
Politecnico di Torino

Porto Institutional Repository

[Proceeding] Buffering of frequent accesses for reduced cache aging

Original Citation:
A. Calimera,M. Loghi,E. Macii,M. Poncino (2011). Buffering of frequent accesses for reduced cache
aging. In: GLS-VLSI: ACM/IEEE Great Lakes Symposium on VLSI, 2011. pp. 295-300

Availability:
This version is available at : http://porto.polito.it/2471383/ since: December 2011

Publisher:
ACM

Published version:
DOI:10.1145/1973009.1973068

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

Publisher copyright claim:
c© ACM 2011. This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11423490?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/2471383/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1145/1973009.1973068
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2471383

Buffering of Frequent Accesses for Reduced Cache Aging
Andrea Calimera†, Mirko Loghi‡, Enrico Macii†, Massimo Poncino†

†Politecnico di Torino, 10129, Torino, ITALY
‡Universitå di Udine, 33100, Udine, ITALY

ABSTRACT
Previous works have shown that typical power management
knobs such as voltage scaling or power gating can also be
exploited to reduce aging phenomena caused by Negative Bias
Temperature Instability (NBTI).
We propose a scheme for power-managed caches that allows
to significantly improving the aging of the cache thanks to the
use of a small buffer that stores a copy of the lines that are
most critical for aging, that is, the ones with the least oppor-
tunity of being power-managed; by using the buffer instead
of the cache when accessing these critical lines, the original
cache is preserved and its lifetime is significantly prolonged.
As a side effect, this scheme improves total power since the
less energy-hungry buffer is accessed most of the time. Ex-
perimental analysis shows this scheme allows to achieve sig-
nificant (> 3x on average) lifetime extensions for the cache,
with a concurrent energy saving between 18 and 24%, de-
pending on cache size.
Categories and Subject Descriptors: B.3.2 [MEMORY
STRUCTURES] : Design Styles.
General Terms: Design, Experimentation, Performance.
Keywords: Memory Hierarchy, Leakage Reduction, Aging.

1. INTRODUCTION
The most relevant source of device aging in sub-65nm tech-
nologies is represented by Negative Bias Temperature Insta-
bility (NBTI) [1] which affects pMOS devices under negative
bias (i.e., Vgs < 0, i.e., when a “0” is applied on the gate
input of a pMOS, called the stress condition); under this
condition, a temporal drift of the threshold voltage occurs,
which translates into a increase of the propagation delay over
time. Such a drift is partially mitigated by the application
of a logic “1” (the recovery condition), which decreases the
threshold voltage and thus partially recovers the delay [1].
These aging effects are particularly hard to tackle in SRAM
memories, for two reasons. First, unlike logic circuits, the
aging of the two inverters of the bitcell affects the stability
of the cell (that is, the capability of a cell of safely storing a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

value), rather than its delay. Second, due to the symmetric
structure of a SRAM cell, a SRAM cell ages in fact whatever
the value it stores; therefore, there is no true opportunity of
recovery.
Some works have shown that typical implementations of
power management (namely, by means of voltage scaling
or power gating) can be exploited for alleviating the aging.
Voltage scaling is effective because a smaller Vdd corresponds
into a smaller Vgs, and thus in a smaller magnitude of neg-
ative bias [7]. Power gating, when implemented through
a footer transistor, becomes a powerful knob: the discon-
nection of a logic block from the ground network pulls all
internal nodes inside the block to a logic“1”, thus completely
nullifying the aging [8].
Unlike conventional aging-improving strategies used for logic
circuits, like value management [2][3] or guard-banding [4]–
[6], power management is naturally applicable to memory
cells, and by aggregation, to diversely sized portions of a
memory (e.g., a row, a column, or a bi-dimensional region);
we call this portion the unit of power management (UPM).
The consequence of this observation is therefore that the
idleness resulting in typical cache access patterns [9, 10]
is synonymous of both power and aging reduction. This
property holds however only for the individual UPMs; when
evaluating the aggregate benefit over the whole memory,
the different natures of power (a cumulative cost function)
and aging (a worst-case one) becomes evident. Each power-
managed UPM will in fact contribute to the total power
saving with its one (small or large) contribution; conversely,
from the aging standpoint, the first failing UPM (the one
with the least power management opportunities) will cause
the entire memory to become unusable. In order to exploit
idleness for reducing both power and aging for a memory
block, it is therefore essential to re-shape the memory ac-
cess distribution in such a way that the average (over the
UPMs) idleness and the worst-case idleness (the UPM with
the least idleness) are as similar as possible.
In this work we focus on caches in which the UPM is an in-
dividual cache line, and propose the use of a small (typically
a few tens of entries) buffer in parallel to the main cache,
which stores a copy of the cache lines having worst-case ac-
cess patterns. Whenever one of these lines is accessed, the
access is redirected to the buffer so that the corresponding
line in the main cache is always kept unused (and thus in a
standby state) for the whole duration of the workload.
Unlike previous approaches [16], in which perfect uniformity
of the access patterns is achieved through a time-varying
addressing scheme (dynamic indexing), in our approach we

