery phase, trapped charges are released,

regaining the original transistor state. The PMOS enters into stress and recovery phases

alternately, when the input to the PMOS is dynamic. Longer the stress period, higher is

the impact of NBTI on transistor parameters. Therefore, input to the transistor indirectly

determines the extent of NBTI degradation.

Static Random Access Memory (SRAM) cells, which are the key elements in register

files and caches, are severely affected due to the NBTI aging. An SRAM cell storing the same

value for a large period of time undergoes highly unbalanced stress, causing a substantial

reduction in its reliability characteristics. This degradation of reliability of the SRAM cell

can result in a loss of the stored value. Therefore, register files and caches are highly prone

to failures due to NBTI. Recent works have proposed techniques to improve reliability in

the physical register file by extending the recovery period during idle cycles [1, 2]. They

manipulate bit cell contents during the idle periods of physical registers to relax one or more

PMOS transistors. However, the effectiveness of these techniques strongly depend on the

length of the available idle period. A power-efficient physical register file, where its total

capacity is closer to the architectural register file size, is likely to have a substantially shorter
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idle period, thereby limiting the reliability boost achievable through these techniques.

In our work, we target NBTI degradation in both architecture and physical register files.

To improve the reliability of the physical register file, we use an orthogonal approach with

instruction level analysis, instead of exploiting idle cycles. We investigate NBTI stress from

the output values generated during instruction execution and its propagation in the register

file. Based on this approach, we observe a wide variability in the NBTI stress induced

by different instructions in a physical register file. While some instructions inherently

produce high stress output values, others generate substantially lower NBTI stress. Using

this approach, we design predictors to detect instructions producing large NBTI stress, and

design an NBTI tolerant physical register file.

The nature of NBTI degradation in an architecture register file is different from that in

a physical register file. To mitigate the NBTI degradation in an architecture register file, we

study the stress pattern generated by interleaving of applications. The resultant degradation

is worse than perceived by analyzing applications in isolation. Recently proposed techniques

of periodic inversion of stored bits [1, 3] are unable to mitigate such realistic use scenarios.

While these techniques tackle the bias in the bit pattern, they perform poorly when the bit

patterns exhibit wide variability.

We analyze the differential stress in an architecture register file using an end-to-end

approach through a comprehensive circuit-architectural analysis of SRAM cells. We analyze

the behavior pattern by running a sequence of applications on a microprocessor, mimick-

ing the real life scenario of a typical desktop computer system. Our end-to-end approach,

which is able to simultaneously model multiple layers of system design abstractions (ap-

plications, operating systems, architecture, circuit), provides a more realistic modeling of

NBTI degradation in a register file.

To mitigate the limitations of the existing techniques for NBTI mitigation in a register

file, we propose several micro-architecture techniques to uniformly spread out both the

inherent bias and variability of the bit patterns across the entire pool of SRAM cells in the

register file. Our techniques are able to achieve substantially robust aging characteristics,
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across a wide spectrum of use scenarios.

Key contributions of this work are as follows:

• First, we study the NBTI effect and its impact on an SRAM cell. We measure reliabil-

ity of the cell in terms of Static Noise Margin (SNM). We identify the input probability

as a primary factor of the reliability degradation and study its relation with SNM.

Further, we evaluate the benefits of the transistor sizing and supply voltage scaling

for NBTI mitigation.

• We investigate the nature of the NBTI degradation in an architecture and physical

register file. We find source of NBTI stress and propose techniques to minimize the

NBTI stress in each register file.

• To measure impact of the NBTI at the processor level, we build a circuit-architecture

simulation framework. This framework combines transistor simulations, Register

Transfer Level (RTL) synthesis, and full-system architecture simulations to give sys-

tem level idea of the NBTI degradation for real programs on a typical desktop envi-

ronment.

• We evaluate performance of our proposed techniques for various configurations and

compare them with the previous work. We find that our techniques provide better

robustness at lower overhead for a variety of register file design. Our techniques for

the architecture register file reduce the reliability degradation by 2.2X and lower the

uncertainity by 14X. Similarly, the modifications in the physical register file improve

the reliability by 125% at 22nm technology node.

The remainder of this thesis is organized as follows: Chapter 2 covers the previous work

discussing the NBTI effect and its impact on Very Large Scale Integrated (VLSI) circuits.

In Chapter 3, we discuss NBTI impact on the reliability of an SRAM cell. In Chapter 4,

we study NBTI impact in an architecture register file. This chapter includes description

of our proposed techniques and results showing improvement in the reliability. In Chapter

5, we analyze the NBTI stress in a physical register file. We propose modifications in the
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physical register file structure and register renaming policy. This chapter shows results of

SNM improvement in the physical register file due to our techniques. We complete this

report with a conclusion in Chapter 6.
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Chapter 2

Related Work

Several papers have discussed NBTI mechanism and its impact on transistor parameters

[4–7]. Bhardwaj et al. proposed a predictive model to calculate shift in threshold voltage

of transistor due to aging [8]. Recent work has proposed numerical simulation engine for

NBTI-induced aging, based on reaction-diffusion model [9].

Memory circuits are severely affected by aging as its transistors are less frequently

switched than logic circuits. Reddy et al. discuss NBTI effect in SRAM cell [10]. This

work excludes analysis of dynamic input pattern on degradation. More recent work [11]

measures degradation in reliability of 6T SRAM cell due to BTI. Kang et al. provide a

thorough study on reliability issues related to SRAM, and discuss yield and other failure

rates when considering SRAM arrays [12]. Both of these work do not propose any method

to improve reliability. Yang et al. assess BTI impact on 8T SRAM cell [13] and power-

gated SRAM cell [14]. But their work do not consider sequence of input bias pattern found

in desktop computers. Kumar et al. investigate the SRAM reliability characteristics and

propose the bit inversion techniques for SRAM based caches [3]. However, their technique

is not applicable for timing critical components like register file as it may add extra delay

for register access. Recent work [9] discusses limited benefits of previously proposed miti-

gation techniques for combinational circuits including an NBTI aware scheduling, lifetime

awareness and Adaptive Body Biasing [15–17] However, our work targets register file, which

has different a structure from combinational circuits.

At the architecture level, Abella et al. discuss the importance of NBTI in microproces-

sor design, and discuss a few methods for the critical structures of the microprocessor [1].

They consider the physical register file, and exploit idle cycles for recovering NBTI stress.

Similarly, Siddiqua and Gurumurthi suggest using modified SRAM cells with Recovery
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Boosting technique during unmapped period of physical registers [2]. Both of these work

strongly depend on availability of idle cycles. In a tightly designed processor, where num-

ber of entries in physical register file are limited, available idle cycle period is shorter. In

such architectures, benefits from idle period based recovery mechanism are smaller. Our

technique handles NBTI stress itself in efficient manner rather than using idle cycles for

recovery. Another similar work also targets the idle cycles in a superscalar out-of-order

processor design [18]. Fu et al. propose microarchitecture changes in register file design

to target PV and NBTI together [19]. However, their work improves access delay, not

reliability.

DeBole et al. discuss NBTI degradation in a pipelined processor [20]. However, their

work excludes NBTI impact on the register file. Wang et al. study temperature effect on

NBTI degradation and propose input vector control techniques for reducing NBTI impact

[21]. Tiwari and Torrellas propose aging-driven application scheduling to hide aging due to

NBTI [16]. Khan and Kundu propose changing operating frequency and supply voltage at

run-time to improve processor reliabilty against NBTI [22]. All of the above work target

timings delays due to NBTI, not the noise margin.



