
1

The Mont-Blanc prototype: An Alternative
Approach for High-Performance Computing

Systems
UPC-DAC-RR-CAP-2016-2 Technical Report, March 2016.

Nikola Rajovic∗†, Alex Ramirezx H, Alejandro Rico‡H, Filippo Mantovani∗, Daniel Ruiz∗†, Oriol Villarubi∗,
Constantino Gomez∗†, Luna Backes∗, Diego Nieto∗, Harald Servat∗, Xavier Martorell∗†, Jesus Labarta∗†,

Eduard Ayguade∗†, Mateo Valero∗†, Chris Adeniyi-Jones‡, Said Derradji§, Herve Gloaguen§, Piero
Lanucara¶, Nico Sanna¶, Jean-Francois Mehaut‖, Kevin Pouget‖, Brice Videau‖, Eric Boyer∗∗, Momme
Allalen††, Axel Auweter††, David Brayford††, Daniele Tafani††, Dirk Bröemmel‡‡, René Halver‡‡, Jan H.

Meinke‡‡, Ramon Beividexi , Mariano Benitoxi , and Enrique Vallejoxi

∗ Barcelona Supercomputing Center, first.last@bsc.es
† Computer Architecture Department, Universitat Politecnica de Catalunya - BarcelonaTech
‡ ARM Ltd. § Bull/ATOS ¶ Cineca ‖ CNRS - Universite Grenoble Alpes - LIG ∗∗ GENCI
‡‡ Forschungszentrum Jülich GmbH †† LRZ

x
NVIDIA

xi
Universidad de Cantabria

F

Abstract—High-performance computing (HPC) is recognized as one
of the pillars for further advance of science, industry, medicine, and
education. Current HPC systems are being developed to overcome
emerging challenges in order to reach Exascale level of performance,
which is expected by the year 2020. The much larger embedded and
mobile market allows for rapid development of IP blocks, and provides
more flexibility in designing an application-specific SoC, in turn giving
possibility in balancing performance, energy-efficiency and cost. In the
Mont-Blanc project, we advocate for HPC systems be built from such
commodity IP blocks, currently used in embedded and mobile SoCs.

As a first demonstrator of such approach, we present the Mont-
Blanc prototype; the first HPC system built with commodity SoCs,
memories, and NICs from the embedded and mobile domain, and off-
the-shelf HPC networking, storage, cooling and integration solutions.
We present the system’s architecture, and evaluation including both
performance and energy efficiency. Further, we compare the system’s
abilities against a production level supercomputer. At the end, we dis-
cuss parallel scalability, and estimate the maximum scalability point of
this approach across a set of applications.

1 INTRODUCTION

High-Performance Computing (HPC) systems evolution is
driven by the need of reducing time-to-solution and in-
creasing resolution of models of problems being solved
by a particular program. Important milestones from the
HPC system performance perspective were achieved using
commodity technology. Examples are the ASCI Red and
the Roadrunner supercomputers, which broke the 1TFLOPS
and 1PFLOPS barriers, respectively. These systems showed

H The majority of the work was done while author was with Barcelona
Supercomputing Center.

how commodity technology could be used to make the next
step in HPC system architecture.

The short life cycle of commodity components prevents
special-purpose components to compete. Driven by a bigger
market, commodity processors develop quicker and are
cheaper. For this reason, RISC processors displaced vectors,
and x86 displaced RISC.

Nowadays commodity is in the mobile segment. Mobile
processors develop fast, and are still not at a point of
diminishing returns in design and incorporate increasingly
powerful processing capabilities, required for HPC. Further,
the market size and customer requirements allow for con-
stant investments into innovative designs.

The size of the market allows for testing and adoption
of new technology very fast. For example, LPDDR memory
technology first entered into mobile domain and recently is
proposed as a solution for energy proportional servers [1].
Moreover, NVIDIA started introducing new revisions of
their GPU architecture first in mobile segment, and later in
the gaming workstations, and in turn into HPC.

The Mont-Blanc project aims at providing an alternative
HPC system solution based on the current commodity tech-
nology: mobile chips. As a demonstrator of such approach,
the project designed, built and set-up a 1080-node HPC
cluster made of Samsung Exynos 5 Dual processors. The
Mont-Blanc project established the following goals: to de-
sign and deploy a sufficiently large HPC prototype system
based on the current mobile commodity technology; to port
and optimize software stack and enable its use for HPC; to
port and optimize a set of HPC applications to be run at this
HPC system.