selectively smooth out the worst-case patterns by duplicat-
ing selected addresses. In this way we achieve a comparable
aging benefit but we also save energy (static and dynamic)
with respect to [16]. The lines with the worst-case idleness
are in fact also the most accessed ones, so the buffer can be
seen as a level-0 cache, from the performance standpoint.
The scheme is clearly application-specific, since it requires
the profiling of the memory access patterns to detect lines
with the least idleness. An important dimension of the pro-
posed methodology is also how many lines have to be copied
in the buffer; since there is an intuitive tradeoff between
energy saving and the aging benefits, we define energy and
aging models as a function of the number of the critical lines
to be copied that allows to find the optimal number of lines
copied into the buffer for a given application.
Results show that our buffering scheme allows to signifi-
cantly improve the lifetime of power-managed caches: by
copying on average about 6% of the cache lines (for a 16KB
cache), our scheme improves aging by 3.4X with respect to
a standard cache, with a 24% improvement in total energy.
We also show how it is possible to use a fixed size (namely, 16
lines) for the buffer, thus restricting the application depen-
dence to the calculation of the critical lines, while allowing
the use of a fixed architecture.

2. BACKGROUND AND RELATED WORK

2.1 Background
For an in-depth analysis of NBTI effects and models we refer
the reader to classical tutorial papers on NBTI (e.g., [1]). We
summarize here the basic issues involved in NBTI-induced
aging in SRAM cells and arrays.
Due to its symmetric structure, a SRAM cell ages whatever
the value stored: therefore, there is no preferential value
and no equivalent of recovery. Value dependency matters
only in terms of what value is predominant: the best-case
degradation occurs in fact when the pMOS of both inverters
in the cell age for the same amount of time, that is, when
the bitcell stores a 0 and a 1 with equal probability [3].
Another important aspect is that the aging of the two bitcell
inverters does not truly affect the delay of the cell but rather
its stability. The conventional metric for assessing the aging
of a SRAM cell is the Static Noise Margin (SNM), defined
as the minimum DC noise voltage necessary to change the
state of an SRAM cell; when the SNM of a cell falls below a
threshold that allows safe storage of data it cannot be safely
read or written. This threshold strongly depends on the
technology and the specific design of the memory cell (e.g.,
transistor W/L ratios, threshold voltages, etc.).

2.2 Related Work
Aging due to NBTI is usually tackled by following two main
approaches: (i) guard-banding strategies, where the circuit
is over-designed under a delay constraint tighter than the
nominal one (e.g., by increasing supply voltage, using larger
or low-threshold devices), so that the aging is compensated
usually at the price of other metrics ([4]–[6]); (ii) mitigat-
ing solutions, which act directly on the variables that affect
NBTI aging: threshold and/or supply voltage, gate sizes,
and signal probabilities ([2]–[4]).
Other solutions do not fit the above classification and com-
bine power (static, in particular) and aging reduction by
exploiting the existence of a low-power “standby” state for

the circuit under analysis. This low-power state can be ex-
ploited either by using a sort of “gated” version of standard
library cells thus allowing to minimize the number of logic
0’s in the circuit [11], or by using special vectors to be ap-
plied during standby [12].
When moving to SRAMs, approaches attempt at maximiz-
ing (structurally or functionally) the conditions under which
the degradation in a memory cell is minimal, i.e., a 50%
probability of storing a value. The approach of [3] proposes
hardware and software schemes to periodically invert the
entire content of a memory so as to guarantee a perfectly
balanced bitcell probability.
The method of [13] proposes a new design of a memory cell
consisting of a set of NAND gates arranged in such a way
that minimum degradation ratio for all pMOS transistors in
the cell can be obtained.
A recent category of approaches relies on the exploitation of
the joint benefits of power management implementations for
aging mentioned in Section 1. Specifically, the works of [14,
15] have quantitatively assessed this benefit on entire mem-
ory blocks for voltage scaling and power-gating, respectively.
The work of [16] introduces the idea of a time-varying ad-
dressing scheme for caches (dynamic indexing); in this work,
the UPM is a single cache line, and their method allows
achieving identical lifetime for all cache lines and, by exten-
sion, maximal lifetime for the entire cache.