7

Chapter 3

Background

SRAM cells are widely used in modern processors to implement register files and on-

chip caches. SRAM cells have several key performance characteristics, which have widely

varying effect with NBTI aging. Table 3.1 gives an overview of the aging effects on SRAM

performance metrics [11,12,23,24]. Apart from read and write related metrics, SNM is the

critical reliability metric in an SRAM cell. During the read operation, SRAM cells become

most susceptible to failure as the SNM is reduced substantially [25]. The SNM during the

read operation is also called the Read Noise Margin [26]. For the rest of this report, we

measure the SNM during read operations in the SRAM cell.

As the table outlines, read and write delay shows minimal effect from NBTI aging

(write delay shows a modest improvement). The detrimental effect of NBTI wearout is

most prominent in the SNM and the Data Retention Voltage (DRV), which dictate the

read stability failures and power savings potential, respectively. In this work, we focus on

characterizing and mitigating SNM degradation, which determines the reliable operation

in an SRAM-based register file. We illustrate this degradation using HSPICE simulation

next.

3.1 SNM Calculation in a SRAM Cell

Figure 3.1(a) shows the standard 6-T SRAM cell. It consists of two inverters that store

complementary values at all times. The WL line is enabled to write a value, while the BL

line is used to carry data to be stored in the cell. The data is retained in the cell by turning

off access transistors M5, M6. To read data, the word line is set high and the bitline value

is retrieved.

The SNM is the measure of the minimum DC noise voltage that leads to the loss of the
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Table 3.1: Impact of NBTI aging on SRAM performance metrics.

Metrics Description NBTI Effect

Read Delay Latency
Minimal degrada-
tion [23]

Write Delay Latency
Modest improve-
ment [23]

SNM
Minimum voltage
causing bit flip

Significant degra-
dation

DRV
Minimum supply
voltage reqd. to
retain data

Significant degra-
dation [24]

Read Stability
Read failure
rates

Negatively af-
fected [11,12]

Write Stability
Write failure
rates

Modest improve-
ment [11,12]

stored value. SNM value can be measured from the transfer characteristics of an SRAM

cell. Figure 3.1(b) shows the butterfly curve of the SRAM cell during a read operation,

which is used to find the SNM. The SNM equals to the side of the square nested between

the two curves with the longest diagonal [26]. Therefore, the length X in Figure 3.1(b)

represents the SNM of the SRAM cell.

3.2 NBTI Effect Measurement

When gate voltage of PMOS is negative, holes in inversion layer break Si-H bonds at

oxide layer. It leads to increase in absolute value of threshold voltage of transistor.

V
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(a) 6T SRAM cell.

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

V  (mV)L

V
  
(m

V
)

R

x

(b) Transfer characteristics during read opera-
tion.

Fig. 3.1: 6T SRAM cell and butterfly curve.
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This forms stress phase of NBTI. In recovery phase, gate voltage of PMOS is positive,

annealing interface traps. Threshold voltage starts restoring to original value slowly. Similar

chain of events occur in n-channel transistor (NMOS) with high-k metal gate due to electron

trapping. NMOS is stressed when gate voltage is high, while recovery happens when input

is low.

We model a standard 6-T SRAM cell in SPICE to measure its NBTI impact. The NBTI

wearout leads to an increase in the threshold voltage of the transistors M2, M4 and M1, M3

respectively, which alters their transfer characteristics. As a result, the voltage difference

between the cell nodes, or the noise margin, is reduced. We evaluate SNM at different

time intervals by measuring this potential difference. We use a predictive NBTI model

to determine the change in transistor threshold voltage due to NBTI [24]. Equation (3.1)

provides closed form expression for upper bound of long-term threshold voltage change(∆Vt)

[8].

∆Vt =

(

√

Kv
2αTclk

1 − β
1/2n
t

)2n

(3.1)

Table 3.2 gives details of parameters used in Equation (3.1).

For the HSPICE simulations, we use the Predictive Technology Model (PTM) [27].

3.3 Input Bias Pattern Representation

Table 3.2: Parameters to estimate long-term threshold voltage change due to NBTI.

Parameter Value

βt 1 − 2ξ1te+
√

ξ2C(1−α)Tclk

(1+δ)tox+
√

Ct

Kv

(

qtox

ǫox

)3
K2Cox(Vgs − Vt)

√
Cexp

(

2Eox

Eo

)

To 10−8

C T−1
o .exp(−Ea/kT )

ξ1 0.95
δ 0.5

Ea(eV ) 0.49
Eo(V/nm) 0.335
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Effects of NBTI are caused due to certain input values at transistors. Thus input

pattern to transistor is primary driving factor for NBTI degradation. To understand input

pattern better, we introduce a parameter, viz. One Bias Probability (OBP). OBP is prob-

ability of a transistor input to be at logic “1.” When OBP is close to “0.0” (0%), PMOS is

stressed for most of the time. The NBTI recovery occurs when OBP of PMOS is at logic

“0.”

3.4 SNM Degradation

Figure 3.2 shows the SNM degradation due to NBTI as a function of time across mul-

tiple technology nodes. There is a rapid deterioration in SNM in the first year, followed by

more progressive deterioration. The deterioration is more pronounced at lower technology

nodes. For example, 22nm technology node shows more than 40% degradation in SRAM

reliability after 5 years.

In Figure 3.2, we assumed a OBP of 0.1. Essentially, OBP of SRAM cell indicates the

period of time when cell stores logic value of one. The SNM degradation strongly depends

on the OBP of the cell, and Figure 3.3 shows this relationship. Degradation is lowest when

the OBP is exactly 0.5, as both the PMOS transistors experience uniform stress, resulting

in least reliability degradation. Note that in the figure, we only show the OBP from one

complementary PMOS. Similar SNM degradation has been also been shown in the recent

past [3, 12].
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Fig. 3.2: Lifetime SNM degradation (NBTI).



11

OBP
0.01 0.05 0.1 0.2 0.3 0.4 0.5

%
 S

N
M

 d
eg

ra
da

tio
n

0

20

40

60

80

100

normally−sized

up−sized

Fig. 3.3: Impact of OBP on SNM degradation due to NBTI (7 years, 22nm). The second
bar indicates SNM degradation after upsizing transistors in the SRAM cell.

3.5 Impact of Transistor Sizing

Transistor sizing is one of the methods used to increase tolerance towards NBTI. Previ-

ous works have used transistor sizing for NBTI mitigation in combinational circuits [28,29].

In our work, we exploit up-sized transistors to improve the SNM of the physical register file

(Chapter 5). The line marked with the up-triangles in Figure 3.2 indicates SNM degradation

for such a cell. It can be observed that SNM degradation reduces by a large extent when

compared to an SRAM cell without sized transistors (line marked with squares). Similarly,

Figure 3.3 shows improvement in the SNM for all OBP values compared to the original cell.

3.6 Impact of Supply Voltage Scaling

The lost noise immunity of an SRAM cell can be improved by increasing the supply

voltage of the circuit. Previous works have used the supply voltage scaling for increasing

the NBTI tolerance of circuits [30,31]. Voltage scaling helps to mitigate NBTI effects, but

it has a power overhead. Higher supply voltage results in the higher power consumption.

