3 research outputs found

    The Mont-Blanc prototype: an alternative approach for high-performance computing systems

    Get PDF
    High-performance computing (HPC) is recognized as one of the pillars for further advance of science, industry, medicine, and education. Current HPC systems are being developed to overcome emerging challenges in order to reach Exascale level of performance,which is expected by the year 2020. The much larger embedded and mobile market allows for rapid development of IP blocks, and provides more flexibility in designing an application-specific SoC, in turn giving possibility in balancing performance, energy-efficiency and cost. In the Mont-Blanc project, we advocate for HPC systems be built from such commodity IP blocks, currently used in embedded and mobile SoCs. As a first demonstrator of such approach, we present the Mont-Blanc prototype; the first HPC system built with commodity SoCs, memories, and NICs from the embedded and mobile domain, and off-the-shelf HPC networking, storage, cooling and integration solutions. We present the system’s architecture, and evaluation including both performance and energy efficiency. Further, we compare the system’s abilities against a production level supercomputer. At the end, we discuss parallel scalability, and estimate the maximum scalability point of this approach across a set of HPC applications.Postprint (published version

    Enabling the use of embedded and mobile technologies for high-performance computing

    Get PDF
    In the late 1990s, powerful economic forces led to the adoption of commodity desktop processors in High-Performance Computing(HPC). This transformation has been so effective that the November 2016 TOP500 list is still dominated by x86 architecture. In 2016, the largest commodity market in computing is not PCs or servers, but mobile computing, comprising smartphones andtablets, most of which are built with ARM-based Systems on Chips (SoC). This suggests that once mobile SoCs deliver sufficient performance, mobile SoCs can help reduce the cost of HPC. This thesis addresses this question in detail.We analyze the trend in mobile SoC performance, comparing it with the similar trend in the 1990s. Through development of real system prototypes and their performance analysis we assess the feasibility of building an HPCsystem based on mobile SoCs. Through simulation of the future mobile SoC, we identify the missing features and suggest improvements that would enable theuse of future mobile SoCs in HPC environment. Thus, we present design guidelines for future generations mobile SoCs, and HPC systems built around them, enabling the newclass of cheap supercomputers.A finales de la década de los 90, razones económicas llevaron a la adopción de procesadores de uso general en sistemas de Computación de Altas Prestaciones (HPC). Esta transformación ha sido tan efectiva que la lista TOP500 de noviembre de 2016 sigue aun dominada por la arquitectura x86. En 2016, el mayor mercado de productos básicos en computación no son los ordenadores de sobremesa o los servidores, sino la computación móvil, que incluye teléfonos inteligentes y tabletas, la mayoría de los cuales están construidos con sistemas en chip(SoC) de arquitectura ARM. Esto sugiere que una vez que los SoC móviles ofrezcan un rendimiento suficiente, podrán utilizarse para reducir el costo desistemas HPC. Esta tesis aborda esta cuestión en detalle. Analizamos la tendencia del rendimiento de los SoC para móvil, comparándola con la tendencia similar ocurrida en los añosnoventa. A través del desarrollo de prototipos de sistemas reales y su análisis de rendimiento, evaluamos la factibilidad de construir unsistema HPC basado en SoCs móviles. A través de la simulación de SoCs móviles futuros, identificamos las características que faltan y sugerimos mejoras quepermitirían su uso en entornos HPC. Por lo tanto, presentamos directrices de diseño para futuras generaciones de SoCs móviles y sistemas HPC construidos a sualrededor, para permitir la construcción de una nueva clase de supercomputadores de coste reducido

    SMMP v. 3.0 - Simulating proteins and protein interactions in Python and Fortran

    No full text
    We describe a revised and updated version of the program package SMMP. SMMP is an open-source FORTRAN package for molecular simulation of proteins within the standard geometry model. It is designed as a simple and inexpensive tool for researchers and students to become familiar with protein simulation techniques. SMMP 3.0 sports a revised API increasing its flexibility, an implementation of the Lund force field, multi-molecule simulations, a parallel implementation of the energy function, Python bindings, and more.Program summaryTitle of program: SMMPCatalogue identifier: ADOJ_v3_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADOLv3-0.htmlProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlProgramming language used: FORTRAN, PythonNo. of lines in distributed program, including test data, etc.: 52 105No. of bytes in distributed program, including test data, etc.: 599 150Distribution format: tar.gzComputer: Platform independentOperating system: OS independentRAM: 2 MbytesClassification: 3Does the new version supersede the previous version?: YesNature of problem: Molecular mechanics computations and Monte Carlo simulation of proteins.Solution method: Utilizes ECEPP2/3, FLEX, and Lund potentials. Includes Monte Carlo simulation algorithms for canonical, as well as for generalized ensembles.Reasons for new version: API changes and increased functionality.Summary of revisions: Added Lund potential; parameters used in subroutines are now passed as arguments; multi-molecule simulations; parallelized energy calculation for ECEPP; Python bindings.Restrictions: The consumed CPU time increases with the size of protein molecule.Running time: Depends on the size of the simulated molecule. (C) 2007 Elsevier B.V. All rights reserved
    corecore