3. FREQUENT ACCESS BUFFERING

3.1 Motivation
As mentioned in Section 1, in order to constructively ex-
ploit the existing idleness also for aging, the distribution of
idleness should be as uniform as possible. Unfortunately,
this is not usually the case: such a distribution is highly
non-uniform. Figure 1 shows the distribution of idleness
(percentage of time a line can be turned off) for an example
cache with 256 line running one of the traces used in our
experiments.

0%

20%

40%

60%

80%

100%

120%

0

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

1
7
6

1
9
2

2
0
8

2
2
4

2
4
0

Line #

Id
le
n
e
ss
[%

]

Min idleness = 6.1%

Avg. idleness = 95.8%

2
5
5

Figure 1: Example of Idleness Distribution.

We can observe that the average idleness is very high
(95.8%), which roughly translates into an equivalent leak-
age reduction. We notice however that there exists a set of
adjacent lines with much lower idleness (Lines 60–75); one
in particular appears to be turned off only 6.1% of the time.
This line will allow exploiting only about 6% of the overall
idleness.

Our idea is that of selectively copying such “critical” lines
into a small side buffer and access the buffer instead of the
cache. Figure 2 shows how aging can be improved by copying
to the buffer the most critical lines; in particular, the plot
shows how the benefit increases (non linearly) versus the
number of buffered lines. For instance, after buffering only
1 line (the one with only 6% idleness), the worst case line has
an idleness of about 31%; buffering other 12 lines does not
provide significant improvement, but a 13th line will rapidly
bring the minimum idleness to 83.4%.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

31.3%
83.4%

Figure 2: Aging Reduction vs. # of Buffered Lines.

Copying lines into the buffer will incur into an energy over-
head that has to be evaluated against the aging benefits; it
is likely that there will be an optimal energy-aging tradeoff
point. From this example, it is clear that this solution is
strongly application specific: each workload will require a
different set of lines to be buffered.

3.2 Architectural Details
Figure 3 shows an abstract architecture of the proposed
buffering scheme. The index portion of the cache address
(n bits) is decoded by the selector block Sel, which detects
whether the index is one of the r line addresses stored in
the buffer. If so, it deactivates the main cache and it uses
the buffer. The matching index is translated into a buffer
address on ⌈log2 r⌉ bits.

Cache

nindex

BufferSel

n

r lines

log2 r

Enable

Figure 3: Overall Architecture.

The Sel block conceptually works as a lookup table; as such,
it could be implemented as a small, fully associative cache.
This option would however be unnecessarily complicated;
for our purposes, the selector is always used for reading (but
for the offline upload of the target addresses), so the control
circuitry to allow fully associative write accesses would be
wasted; furthermore, we do not need the address value, but
rather we need to translate, in case of match, the matched
value into a buffer address on ⌈log2 r⌉ bits.
For these reasons, we adopted a customized implementation
(Figure 4) where the r line addresses are stored in registers,
and the incoming addressed is compared in parallel to the n
line addresses.

n

index

Index 1

.

.

.

=
index 2

=

index r

=

Encoder
Buffer

address

Enable

log2 r

Figure 4: Internal Structure of the Buffer Decoder.

Only one of the comparators will match, and the r outputs of
the comparators represent a 1-hot encoded signal. A priority
encoder (the Encoder block) translates this r-bit value into
a ⌈log2 r⌉-bit address for the buffer. The buffer itself is a
conventional direct-mapped cache, i.e., it also contains a tag
array and the required control logic to manage the lookup
results (hit/miss).
Notice that implementing power management inside the
buffer is not very useful. Since the critical lines are also
the most accessed ones, the buffer will be frequently used in
place of the main cache so there will be few opportunities of
power management.
Finally, OR-ing of the r comparator outputs will then gen-
erate the activation/de-activation signal.