Figure 3.4 shows improvement in SNM of an SRAM cell due to 20% voltage scaling.
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Fig. 3.4: Impact of OBP on SNM degradation due to NBTI (7 years, 22nm). The second
bar indicates SNM degradation after 20% supply voltage scaling.
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Chapter 4

NBTI Mitigation in Architecture Register File

In this chapter, we discuss NBTI impact on the architecture register file. We propose

few techniques to balance NBTI stress in the architecture register file and present benefits

of using new design.

4.1 OBP Characteristics of Applications

With SNM degradation profile as shown in Figure 3.4, it is now important to understand

the stress induced in a real system. In this work our focus is on the register file. To get the

program generated values, we simulate several SPEC CPU2006 benchmarks on a SPARC V9

architecture (see Section 5.4 for detailed methodology) [32]. Figure 4.1 shows the variation

present in the OBP of four register groups (global, local, input, output) in the integer

register file. There are eight 64-bit registers in each of these groups, and we show the

average OBP across all the 8X64 bits after a run of 100 million instructions.

Across a range of applications, the average OBP in the entire register file is 0.22. How-

ever, the key observation is the variability in OBP across the register file. For example, the

lowest OBP is seen in the local registers for gcc benchmark, while the highest is seen in hm-

mer for the input register group. Even within an individual group of registers, applications

show large diversity in the OBP. For example, the in registers show OBPs of 0.2 and 0.58

in perlbench and hmmer, respectively. Although this analysis is specific to the SPARC V9

ISA, we expect the general conclusion on variability across different programs to hold true

for several other ISAs.

In the light of these wide variations in OBP across different applications, it is imperative

to analyze the resultant effect of interleaving application characteristics. Indeed, in a real

system, the Operating System (OS) schedules various applications to run on the processor,
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Fig. 4.1: Diversity in OBP among SPEC 2006 benchmarks.

thereby inducing a combination of stress patterns from individual programs on the register

file. We investigate the impact of this behavior in Section 4.3, after briefly discussing the

existing techniques to mitigate SNM degradation in the on-chip SRAM memory structures

next.

4.2 Improving SNM Through Periodic Bit Inversion

To prevent SNM degradation in SRAM-based cache memories, Kumar et al. proposed

a periodic cell flipping technique that aims to maintain bit OBP at 0.5 [3], whereas the

average OBP across all registers is 0.22 (Figure 4.1). This technique inverts bits after

regular time intervals to make sure each cell stores opposite values for half of the time.

During the period of inversion, input data is inverted and stored while the outgoing data is

sent back in inverted form. This simple technique works well in caches where bit values are

less frequently changed. We refer to this scheme as INV in this work. The bit patterns in a

register file, however, show widely varying OBP when we consider interleaving of program

characteristics. We rigorously analyze such use scenarios next.

4.3 Impact of Application Interleaving

In this section, we investigate the impact of running multiple applications in arbitrary

sequences on the SNM degradation.
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In a modern desktop computer, the OS schedules different applications for small time

epochs. Consequently, register bit patterns from different programs are interleaved, result-

ing in random sequences of bit values stored in the register SRAM cells. To investigate the

impact of this real world scenario, we collect the one bias probability of every single regis-

ter bit seen in various phases of a program. Different phases from different programs are

then interleaved to create a sequence of realistic execution. We separate each benchmark

in multiple 10ms phases, which is the typical OS scheduling quantum.

Figure 4.2 shows a pictorial representation. After collecting the OBP of each phase

(α0, α1, α2,...), we evaluate the impact of the INV scheme by complementing the OBP of

alternating schemes. In any such sequence, the degradation of the entire register file will

be dictated by the worst case OBP among all the register bits in the processor. The overall

OBP after using the inverter technique is given by:

OBPINV = 1/N ∗ (α0 + 1 − α1 + α2...). (4.1)

4.3.1 Limitations of Periodic Bit Inversion

Periodic bit inversion works well when the OBP remains more or less steady, as is

expected within a single application. So when values of α0, α1, and so forth are close,

the inverter technique gives an overall OBP of 0.5, completely negating their inherent bias.
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Fig. 4.2: Register bit level stress from sequence of application phases. We use 10ms as the
time period T , a typical scheduling quantum in modern operating systems, in our analysis.
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However, if the variance of OBP in the sequence is high, the resultant OBP starts to diverge

away from the optimal 0.5. Consider, a situation when individual OBP are given as (0.1,

0.9, 0.2, 0.8, 0.1,..). In this case, the variation is high and overall OBP is much smaller than

0.5.

4.3.2 Results of Application Sequences

Manifestation of NBTI degradation in the chip-level performance occurs over a long

period of time, typically 5–10 years. Clearly, it is impractical to run a simulation for such a

long period. Therefore, to estimate the impact of arbitrary application sequences over such

a long time, we followed the following methodology. Our goal here is to determine the worst

case OBP in the register file, as degradation in a single bit dictates the overall degradation

of the architectural register file.

To realize this goal in an experimental setup, we want to understand the impact of

application interleaving on the resultant OBP for a typical day in the entire aging period.

Subsequently, we assume that such days dominate throughout the aging period, determin-

ing the OBP for the entire aging period. However, even a full day’s simulation can take

multiple years in an architectural simulation tool. To resolve this issue, we first analyze

15 different benchmarks from the SPEC CPU2006 suite. Since in the presence of other

runnable applications, a typical case in the real life, the OS will schedule an application

for a pre-defined scheduling quanta (e.g., 10ms), we collect the OBP of several consecutive

runs of 10ms in each benchmark. Finally, we randomly combine these phases to construct

a typical application interleaving scenario of a whole day from these benchmarks. Since

these combinations can be done in a large number of ways, we randomly select 2000 of such

combinations. Within each combination, we analyze the worst case OBP across all register

bits using the INV technique. Figure 4.3 shows a scatter plot from this study.

Clearly, when we consider application interleaving, periodically inverting the bit values

is unable to bring the resultant OBP close to the best possible value. The median OBP in

the sample is 0.131. For more than 30% of the examined execution sequences, we notice

a OBP lower than 0.05, indicating severe SNM degradation (Figure 3.3). In general, the
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Fig. 4.3: OBP with periodic inversion on application sequences (0.5 is optimal).

uncertainty of the resultant OBP is high, with a standard deviation of 0.142. Since, INV of

SRAM bits is unable to adapt to the fluctuating program characteristics, it cannot achieve

the desired OBP for several possible application interleaving patterns.

4.4 Micro-Architecture Technique

We now propose two micro-architecture techniques to balance the NBTI stress across

the register file. The first technique targets irregular register usage by altering the register

decoding, while the second targets the bias in program values. Together, these techniques

reduce the bias and variability of the OBP in SRAM arrays, along both the column and

rows of a register file. We describe these two techniques and their combination (Sections

4.4.1, 4.4.2, and 4.4.3), and then discuss their implementation in a pipelined microprocessor

in Section 4.4.4.

4.4.1 Register Rotation (RR)

Each register file has rows and columns of 6T SRAM cells to store register values. A

particular architectural register uses one such row where bits are stored in column cells.

Traditionally, the same physical SRAM cell is used for storing the value of a particular
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register throughout the processor’s lifetime. This static mapping between architectural

register and the physical SRAM cells lead to a high variance in OBP seen across the entire

register file. Our goal is to eliminate these static links between registers and SRAM cells

by dynamically changing the register decoding scheme.