Contributions of this report are as follows:

2

• We reveal the architecture and the design specifics of
the Mont-Blanc prototype.

• We present thorough performance and power eval-
uation of the prototype, and compare it to a Tier-0
production system in Europe, the MareNostrum su-
percomputer.

• We provide a set of recommendations for the next-
generation HPC system built around the Mont-Blanc
approach.

2 THE MONT-BLANC PROTOTYPE

In this Section we present the architecture of the Mont-Blanc
prototype. We highlight peculiarities of each building block
as we introduce them.

2.1 The Mont-Blanc Compute Node

The Mont-Blanc compute node is a Server-on-Module archi-
tecture. Figure 2 depicts the Mont-Blanc node card (Sam-
sung Daughter Card or SDB) and its components. Each
SDB is built around a Samsung Exynos 5250 mobile SoC
integrating ARM Cortex-A15 CPUs at 1.7 GHz in a dual
core configuration sharing 1 MB of on-die L2 cache, and a
mobile ARM Mali-T604 GPU. The SoC connects to the on-
board 4 GB of LPDDR3-1600 RAM through two memory
channels shared among the CPUs and GPU, providing a
peak memory bandwidth of 12.8 GB/s.

The node’s interconnect interface is provided through an
on-die USB 3.0 interface utilizing a discrete on-board NIC
(integrating USB 3.0 to 1 Gb Ethernet bridge) [2], and the
additional fabric providing Ethernet PHY. An external 16 GB
µSD card is connected to a µSD memory slot and provides
boot-loader, OS system image and local scratch storage.

The node connects to the blade through a proprietary
bus using a PCI-e 4x form factor edge connector (EMB
connector).

2.2 The Mont-Blanc Blade

In Figure 1b we depict the physical view of a Mont-Blanc
blade, while in Figure 3 we show the architecture of the
Mont-Blanc blade (Ethernet Mother Board or EMB). The
blade hosts 15 Mont-Blanc nodes which are interconnected
through an on-board 1 Gb Ethernet switch fabric. The switch
provides two 10 GbE up-links. In addition, the EMB pro-
vides management services, power consumption monitor-
ing of SDBs, and blade level temperature monitoring. The
EMB enclosure is air-cooled through the fans installed on
the front side.

2.3 The Mont-Blanc System

The entire Mont-Blanc prototype system (see Figure 1a) fits
into two standard 42U-19′′ racks. Each Mont-Blanc rack
hosts four bullx chassis which in turn integrate nine Mont-
Blanc blades each. In addition, racks are populated each
with 2U Cisco Nexus 5596UP top-of-the-rack switches, 1U
prototype management switch and 2U storage nodes.

2.3.1 System interconnect
The Mont-Blanc prototype implements two separate net-
works - management and cluster network. The management
network is out of the scope of this paper, thus we depict the
implementation of the cluster interconnect in Figure 4.

The first level of switching is implemented inside the
blades using a 1 Gb Ethernet switch fabric providing two
10 Gb Ethernet up-links. Switching between the blades oc-
curs at the top-of-the-rack switches with a switching capacity
of 1.92 Tbps per switch. The racks are directly connected
with four 40 Gb Ethernet links. The maximum hop distance
between two nodes belonging to two different racks is four.

2.3.2 Storage
The storage system is based on a Supermicro Storage Bridge
Bay based on x86-64 architecture, with a total capacity of
9.6 TB providing 2-3.5 GB/s read/write bandwidth (de-
pending on the disk zone). The storage system is connected
to the top-of-the-rack switches with four 10 Gb Ethernet
links. The parallel file system services are provided with
Lustre.

2.3.3 Cooling
The Mont-Blanc prototype is an air-cooled cluster. Each
node has a passive top-mounted heat sink. Further, every
Mont-Blanc blade is a separate cooling entity having its own
set of front-mounted fans and a temperature control loop.
Inlet and outlet temperatures are monitored and fan speed
is adjusted accordingly.

2.4 The Mont-Blanc Software Stack
The work done during the Mont-Blanc project helped ma-
turing the software stack on the ARM architecture. Today,
working with the Mont-Blanc prototype feels like working
with any other HPC cluster.

The Mont-Blanc prototype nodes are running Ubuntu
14.04.1 Linux distribution on top of the customized Kernel
version 3.11.0 which enables user space driver for OpenCL
programming of ARM Mali-T604 GPU. The rest of the
software stack components are shown in Figure 5.