3.3 Functional Operations
After system profiling has been run, the r most critical line
addresses (0, . . . , 2n − 1) are stored in the registers of the
encoders. The buffer is initially empty, and it gets filled as
we start accessing the critical lines.
Hits and misses are managed as usual in the both the main
cache and the buffer. In the main cache only non critical
lines will be accessed. In the buffer, whenever a critical
line index is detected, the proper address is generated and
conventional cache lookup occurs. If tag matches, a hit oc-
curs; otherwise, the miss procedure is started. A line will be
fetched in the next level of hierarchy and copied into that
location.
Technically, the approach is very much like two caches in
parallel yet mutually exclusive are used, one being much
smaller than the other.

3.4 Models and Optimization
A careful analysis of the tradeoff existing between the num-
ber of lines r copied to the buffer and the energy and area
overhead is needed in order to come up with the optimal
value of r for a given workload. In the following paragraphs
we review the impact of r on the various metrics.

Aging.
The impact on aging clearly depends on the shape of the
distribution and it is in general non linear, as shown in Fig-
ure 2. Nevertheless, the benefit is a monotonically increasing
function of r: adding a single line to the buffer will reduce
aging by a quantity equivalent to the incremental benefit of
the moved line (i.e., the difference of idleness). Let us de-

note this lifetime function with LT (r); the evaluation of this
function is clearly strongly dependent on the workload.
For a given workload, LT (r) can be easily obtained by ob-
serving the distribution of idleness (i.e., Figure 1). Let I =
{I1, . . . , In} the list of idleness values of each of the n lines,
sorted in non-decreasing order. If the buffer has r locations,
it will store the lines with the r smallest values of idleness,
i.e., I1, . . . , Ir. After these are copied in the buffer, their
location in the main cache will not be accessed anymore,
and the main cache will become unreliable approximately
when the line with idleness Ir+1 fails. The benefit in life-
time ∆LT (r) is therefore given by ∆LT (r) =

∑
j=1,...r

Ij .

Power.
The selection circuitry of Figure 4 will consume extra dy-
namic power with respect to the original architecture. This
power is approximately linear in r: the addition of a line re-
quires one extra register, one comparator, and one extra line
in the buffer, plus a few gates in the encoder. Let Pdyn,sel(r)
this power value (which is a systematic penalty).
On the other hand, however, we are accessing the buffer
(a smaller and thus less power hungry memory) most fre-
quently. Therefore, the actual overhead in dynamic power
depends also on how often we use the buffer instead of the
main cache, and this value (a sort of “hit”rate) clearly de-
pends on r. If we call π(r) the probability of accessing
the buffer, the difference in power from using the buffer is
π(r) · (Pbuf (r)−Pcache). Since Pcache > Pbuf (r) for r < 2n,
this overhead is actually a benefit.
Leakage power, conversely, is roughly identical to the base-
line case. The leakage overhead caused by the extra logic
Pstatic,enc(r) is relatively small since all the elements are
active most of the time: the selection circuit is accessed in
any cycle and the buffer is used most of the time in place
of the main cache. The leakage in the memory elements is
unchanged: lines that were leaking in the main cache will
leak in the buffer by exactly the same amount.
The overall variation in power is therefore ∆Ptot(r) =
(Pdyn,sel(r) + Pstatic,sel(r)) + π(r) · (Pbuf (r)− Pcache).

Performance.
For performance we have to distinguish between worst case
access and average access time. The former is determined
by the case in which we access the main cache; in this case,
the propagation delay of the selection logic tp,sel(r) is the
propagation delay adds up to the cache access time. As we
will show later, this value is a small fraction of the cache
cycle time. Notice that the dependence on r of tp,sel is quite
weak due to its parallel implementation.
The average access time, conversely, is improved, using the
same arguments discussed for dynamic power. The average
access time can then be written as Tacc,avg(r) = (tp,sel(r) +
π(r) · tacc,buf (r) + (1− π(r)) · tcache)).
The improvement in average access time is then Tacc,avg(r)−
tcache = tp,sel(r) + π(r) · (tacc,buf (r)− tcache).
In our tradeoff analysis we aim at finding the best
power/lifetime point, while performance is regarded as a side
metric. More precisely, we explore the power- lifetime prod-
uct (PLP), defined by the product of the respective benefits
(power saving and lifetime improvement), that is:

PLP (r) =
∆LT (r)

LT
· ∆Ptot(r)

P

where LT and P are lifetime and power for the baseline
configuration, respectively.