For the ease of illustration, Figure 4.4 shows a simple 8-bit register file with eight

registers. Subsequent evaluations are carried out on 64-bit registers in SPARC V9. In

order to balance the OBP, we introduce a barrel shifter between the address decoder and

the memory cells. The barrel shifter rotates select lines after regular time intervals. For

example, after a time interval T , register 0 is mapped to the row 1. Over a long time span,

different rows of memory cells are used for register 0. Consequently, both high variance and

inherent bias can be negated using this technique.

The process of shifting the select line is repeated after fixed intervals of time. During

such cycles, the shift count is incremented by one and fed to the barrel shifter. Figure 4.4

shows the change in shift count after regular intervals of time period T . Repetitive shift

operations results in a complete rotation, which ensures that all eight rows of memory cells

are used for storing register 0.

4.4.2 Bit Level Rotation (BR)

Bit level rotation performs the same operations, but targets column cells rather than

the row cells. The barrel shifter in the write port rotates the input data and stores it into

memory cells. Therefore, when shift count is 1, bit 0 is stored in column 1. The bit 0 gets

shifted to the left as the count goes up. After N (width of registers) rotations, bit 0 has

used every column of cells to store its value.

4.4.3 Combined Register and Bit Level with INV (RBR+INV)

We can combine both register level and bit level techniques to simultaneously distribute

the variance and inherent bias across the entire SRAM arrays in the register file. Figure

4.5 shows the sequence of operations. However, as the values are inherently biased towards
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Fig. 4.4: Register level technique. The barrel shifter dynamically rotates the select line by
shift count.

zero, these techniques will not bring the OBP to the optimal 0.5. Therefore, we combine

INV with our rotation techniques.

4.4.4 Implementation

Our techniques change the physical location of architectural registers. In a pipelined

microprocessor there are two specific steps before such a change can be possible: (a) pipeline

flush; and (b) update values to the new location.

Pipeline Flush: Correct instruction execution depends on the association of appro-

priate values to the respective registers. Consequently, it is impossible to alter the register

decoding (or change the bit position interpretation) in presence of in flight instructions.

Before we can change the decoding scheme or allow bit positions to interchange, we must

ensure that the pipeline is flushed, so that old and new decoding is not mixed during the

execution of a single instruction.

Value Update: Before new instructions are fetched in the pipeline, we must also

ensure that mapping alteration of the physical SRAM cells and the register bit position is

hidden from the program. Therefore, we must update values in the registers as dictated by

the change in decoding or bit position interpretation. For example, when rotating Reg0 to
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Fig. 4.5: Register and bit level technique.

Reg1, we must write the value of Reg0 to Reg1, Reg1 to Reg2, and so on.

Similar steps are also necessary when using periodic inversion of values (INV scheme).

Although pipeline flush is inexpensive in an in-order simple pipeline (few clock cycles only),

Value Update can be expensive. To avoid penalty from the latter, we perform periodic

mapping alteration during the OS induced context switch operation. Since the architec-

tural register state is saved and restored at the boundary of context switch, we can simply

perform the mapping change once the register state is saved from one thread. Before the

register thread from another thread is restored, we alter the mapping. All subsequent

operations are carried out in this new mapping, till OS induces the next context switch.

Fundamentally, performing these operations at the boundary of context switch allows these

mechanisms to have negligible clock cycle penalty, while maintaining complete transparency

from the high level software. For all schemes, we ignore penalty from these operations.
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4.5 Results

We present the resulting OBP from three different techniques: INV (periodic bit in-

version), and our proposed techniques of register and bit level rotation (RBR), and RBR

with INV (RBR+INV).

Figures 4.6(a) and 4.6(b) show the OBP scatter plot of sequence executions with RBR

and RBR+INV, respectively. Identical execution sequences were shown earlier in Figure

4.3 for INV. Compared to the INV, RBR substantially reduces the variation in OBP seen

for these execution sequences. However, since no bit inversion is used, the resultant OBP

is tightly distributed around the mean OBP of 0.22 across all programs (see Figure 4.1).

Figure 4.6(b) demonstrates that combining the bit inversion with our technique further

improves the OBP, and effectively pushes it towards the optimal 0.5.

Table 4.1 gives the summary of these results. Since conservative designs considering

the absolute worst case often leads to over-design, we show the 10th percentile OBP in this

table. The 10th percentile OBP indicates that all but 10% of the random sequences have

better OBP after using the respective techniques. The SNM degradation shown considers

the 10th percentile case. We also show the uncertainty measurements as the standard

deviation of the OBPs seen for these execution sequences. For the 10th percentile case, our

technique is able to reduce the SNM degradation by 2.2X. In addition, the uncertainty is

lowered by 14X, leading to a substantially robust design.

4.6 Overhead Analysis

We now present the overhead analysis of various schemes discussed in this work.

Table 4.1: Comparative OBP and SNM degradation.

Scheme
Median
(OBP)

10th
Perc.
(OBP)

SNM
Degra-
dation

STDDEV

INV 0.131 0.02 31.3% 0.14

RBR 0.17 0.13 20.7% 0.03

RBR+INV 0.48 0.46 14.4% 0.01
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Fig. 4.6: Scatter plot for sequences with different schemes.

4.6.1 Methodology

To estimate the overhead of various schemes, we create Verilog description of the reg-

ister file, along with different schemes. We verify the functionality of the Verilog using

the ModelSim simulation tool. Subsequently, we synthesize the hardware using Synopsys

Design Compiler and a 45nm TSMC library, which consists of three different threshold

voltages (Vt). We synthesize different hardware schemes for the same target latency, by the

appropriate selection of threshold voltages and gate sizes in the circuit. Thus, we do not al-

low any access latency overhead, but evaluate the area and power overheads for maintaining

identical performance.

4.6.2 Results

We find that the INV scheme has marginal area overhead of 3.4% over the register file

without any NBTI mitigation technique, but has a modest power overhead of 18%. Since

we want to compare the overhead between different NBTI mitigation techniques, Figure 4.7

shows the overhead of various schemes proposed in this work, compared to the INV scheme.

RR incurs lower overhead in area and power, as the necessary hardware component for

register level rotation is smaller than performing bit-level inversion in a 64-bit register file.

The best scheme (RBR+INV) shows an overhead of 8.8% in area, and 7.8% in power,
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compared to the INV scheme.

Next we calculate overall overhead of modified register file with respect to entire pro-

cessor core. From previous work, we observed that register file can take approximately 10%

of the total area and 20% of the total power of processor core. Assuming these values, we

find that our best scheme (RBR+INV) has small area and power overhead of 0.91% and

1.84%, respectively.
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Fig. 4.7: Overhead of various schemes compared to INV.
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Chapter 5

NBTI Mitigation in Physical Register File

In this chapter, we discuss NBTI impact on the physical register file. We study the

NBTI stress generation in the physical register file at instruction granularity. Based on our

observation, we propose modifications in the physical register file to efficiently handle NBTI

stress.

5.1 Instructions and NBTI stress

In this section, we study the relationship between the bit patterns of values computed

from an individual instruction and its impact on NBTI stress. We find that instructions

often have highly predictable NBTI stress patterns. This observation opens up new oppor-

tunities to design NBTI-aware micro-architectures.

5.1.1 Bias Predominance

Typically, values stored in a register file are narrow-width numbers [33–35]. Hence,

there is a large number of bit positions at logic 0, which can potentially lead to high NBTI

stress. Similarly, there is a substantial number of instructions producing outputs capable

of generating NBTI stress. To quantitatively measure the NBTI stress generated by an

instruction, we look at the instruction’s output bias. When a majority of output bits are

at logic 0, the output can generate high NBTI stress. We define a parameter to indicate

the output’s bias towards logic 0, viz. Zero Predominance (ZP). We formally define ZP as

follows: the ZP of an instruction is 1 when more than 75% of its output bits are at logic 0.

ZP indicates an instruction’s ability to produce NBTI stress in register file.

Figure 5.1 shows the presence of a large number of bit positions in a register file

undergoing high NBTI stress. We plot the distribution curve of each bit position against its
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OBP. Figure 5.1 demonstrates bias distribution curves for two benchmark programs, widely

varying in their characteristics. The perlbench has its highest peak near 0.0, meaning it has

the largest number of bits at logic 0. On the other hand, bzip2 has the smallest number

of bit positions at logic 0. Relatively, the number of bit positions at logic 1, is small for

all programs. On average, 57% of the bit positions are always at logic 0 and 18% of bits

have OBP close to 0.5. In other words, 57% of SRAM cells in a register file might store

logic 0 during their entire lifetime. Above observation proves that a large number of SRAM

cells in the register file can potentially suffer from unbalanced stress and hence high SNM

degradation.

Figure 5.2 shows a plot of zero bias predominance for SPEC CPU2006 benchmark

programs. Each bar indicates the percentage of instructions that compute a new value with

the ZP of 1. Figure 5.2 shows that perlbench has the highest number of instructions with

ZP equal to 1. For perlbench, 71.16% of the total number of dynamic instructions produce

outputs with a ZP of 1. On the other hand, bzip2 has the least number of instructions with

ZP equal to 1. On average, 37% of instructions have the potential to create high NBTI

stress in a register file, among all of the instructions that compute a new value.
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Fig. 5.1: Bias distribution for output bit positions.
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Fig. 5.2: Zero predominance of instructions that compute new value.

5.1.2 Bias Predictability

Figure 5.2 shows that a large number of instructions can produce high NBTI stress in

the register file. Detection of such instructions before execution can be used to efficiently

handle NBTI stress. In this subsection, we discuss the predictability of instructions to

generate large stress in a register file. To predict the bias predominance of any dynamic

instruction, we look at the output bias probabilities of a corresponding static instruction.

When the OBP of a bit position is 0.0 or 1.0, it implies that the value has not changed during

the entire execution time. Hence, the value of such a bit position is highly predictable. To

measure the predictability of the complete instruction output, we count the predictable bits

in the output. Based on the number of predictable output bits, we classify instructions into

four categories.

Figure 5.3 plots the percentage of instructions with four levels of output bias pre-

dictability. Each bar in the plot is made up of four stacked components corresponding to

different levels of the output bias predictability. The lowermost component indicates the

set of instructions that produce output values with more than 75% of bit positions being

predictable. In other words, more than 75% output bits of such instructions have an OBP
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Fig. 5.3: Level of predictability for instruction outputs.

close to 0.0 or 1.0. The second component from the bottom indicates the set of instructions

that have more than 50% predictable output bit positions. On average, 71% of dynamic

instructions have more than 50% predictable bit positions. This observation proves that

the output bias predominance of a large number of instructions is predictable, thereby in-

structions generating high NBTI stress can be predicted. Next, we develop a mechanism to

identify and predict occurrence of stress generating-instructions.

5.2 Predicting Instruction Level NBTI Stress

In this section, we discuss key predictor designs and analyze the performance of each.

We explore three specific designs: (a) Last Value Predictor (Section 5.2.1), (b) Bimodal

Predictor (Section 5.2.2), and (c) NP Predictor (Section 5.2.3).

5.2.1 Last Value Predictor

From Figure 5.3, it can be observed that approximately 51% of the instructions produce

values with constant bias. With this observation, we introduce the Last Value Predictor
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that predicts the output ZP to be the same as ZP of the previous instance. The Last Value

Predictor stores the previous ZP value in the history table for each static instruction. As

the ZP can have only two possible values, a single bit for each static instruction is enough.

The prediction accuracy of the Last Value Predictor is highest when instructions pro-

duce constant values. The Last Value Predictor faces misprediction each time the instruc-

tion output predominance is different than the previous instance. Hence, a single deviation

from predominance pattern results in two mispredictions. Also, instructions producing a

sequence of numbers cause mispredictions with the Last Value Predictor. Considering the

above cases of mispredictions, we improve the predictor design by using two bits to store

the predominance state.

5.2.2 Bimodal Predictor

With the bimodal predictor, rather than storing the actual ZP value in the history

table, we store the state of bias predominance prediction. The state of bias predominance

prediction is represented with the help of a 2-bit saturating counter. Figure 5.4 shows

the state diagram for the bimodal predictor. Initially, the counter is in the strongly zero

predominant state. It remains in the same state as long as the ZP of each static instruction’s

instance is high. When an instance produces an output with a low ZP, its state is changed

to weakly zero predominant. Successive instances of instructions with low ZP values will

change the state to strongly zero non-predominant. The strongly zero non-predominant state

corresponds to the pattern where instances of static instructions produce less than 75% of

output bits with logic 0.

The bimodal predictor adapts better in situations when the ZP value is alternately

changed. Also, the bimodal predictor can tolerate a single deviation from bias predominance

pattern without misprediction. However, the bimodal predictor results in two mispredictions

before adapting to a new pattern.



29

��������	


���

���
�������

������	


���

���
�������

������	


���	����

���
�������

��������	


���	����

���
�������

��	�	�

��	�	�

��	�	�

��	�	�

Fig. 5.4: Bimodal predictor state transition.

5.2.3 NP Predictor

The above predictors store the prediction state of all encountered instructions, irre-

spective of their ZP value. The NP (Non-Zero Predominance) predictor keeps track of

instructions with low ZP only. As a limited number of instructions are tracked, fewer en-

tries are stored in the NP predictor than the last value and bimodal predictors. For the

NP Predictor, a misprediction occurs when an instruction having an entry in the predictor

table generates an output value of low ZP.

5.2.4 Predictor Performance

Figure 5.5 presents the misprediction rate of the three predictors, each having 8k entries.

It can be seen that the misprediction rate of the NP Predictor is the lowest of the three

predictors. As the NP Predictor records instructions with low ZP only, there are fewer

collisions than the last value and bimodal predictors, thereby increasing accuracy. On

average, the misprediction rate of the NP predictor is half of the other two predictors.

5.3 Minimizing NBTI Degradation in the Register File

After successful prediction of the instructions generating high NBTI stress, we use this

information to minimize NBTI impact in the register file. In the following subsections, we

describe proposed modifications in the physical register file for improving reliability.
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Fig. 5.5: The misrediction rate.

5.3.1 Design Overview

We split the register array into two banks, each having an equal number of registers.

One of the register banks is exclusively used for allocating registers for outputs of the zero

predominant instructions. As most of the zero predominant outputs are narrow-width, we

compress register widths to 16-bits. The reliability of the narrow-width register bank is

further improved by using up-sized transistors. The second register bank is used for the

remaining instructions which produce non-zero predominant outputs.