Figure 5 qualitatively shows a typical tradeoff scenario.

r

LT(r)/LT

Ptot(r)/P

PLP(r)

ropt,1ropt,2

Figure 5: Power/Lifetime Tradeoff.

The lifetime improvement ∆LT (r)
LT

grows monotonically with

r. The power saving ∆Ptot(r)
P

, conversely, is a benefit for
small values of r. As r increases, the fixed cost due to the
selector ((Pdyn,sel(r)+Pstatic,sel(r))) gets larger and the dy-
namic power reduction (Pbuf (r)− Pcache) due to the use of
smaller buffer tends to tail off; as a result, the power sav-
ing becomes a penalty. There is therefore an optimal value
ropt,2 of r that minimizes the total power.
Since the PLP is the multiplication of the power saving by
a monotonically increasing function, it will also have a max-
imum in correspondence of some value ropt,1. Since the
range of values for r is limited, the exploration is done in a
straightforward way by evaluating PLP (r) for all values of
r = 0, . . . , 2n − 1.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
The proposed architecture has been implemented and tested
on a set of traces extracted from the simulation of the Me-
diaBench suite [17]. We used a cache simulator that mimics
the behavior of a cache, also taking into account the energy
consumption for each access. Such a consumption is com-
puted by leveraging power/energy models derived from an
industrial 45nm design kit provided by STMicroelectronics.
Concerning aging characterization of memories, we imple-
mented a dedicated SPICE-based characterization frame-
work which predicts, under user-defined PVT operating con-
ditions, the aging profile of a 6T-SRAM cell. Characteriza-
tion is carried out for various physical parameters of the cell
(netlist, size of the transistors, process parameters) as well
as for functional ones (the probability of storing a ‘0’ logic,
and the idleness – % of time in standby state – of the cell).
The characterization process first calculates, based on
HSPICE built-in aging models, fitted to the parameters of
our technology library, the threshold voltage degradation
∆Vth of each transistor in the cell. This variation is an-
notated into the SRAM cell netlist as DC-controlled voltage
source on the gate terminal of each pMOS transistor as done
in [18]. In a second phase, the annotated cell is simulated
to extract the SNM (specifically, the read SNM, when both
access nMOS transistors are on); The collected SNM data
are stored in a lookup table, which is used by the cache
simulator to estimate the aging of the cache lines.

In the experiments, lifetime of a memory cell is defined as
the time after which the SNM has decreased by 20%.

4.2 Overhead Assessment
We synthesized several configurations of the buffer decoder
in order to estimate the power consumption and the propa-
gation delay for different values of r.
Figure 6 shows the overhead in terms of total power con-
sumption and additional delay time for a 8kB cache, when
varying the size of the buffer (r).

Figure 6: Overhead of the buffer decoder.

The power overhead is reasonable, and it can be easily com-
pensated by the energy benefits provided by the buffer. The
timing overhead, instead, becomes sizable for high values of
r and, thus, can pose an upper limit to the size of the buffer
(which depends on the slack time originally available in the
memory subsystem).

4.3 Power-Lifetime Product Optimization
Table 1 shows the power savings and the lifetime extension
for each benchmark and for three different cache sizes. In
this first set of results, we chose for each trace the value that
maximizes the power-lifetime product (ropt1 in Figure 5).

4kB 8kB 16kB
Psav LT r Psav LT r Psav LT r
[%] Ext. [%] Ext. [%] Ext.