We change the register allocation policy to allocate registers based on the predicted

ZP value of an instruction. We handle special cases of mispredictions by performing a

remapping of the physical registers. Section 5.3.3 describes modification in the decode and

execute stages to handle mispredictions in detail.

5.3.2 Register File Modifications

In this subsection, we describe proposed changes in the structure of the physical register

file.

Banked Register File

As mentioned earlier, the SRAM cells storing logic 0 (or 1) for large period of time
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undergo high NBTI stress. The SRAM cells of more significant bits in a register file show

similar behavior. Compressing such outputs can reduce the number of bits at logic 0 without

losing important information. Based on this observation, we divide the register array into

two banks with different register widths. Configuration (c) in Figure 5.6 shows the new

register file with two banks of variable widths. The first bank consists of 64-bit registers,

while the second bank consists of compressed 16-bit registers.

NBTI Tolerant Bank

By compressing the widths of zero predominant outputs, we get rid of a large number of

bits storing logic 0 and save a substantial amount of NBTI stress. However, there could still

be many bits at logic 0 in the compressed output. These bit positions can further reduce

overall reliability of a physical register file. To increase the noise margin of a narrow-width

bank, we use up-sized transistors for NBTI tolerance. As seen in Figure 3.2, the effective

SNM degradation of SRAM cells employing up-sized transistors is smaller than that of

SRAM cells with normally sized transistors. Therefore, introduction of up-sized transistors

improves the overall reliability of entire register file.

Above two changes remove uniformity from the original physical register file struc-

ture. The new physical register file has some non-uniformity due to presence of banks with

different widths. This assymmetry can result in path overlaps during the routing phase.

However, the number of such overlaps would be small as register file is split into two banks

only. Hence, these overlaps can be easily removed.

Configuration (b) and (d) in Figure 5.6 show tolerant register banks in gray. Benefits of

register file banking and up-sized transistors are discussed in Section 5.5. Next, we describe

the modified register allocation policy and special cases of mispredictions in detail.

5.3.3 Modified Register Allocation Policy

We require modifications in the register allocation policy as one of the banks is ex-

clusively used for zero predominant outputs only. Figure 5.7(a) outlines the new register

allocation process. After predicting the ZP value for the given instruction, a register from
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Fig. 5.6: Various configurations of register file.

one of the banks is allocated. If the ZP is high then a short register from the narrow-width

bank is allocated for destination. Similarly, a wide register is allocated for the instruction

with a low ZP. During certain program phases, when there is a high demand for registers

from one of the banks, register allocation may fail. In such a situation, we stall the given

instruction in the decode stage and wait for registers to get free.

Based on the predicted value of zero predominance, a short or wide register is allocated

to the given instruction during the decode stage. If the predicted value turns out to be false,

then a misprediction occurs. When an instruction is mispredicted to be zero predominant

and its output is not a narrow-width value, the allocated destination register is not wide

enough to contain the output. For maintaining the correctness, a wide register from the

first bank must be re-allocated for a non-zero predominant instruction. Figure 5.7(b) shows

the flow of events for remapping during execution stage.

With the modified register file, performance of the processor can suffer in two situa-

tions. First, performance may be affected due to remapping during the execution stage,
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(b) Flow of events during execution stage to handle
bank mispredictions.

Fig. 5.7: Modifications in register allocation policy.

as explained earlier. In another situation, performance is lost when register allocation fails

during the decode stage. If no free registers are available in the requested register bank,

the instruction is stalled. We found that the loss in IPC due to the above cases is small.

We observed that average performance overhead is less than 1.5%.

5.4 Methodology

In this section, we discuss experimental methodology used in our work.

5.4.1 Architectural Simulations

For investigating register file configurations and its impact on performance, we use a

full-system simulator built on top of the Wind River SIMICS [36]. For our experiments,

we use the SPARC V9 ISA. However, we use our own detailed timing model to enforce

timing characteristics of a 4-wide superscalar out-of-order core. Our modeled processor has

a register file structure similar to SPARC V9. The architecture register file contains 160

windowed registers. We have implemented MIPS R10K style register renaming [37] with

a physical register file of 224 registers. Various register file configurations shown in Figure

5.6 are explained in Section 5.5.
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We use several SPEC CPU2006 benchmarks on a Solaris 9. We use the three most rep-

resentative phases from these SPEC benchmarks in our study, extracted using the SimPoint

toolset [38].

5.4.2 NBTI Effect Measurement

When the input to PMOS transistor is low, holes in the inversion layer break Si-H

bonds at the oxide layer. This phenomenon leads to an increase in the absolute value of the

threshold voltage of the transistor (stress phase). When the input to a PMOS transistor is

high, the threshold voltage slowly starts restoring to the original value (recovery phase).

We model a standard 6-T SRAM cell in HSPICE to measure NBTI impact. The

NBTI wearout alters the transfer characteristics of cross-coupled inverters, decreasing the

noise margin. We evaluate the SNM at different time intervals by measuring this potential

difference. We use a predictive model to determine the change in transistor threshold voltage

due to NBTI [24,27].

5.4.3 Methodology for Area and Power Estimations

For finding the savings in area and power of the modified register file, we describe

structures in Verilog. We synthesize the hardware using the Synopsys Design Compiler and

the 45nm TSMC library. We synthesize various register file configurations for fixed latency

and obtain the area and power estimation from this synthesized Verilog. We could not

produce results for 22nm and 32nm technology nodes as we do not have access to lower

technology node libraries in our academic setup.

We use the CACTI 6.0 [39] tool to perform area and power analysis of the predictors.

We compute area and power values for the 45nm technology node so that the overall savings

at 45nm can be known.

5.4.4 Recovery Boosting Technique

Siddiqua and Gurumurthi propose the recovery boosting technique to extend the re-

covery of SRAM cells during the idle cycles of the physical registers [2]. This technique
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uses modified SRAM cells where the PMOS transistors undergo recovery phase during the

invalid period. To find effectiveness of the recovery boosting technique, we model a modified

SRAM cell in HSPICE. Based on the length of idle cycle period and bias probabilities of

bit positions, we calculate average SNM of the entire register file. Success of the recovery

boosting technique strongly depends on the length of idle cycle period. Longer the idle

cycle period, better is the SNM of the register file. However, the length of the idle cycle

period varies from processor to processor. A tightly designed processor has shorter idle cycle

period. Figure 5.8 shows average idle cycle percentage for three different configurations of

the physical register file. In Figure 5.8, register file configuration conf1, conf2, and conf3

have 200, 224, and 248 physical registers, respectively. The number of logical registers in

each configuration is same, i.e. 160.

5.5 Results

In this section, we present the results of improvement in SNM and power efficiency

due to modifications in the register file. We compare our results with the recovery boosting

technique. We experiment with various configurations of the physical register file and show

the results for SNM improvement in Figures 5.9-5.11. Then we discuss the savings in area

and power due to our proposed technique.

We evaluate five different configurations of the register file. All results are shown with

respect to Baseline configuration in Figure 5.6.

• Baseline: This refers to the traditional design of a physical register file with 64-bit

wide registers only. Refer to configuration (a) in Figure 5.6.

• comp,norm: This refers to a compressed banked register file design where one of the

banks has 16-bit wide registers only. Refer to configuration (c) in Figure 5.6.