adpcm.dec 38.4 2.1x 14 39.9 2.1x 20 43.7 2.2x 20
adpcm.enc 39.3 2.5x 18 40.9 2.7x 22 43.8 3.0x 24
cjpeg 15.5 3.5x 55 18.4 3.7x 80 21.0 3.8x 85
CRC32 44.5 2.5x 26 47.9 2.7x 26 49.4 2.9x 26
dijkstra 23.8 3.0x 14 28.1 2.9x 16 30.6 2.9x 29
djpeg 11.9 3.5x 46 13.6 3.7x 81 16.3 3.8x 91
fft 1 11.3 3.5x 53 14.9 3.7x 100 19.9 3.8x 115
fft 2 9.1 3.5x 58 12.1 3.7x 77 14.9 3.8x 139
gsmd 29.0 2.7x 39 34.1 2.7x 47 37.0 2.9x 55
gsme 23.0 3.2x 51 22.8 3.2x 52 23.5 3.2x 58
ispell 9.5 3.6x 60 12.2 3.7x 81 15.0 3.8x 82
lame 6.7 3.5x 56 8.5 3.7x 89 7.7 3.8x 109
mad 4.5 3.6x 50 6.2 3.7x 99 7.3 3.8x 102
rijndael i 4.8 3.5x 22 6.1 3.7x 25 7.7 3.8x 28
rijndael o 5.2 3.4x 22 6.2 3.6x 20 7.6 3.8x 27
say 12.6 3.5x 63 15.8 3.7x 85 20.9 3.8x 121
search 14.0 3.6x 46 16.4 3.6x 49 17.3 3.6x 50
sha 29.5 3.7x 63 37.4 3.8x 63 40.8 3.9x 69
tiff2bw 13.3 3.6x 11 15.7 3.4x 11 23.7 3.1x 10

Average 18.2 3.3x – 20.9 3.4x – 23.6 3.5x –

Table 1: Total Power Savings and Lifetime Exten-
sion: Power-Lifetime Product Optimization (Line
Size is 16 Bytes).

Since applications exhibit very diverse access profiles, the
number of lines that must be placed into the buffer is quite
irregular and spans from 10 (for tiff2bw, where the buffer

replaces less than 1% of the main cache) to 139 (for fft_2,
where the buffer size is about 13% of the cache size).
Nevertheless, we can observe a quite satisfactory result in
terms of aging mitigation for every benchmark; we have at
least a 2x improvement in the cache lifetime of the cache,
and about 3.3x–3.5x average improvement on average, de-
pending on cache size. Notice that 2x lifetime extension
would be the result obtainable by a naive scheme in which
the cache is duplicated, the first one being used until it be-
comes unreliable and moving then to use the second one.
Results show that a “smart” duplication of lines allows to
get much higher average benefits at a much lower overhead.
It is also worth observing that the benefits scale well: figures
improve as cache size increases.
While aging benefits have a relatively small variance, it is
also interesting to observe how power savings have a signif-
icant variation instead. This is due to the very heteroge-
neous application characteristics of the traces. Applications
with a small subset of lines that are heavily stressed (e.g.,
CRC32) benefit of a considerable power reduction by lever-
aging a small buffer to resolve a large fraction of accesses.
Conversely, applications with a more uniform idleness pro-
file (such as mad or lame) do not achieve a significant power
benefit, since the overhead becomes significant.
In any case, even in the most unfavorable cases the pro-
posed strategy allows to extend the lifetime span without
incurring in any power penalty; rather an average 18 to 23%
(depending on cache size) power reduction is obtained.

4.4 Power minimization
Since the buffer leads to a more power efficient structure
in many cases, we also investigated an exploration strategy
that considers only power savings. This corresponds to the
point labeled as ropt,2 in Figure 5. Table 2 show power (and
lifetime) results when such a
r = ropt2 is chosen.
Albeit in several cases the choice for r does not change,
some applications (e.g., cjpeg and sha) can obtain a slightly
better power saving and a reduced buffer size, at the cost of
a small reduction of the lifetime.
In some circumstances, however, looking for the maximum
power saving can strongly deteriorate the lifetime of the
cache. That is the case of adpcm.dec over a 4kB cache,
where removing one single line from the buffer (17 vs. 18)
causes a reduction of the lifetime extension from 2.5x to
1.6x. Such a situation is the symptom that the line left into
the main cache is too frequently addressed and, thus, leads
to a fast aging of the memory.

4.5 Relaxing the Application Dependency
The previous tables were referring to results obtained by
using the optimal r for each benchmark, this implies that
a customized, application-specific architecture would be re-
quired. Therefore, the benefits of our scheme would be less
appealing for systems that run more than an application.
The solution would be that of choosing a fixed value for r
that is good on average and can still provide significant ben-
efit (even if not the best possible) for a heterogeneous set of
benchmarks. In Table 3 we report results for such a kind of
structure, where r is arbitrarily fixed to 16.
Results are somehow surprising. But for a couple of applica-
tions, that do not reach the threshold of a 2x lifetime exten-
sion, a 16-entry buffer provides a significant improvement

4kB 8kB 16kB
Psav LT r Psav LT r Psav LT r
[%] Ext. [%] Ext. [%] Ext.