• rec: This refers to the recovery boosting technique. The idle period results for our

processor configuration are shown in Figure 5.8.
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Fig. 5.8: Idle cycle period for various register file configurations.

• full,up: This refers to a banked physical register file where all registers are 64-bit wide

only. One of the banks is made up of up-sized transistors. Refer to configuration (b)

in Figure 5.6.

• comp,up: This refers to a compressed banked register file design where one of the

banks has 16-bit wide registers only. One of the banks is made up of the up-sized

transistors. Refer to configuration (d) in Figure 5.6.

5.5.1 Results for SNM Improvement

Figure 5.9, 5.10, and 5.11 show the average percentage improvement in the SNM of

register file configurations for the 22nm, 32nm, and 45nm technology nodes, respectively.

The first bar in the cluster indicates 9-12% (32nm) improvement in SNM with compression

of one register bank to 16-bits. The recovery boosting technique results in 18-26% SNM

improvement. For full,up, the SNM increase is highest among all configurations. The last

configuration comp,up gives a smaller improvement in SNM compared to full,up, but with

the highest savings in power and area. Ideally, we expected the SNM to increase from full,up

to comp,up as the number of SRAM cells of higher significant bits are reduced. But after

careful analysis, we found that the SNM of significant SRAM cells with up-sized transistors

is more than the average SNM of the first bank. Hence, SRAM cells with up-sized transistors
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for significant bits improve the average SNM of the entire register file.

On average, comp,up shows an SNM improvement of 20%, 32%, and 125% for the 45,

32, and 22nm technology nodes, respectively.
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Fig. 5.9: Percentage improvement in SNM with respect to physical register file with a single
bank and nominal transistors for 22nm technology.
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Fig. 5.10: Percentage improvement in SNM with respect to physical register file with a
single bank and nominal transistors for 32nm technology.
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Fig. 5.11: Percentage improvement in SNM with respect to physical register file with a
single bank and nominal transistors for 45nm technology.

5.5.2 Area and Power Comparison

Our technique improves SNM by compressing registers without losing the functional

correctness. Effectively, the modified register file has fewer SRAM cells. Reducing the size

of hardware results in savings in area and power. Figure 5.12(a) shows percentage savings

for area and power for our proposed techniques with respect to baseline.

Configuration comp,norm, where the second register bank is compressed to 16-bit only,

provides 34.5% savings in overall area. As the number of SRAM cells are reduced, both

dynamic and leakage power decrease. Overall savings in dynamic, leakage and total power

are 37%, 29.9%, and 34.4%, respectively.

When transistors are up-sized to give a better SNM, they consume more power and

occupy a larger area. Hence, up-sizing the transistors in SRAM cells results in area and

power overhead. For full,up, overall area and power increases by 11.2% and 5%, respectively.

In comp,up, area and power overhead is compensated by reducing the width of one of the

register bank. Effective savings in area and power are 28% and 33%, respectively.

Figure 5.12(b) shows the combined area and power savings for the technique comp,up

along with the NP predictor compared to the baseline. We can see that the total power

savings due to our proposed approach varies from 30.68% to 14.86% as the predictor size

is increased from 512 to 8k. We save area in all configurations except for the 8k predictor.



39

comp,norm full,up comp,up

%
 S

av
in

gs
 w

rt
 B

as
el

in
e

−30

−20

−10

0

10

20

30

40

50 DynamicPower LeakagePower TotalPower Area

(a) Savings without predictor overhead.

512 1k 2k 4k 8k

%
 S

av
in

gs
 w

rt
 B

as
el

in
e

−50
−40
−30
−20
−10

0
10
20
30
40 TotalPower Area

(b) Savings with predictor overhead.

Fig. 5.12: Area and power savings for various configurations of the proposed register file.

Configuration comp,up combined with 8k predictor has an area overhead of 19.77%.

5.5.3 Comparison with Supply Voltage Scaling

Next, we evaluate performance of our technique against the supply voltage scaling.

We increase the supply voltage of the baseline by 10%, 20%, and 30% and compare the

resultant SNM with comp,up. Figure 5.13, 5.14, and 5.15 present benefits of the supply

voltage scaling at the 22nm, 32nm, and 45nm technology node, respectively. For the 22nm

technology node, average improvement in SNM due to the 20% voltage scaling is 16% only.

Similarly, the improvement in SNM due to voltage scaling is very small at the 32nm and

45nm technology nodes. In addition, this improvement in SNM comes at higher power

consumption. Clearly, our technique works better than the supply voltage scaling.

5.5.4 Effect of Transistor Sizing

To study the impact of transistor sizing, we find the SNM improvement of register file

for different sizing parameters. We increase the width of transistors by 10%, 20%, and 30%
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and compare the resultant SNM with the comp,up. Figure 5.16, 5.17, and 5.18 present

results for the SNM improvement for different levels of the transistor sizing at the 22nm,

32nm, and 45nm technology nodes, respectively. For the 22nm technology node, average

improvement in SNM for the 20% transistor sizing is 102%, compared to 125% with our

technique. Similarly, the SNM improvement due to the transistor sizing is smaller than the

comp,up at 32nm and 45nm technology nodes.
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Fig. 5.13: Percentage improvement in SNM with different levels of supply voltage scaling
at 22nm. The last bar in cluster shows our technique.
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Fig. 5.14: Percentage improvement in SNM with different levels of supply voltage scaling
at 32nm. The last bar in cluster shows our technique.
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Fig. 5.15: Percentage improvement in SNM with different levels of supply voltage scaling
at 45nm. The last bar in cluster shows our technique.
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Fig. 5.16: Percentage improvement in SNM with different levels of transistor sizing at 22nm.
The last bar in the cluster shows our technique.
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Fig. 5.17: Percentage improvement in SNM with different levels of transistor sizing at 32nm.
The last bar in the cluster shows our technique.
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Fig. 5.18: Percentage improvement in SNM with different levels of transistor sizing at 45nm.
The last bar in the cluster shows our technique.
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Chapter 6

Conclusion

NBTI is one of the critical challenges for the semiconductor industry today. NBTI in

the register file reduces overall reliability of the processor and potentially causes system fail-

ure. In this work, we proposed a novel approach for mitigating NBTI in both architecture

and physical register file. For an architecture register file, we analyzed the reliability degra-

dation when running different desktop applications, which can interleave in an arbitrary

fashion. The key observation is that the application characteristics interleaving can lead

to substantially severe degradation, in comparison to analysis with isolated applications.

The micro-architecture techniques proposed in this paper are able to achieve a substantially

robust design, leading to 2.2X improvement in SNM degradation, and 14X improvement in

SNM uncertainty due to NBTI stress.

We mitigate the NBTI aging in a physical register file by looking at instructions pro-

ducing large NBTI stress. We found that some of the instructions produce values that can

cause high NBTI stress in the register file, while other instructions produce values which

have limited impact. With this observation, we designed a prediction mechanism for de-

tecting instructions that produce high NBTI stress. To increase overall reliability of the

register file, we divided the register file into two banks and used up-sized transistors. We

show that this approach provides 125% improvement in the average SNM of the register

file. Our techniques also result in reduction of total area and power consumption.
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[1] J. Abella, X. Vera, and A. González, “Penelope: The nbti-aware processor,” in
IEEE/ACM International Symposium on Microarchitecture, pp. 85–96, 2007.

[2] T. Siddiqua and S. Gurumurthi, “Enhancing nbti recovery in sram arrays through
recovery boosting,” IEEE Transactions on VLSI Systems, vol. PP, no. 99, p. 1, 2011.

[3] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Impact of nbti on sram read stability
and design for reliability,” in IEEE International Symposium on Quality Electronic
Design (ISQED), pp. 210–218, 2006.

[4] G. Chen, K. Chuah, M. Li, D. Chan, C. Ang, J. Zheng, Y. Jin, and D. Kwong, “Dy-
namic nbti of pmos transistors and its impact on device lifetime,” in IEEE International
Reliability Physics Symposium Proceedings, pp. 196–202, 2003.

[5] T. Grasser, B. Kaczer, P. Hehenberger, W. Gos, R. O’Connor, H. Reisinger, W. Gustin,
and C. Schunder, “Simultaneous extraction of recoverable and permanent components
contributing to bias-temperature instability,” in IEEE International Electron Devices
Meeting, pp. 801–804, 2007.

[6] A. Islam, G. Gupta, S. Mahapatra, A. Krishnan, K. Ahmed, F. Nouri, A. Oates, and
M. Alam, “Gate leakage vs. nbti in plasma nitrided oxides: characterization, physical
principles, and optimization,” in IEEE International Electron Devices Meeting, pp.
1–4, 2006.

[7] M. Alam and S. Mahapatra, “A comprehensive model of pmos nbti degradation,”
Microelectronics Reliability, vol. 45, no. 1, pp. 71 – 81, 2005.

[8] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Scalable model for
predicting the effect of negative bias temperature instability for reliable design,” IET
Circuits Devices and Systems, vol. 2, no. 4, 2008.

[9] T.-B. Chan, J. Sartori, P. Gupta, and R. Kumar, “On the efficacy of nbti mitigation
techniques,” in Design Automation and Test in Europe (DATE), pp. 1–6, 2011.

[10] V. Reddy, A. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost, and S. Kr-
ishnan, “Impact of negative bias temperature instability on digital circuit reliability,”
in 40th Annual Reliability Physics Symposium Proceedings, pp. 248–254, 2002.

[11] A. Bansal, R. Rao, J. Kim, S. Zafar, J. Stathis, and C. Chuang, “Impacts of NBTI and
PBTI on SRAM static/dynamic noise margins and cell failure probability,” Microelec-
tronics Reliability, vol. 49, no. 6, pp. 642–649, 2009.

[12] K. Kang, H. Kufluoglu, K. Roy, and M. A. Alam, “Impact of negative-bias temperature
instability in nanoscale sram array: modeling and analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, pp. 1770–1781,
2007.



45

[13] H.-I. Yang, S.-C. Yang, W. Hwang, and C.-T. Chuang, “Impacts of nbti/pbti on tim-
ing control circuits and degradation tolerant design in nanoscale cmos sram,” IEEE
Transactions on Circuits and Systems, pp. 1239 –1251, 2011.

[14] H. Yang, C. Chuang, and W. Hwang, “Impacts of NBTI and PBTI on power-gated
SRAM with high-k metal-gate devices,” in IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 377–380, 2007.

[15] T. Siddiqua and S. Gurumurthi, “A multi-level approach to reduce the impact of nbti
on processor functional units,” in Association for Computing Machinery (ACM) Great
Lakes Symposium on VLSI, pp. 67–72, 2010.

[16] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in multicores,”
in IEEE/ACM International Symposium on Microarchitecture, pp. 129–140, 2008.

[17] Z. Qi and M. R. Stan, “Nbti resilient circuits using adaptive body biasing,” in Associa-
tion for Computing Machinery (ACM) Great Lakes Symposium on VLSI, pp. 285–290,
2008.

[18] L. Li, Y. Zhang, J. Y. 0002, and J. Zhao, “Proactive nbti mitigation for busy func-
tional units in out-of-order microprocessors,” in Design Automation and Test in Europe
(DATE), pp. 411–416, 2010.

[19] X. Fu, T. Li, and J. A. B. Fortes, “Nbti tolerant microarchitecture design in the
presence of process variation,” in IEEE/ACM International Symposium on Microar-
chitecture, pp. 399–410, 2008.

[20] M. DeBole, R. Krishnan, V. Balakrishnan, W. Wang, H. Luo, Y. Wang, Y. Xie, Y. Cao,
and N. Vijaykrishnan, “New-age: a negative bias temperature instability-estimation
framework for microarchitectural components,” International Journal of Parallel Pro-
gramming, vol. 37, pp. 417–431, 2009.

[21] Y. Wang, H. Luo, K. He, R. Luo, H. Yang, and Y. Xie, “Temperature-aware nbti
modeling and the impact of input vector control on performance degradation,” in
Design Automation and Test in Europe (DATE), pp. 546–551, 2007.

[22] O. Khan and S. Kundu, “A self-adaptive system architecture to address transistor
aging,” in Design Automation and Test in Europe (DATE), pp. 81–86, 2009.

[23] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The impact
of nbti effect on combinational circuit: modeling, simulation, and analysis,” IEEE
Transactions on VLSI Systems, vol. 18, no. 2, pp. 173–183, Feb. 2010.

[24] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive modeling
of the nbti effect for reliable design,” in IEEE Custom Integrated Circuits Conference,
pp. 189 –192, Sept. 2006.

[25] K. Agarwal and S. R. Nassif, “Statistical analysis of sram cell stability,” in Design
Automation Conference (DAC), pp. 57–62, 2006.



46

[26] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective,
4th ed. River Edge, NJ: Addison-Wesley Publishing Company, 2010.

[27] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45nm
early design exploration,” IEEE Transactions on Electron Devices, vol. 53, no. 11, pp.
2816 –2823, 2006.

[28] K. Kang, H. Kufluoglu, M. Alain, and K. Roy, “Efficient transistor-level sizing tech-
nique under temporal performance degradation due to nbti,” in International Confer-
ence on Computer Design, pp. 216 –221, Oct. 2006.

[29] X. Yang and K. Saluja, “Combating nbti degradation via gate sizing,” in IEEE Inter-
national Symposium on Quality Electronic Design (ISQED), pp. 47 –52, March 2007.

[30] X. Chen, Y. Wang, Y. Cao, Y. Ma, and H. Yang, “Variation-aware supply voltage
assignment for minimizing circuit degradation and leakage,” in Proceedings of the
14th ACM/IEEE International Symposium on Low Power Electronics and Design, ser.
ISLPED ’09, pp. 39–44, 2009.

[31] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Adaptive techniques for overcoming
performance degradation due to aging in digital circuits,” in Proceedings of the 2009
Asia and South Pacific Design Automation Conference, pp. 284–289, 2009.

[32] The SPARC Architecture Manual Version 9, SPARC International, Inc, 1994.

[33] M. Lipasti, B. Mestan, and E. Gunadi, “Physical register inlining,” in International
Symposium on Computer Architecture, pp. 325 – 335, June 2004.

[34] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width operands to im-
prove processor power and performance,” in Proceedings. of High Performance Com-
puter Architecture (HPCA), pp. 13–22, 1999.

[35] G. Loh, “Exploiting data-width locality to increase superscalar execution bandwidth,”
in IEEE/ACM International Symposium on Microarchitecture, pp. 395 – 405, 2002.

[36] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg, J. Högberg,
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