adpcm.dec 38.4 2.1x 14 39.9 2.1x 20 43.7 2.2x 20
adpcm.enc 39.4 1.6x 17 40.9 2.7x 22 43.8 3.0x 24
cjpeg 15.6 3.4x 51 18.8 3.6x 48 21.0 3.8x 85
CRC32 44.7 1.9x 25 48.1 2.1x 25 49.5 2.4x 25
dijkstra 23.8 3.0x 14 28.1 2.9x 16 30.6 2.9x 29
djpeg 12.1 3.4x 33 13.6 3.6x 45 16.3 3.8x 91
fft 1 11.3 3.5x 53 14.9 3.7x 90 19.9 3.8x 111
fft 2 9.1 3.5x 56 12.1 3.7x 77 14.9 3.8x 139
gsmd 29.0 2.7x 39 34.1 2.7x 47 37.0 2.9x 55
gsme 23.0 3.2x 51 22.8 3.2x 52 23.5 3.2x 58
ispell 9.5 3.6x 60 12.3 3.7x 70 15.0 3.8x 82
lame 6.7 3.5x 56 8.5 3.7x 89 7.7 3.8x 108
mad 4.5 3.5x 38 6.2 3.7x 94 7.3 3.8x 95
rijndael i 4.8 3.5x 22 6.2 3.5x 20 7.7 3.8x 28
rijndael o 5.2 3.4x 22 6.2 3.6x 20 7.6 3.7x 24
say 12.6 3.5x 60 15.8 3.7x 85 20.9 3.8x 121
search 14.1 3.5x 41 16.4 3.6x 49 17.3 3.6x 50
sha 30.5 3.6x 57 37.8 3.6x 57 41.2 3.8x 60
tiff2bw 13.4 3.2x 10 15.8 3.2x 10 23.7 3.1x 10

Average 18.3 3.1x – 21.0 3.3x – 23.6 3.4x –

Table 2: Total Power Savings and Lifetime Ex-
tension: Power-Only Optimization (Line Size is 16
Bytes).

both in terms of power saving and of aging mitigation. Av-
erage lifetime extension is still greater than 3x for all cache
sizes, and power savings are slightly increased. This behav-
ior is a sign of the fact that the PLP curves are in most cases
pretty flat around the maximum; therefore, even choosing a
value of r far off the optimum ropt,1 does not degrade the
cost significantly.
Such a result enforces the principle that the most of the
aging is accountable to a small portion of the cache, in a
novel perspective of the principle of locality.

5. CONCLUSIONS
We proposed an application-specific cache architecture that
relies on the use of a small buffer alongside the main cache,
which contains a copy of the cache lines with worst-case ac-
cess profile. This arrangement allows to indirectly remove
“stress” from the corresponding lines in the main cache by
increasing the opportunities of power managing them. In
this way, the lifetime of the main cache is prolonged signif-
icantly, with the additional side benefit of a non negligible
energy saving, due to the fact that lines in the buffer are
typically also the most accessed ones.
This architecture provides average cache aging improve-
ments of more than 3x with more than 20% energy saving.
Moreover, the idea scales nicely, as larger caches also provide
larger benefits.

6. REFERENCES
[1] M.A.Alam, “Reliability- and process-variation aware design of

integrated circuits,” Microelectronics Reliability, Vol. 48, No. 8,
August 2008, pp. 1114-1122.

[2] S. V. Kumar, et al., “NBTI-Aware Synthesis of Digital Circuits,”
DAC-45, pp. 370–375, June 2007.

[3] S.V. Kumar, K.H. Kim, S.S Sapatnekar, “Impact of NBTI on
SRAM read stability and design for reliability,” ISQED’06,
March 2006, pp. 213–218.

[4] R. Vattikonda, et.al. “Modeling and minimization of pMOS
NBTI effect for robust nanometer design,” DAC-44, pp.
1047-1052, 2006.

[5] X. Yang, K. Saluja, ”Combating NBTI Degradation via Gate
Sizing,” ISQED’07: International Symposium on Quality
Electronic Design, pp. 47–52, March 2007.

4kB 8kB 16kB
Psav [%] LText Psav [%] LText Psav [%] LText

adpcm.dec 38.4 2.1x 39.7 2.1x 43.4 2.2x
adpcm.enc 38.9 1.6x 40.2 1.9x 42.8 2.1x
cjpeg 11.5 2.9x 13.4 3.0x 14.8 3.1x
CRC32 37.6 1.8x 39.5 2.0x 40.3 2.2x
dijkstra 23.8 3.0x 28.1 2.9x 30.3 2.9x
djpeg 11.2 2.7x 11.9 2.9x 12.8 3.0x
fft 1 7.0 3.1x 7.2 3.3x 8.5 3.4x
fft 2 5.5 3.2x 5.9 3.3x 6.3 3.4x
gsmd 16.8 2.5x 18.1 2.7x 19.2 2.9x
gsme 14.9 3.0x 14.4 3.2x 14.0 3.2x
ispell 6.9 3.3x 7.5 3.4x 7.7 3.5x
lame 3.9 3.3x 4.1 3.5x 3.7 3.6x
mad 3.2 3.4x 2.9 3.5x 3.4 3.6x
rijndael i 4.1 3.4x 4.3 3.4x 5.9 3.5x
rijndael o 4.4 3.4x 5.7 3.5x 6.7 3.5x
say 7.5 2.8x 8.3 3.0x 9.7 3.1x
search 11.9 3.3x 13.0 3.4x 14.0 3.5x
sha 15.2 3.0x 18.6 3.0x 18.5 3.0x
tiff2bw 12.9 3.6x 15.3 3.4x 23.3 3.1x

Average 14.5 2.9x 15.7 3.0x 17.1 3.1x

Table 3: Power Savings and Lifetime Extension for
a Fixed 16-Entry Buffer (Line Size is 16 Bytes).

[6] K.-C. Wu, D. Marculescu, “Joint Logic Restructuring and Pin
Reordering against NBTI-Induced Performance Degradation,”
DATE’09: Design Automation and Test in Europe, pp. 75–80,
March 2009.

[7] L. Zhang, R. P. Dick, “Scheduled Voltage Scaling for Increasing
Lifetime in the Presence of NBTI,” ASPDAC’09, pp. 492–497,
Jan. 2009.

[8] A. Calimera, E. Macii, M. Poncino, ”NBTI-Aware Power Gating
for Concurrent Leakage and Aging Optimization”, ISLPED ’09:
International Symposium on Low power Electronics and
Design, pp. 127-132, August 2009.

[9] M. Powell, et al. “Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories,” ISLPED’00:
International Symposium on Low power Electronics and
Design, July 2000, pp. 90–95.

[10] K. Flautner, N. Kim, S. Martin, D. Blaauw, T. Mudge,
“Drowsy caches: Simple techniques for reducing leakage power,”
ISCA’02: International Symposium on Computer
Architecture, May 2002, pp. 148–157.

[11] Y. Wang et al., “Gate replacement techniques for simultaneous
leakage and aging optimization,”DATE’09: Design Automation
and Test in Europe, pp. 328–333, March 2009.

[12] Y. Wang et al., “On the efficacy of input Vector Control to
mitigate NBTI effects and leakage power,” ISQED’09:
International Symposium on Quality of Electronic Design, pp.
19–26, March 2009.

[13] J. Abella, X. Vera, O. Unsal and A. González, “NBTI-Resilient
Memory Cells with NAND Gates for Highly-Ported Structures”,
Workshop on Dependable and Secure Nanocomputing, June
2007.

[14] A. Ricketts, J. Singh., K. Ramakrishnan, N. Vijaykrishnan, D.
K. Pradhan. “Investigating the Impact of NBTI on Different
Power Saving Cache Strategies,” DATE’10: Design,
Automation and Test in Europe, pp. 592–597, March 2010.

[15] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Aging Effects of
Leakage Optimizations for Caches,” GLSVLSI’10: IEEE Great
Lakes Symposium on VLSI, pp. 95–98, May 2010.

[16] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Dynamic
indexing: concurrent leakage and aging optimization for caches,”
ISLPED’10: International Symposium on Low power
Electronics and Design, pp. 343–348, August 2010.

[17] M. R. Guthaus et al., “MiBench: A free, commercially
representative embedded benchmark suite”, IEEE 4th Annual
Workshop on Workload Characterization, pp. 3–14, Dec. 2001.

[18] K.Kang, H. Kufluoglu, K. Roy, M.A. Alam, “Impact of
Negative-Bias Temperature Instability in Nanoscale SRAM
Array: Modeling and Analysis,” IEEE Transactions on CAD,
Vol. 26, No. 10, pp. 1770-1781, Oct. 2008.