2.5 Power Monitoring Infrastructure
The Mont-Blanc system features a digital current and volt-
age meter in the power supply rail to each SDB. For
collecting measurements at high frequencies, an FPGA on
each EMB accesses all power sensors in a blade via I2C
and stores their averaged value every 1120 ms in a FIFO
buffer. The Board Management Controller (BMC) on the
EMB communicates with the FPGA to collect the power
data samples from the FIFO before storing them in its DDR2
memory along with a timestamp of the reading. User access
to the data is then provided by the BMC over Ethernet
through a set of custom Intelligent Platform Management
Interface (IPMI) commands [3]. The concept of offloading
high-frequency tasks to the FPGA and the ability to do bulk-
transfers of power samples via IPMI contribute significantly
to the high scalability and performance of this solution.

To provide application developers with power traces of
their applications, the power measurement and acquisition

3

CHASSIS

BLADE

RACK SWITCHES

STORAGE

7U

(a)

NODES

ETHERNET SWITCH

(b)

Fig. 1: Physical view of a) the Mont-Blanc prototype system, and b) the Mont-Blanc blade.

Fig. 2: The Mont-Blanc node block scheme (not to scale).

Fig. 3: The Mont-Blanc blade block scheme.

process is conveniently encapsulated and automated in a
custom-made system monitoring tool. The tool is developed
with a focus on simplicity and scalability by respectively
employing MQTT [4], for lightweight transport messaging,
and Apache Cassandra [5], a scalable, distributed database
for storing the acquired power data along with other time-
series based monitoring data. The tool consists of three ma-
jor software components: one or more instances of Pushers,
Collect Agents and the Apache Cassandra distributed key-
value store. The Pushers are responsible for polling sensor
data (power consumption, temperatures, etc.) and forward

Rack
switch

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

4x40 GbE

Storage
node

1
0

G
b

E
1

0
G

b
E

1
0

G
b

E
1

0
G

b
E

Storage
node

Rack
switch

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

2

2

2

B1

B2

B3

2

2

2

B4

B5

B6

2

2

2

B7

B8

B9

6 6 6

18x10GbE

Mont-Blanc Chassis

Fig. 4: The Mont-Blanc System Interconnect.

Compilers
GNU JDK Mercurium

Scientific libraries
ATLAS LAPACK SCALAPACK FFTW
BOOST clBLAS clFFT PETSc HDF5

Performance analysis Debugger
EXTRAE Paraver Scalasca Alinea DDT

Runtime libraries
Nanos++ OpenCL OpenMPI MPICH3

Cluster management
SLURM Nagios Ganglia

Hardware support Storage
Power monitor LustreFS

Operating System
Ubuntu

Fig. 5: The Mont-Blanc Software Stack

the data using MQTT to a Collect Agent. This means that
the Pusher for power data implements the necessary steps
to perform the IPMI-based power acquisition process. The
Collect Agents, as the name implies, collect all monitored
information from one or multiple Pushers and insert it into
the distributed Cassandra key-value, where all monitored
information is finally stored and made available for further
analysis. A set of command line tools and a special API
provide users with the ability to access the raw monitoring
data or to plot and correlate information from different data

4

TABLE 1: Mont-Blanc compute performance summary.

Compute Node
CPU GPU

Type 2×ARM Cortex-A15 1×ARM Mali-T604
Frequency 1.7 GHz 533 MHz
Peak performance (SP) 27.2 GFLOPS 72.5 GFLOPS
Peak performance (DP) 6.8 GFLOPS 21.3 GFLOPS
Memory (shared) 4 GB LPDDR3-800

Blade = 15×Node
Peak performance (SP) 408 GFLOPS 1.08 TFLOPS
Peak performance (DP) 102 GFLOPS 319.5 GFLOPS
Memory 60 GB

Chassis = 9×Blade
Peak performance (SP) 3.67 TFLOPS 9.79 TFLOPS
Peak performance (DP) 0.92 TFLOPS 2.88 TFLOPS
Memory 540 GB

System = 8×Chassis
Peak performance (SP) 29.38 TFLOPS 78.3 TFLOPS

Total (SP) 107.7 TFLOPS
Peak performance (DP) 7.34 TFLOPS 23 TFLOPS

Total (DP) 30.3 TFLOPS
Memory 4.32 TB

sources throughout the system. The intrinsic scalability of
the Cassandra data model as well as the ability to add
additional Pushers and Collect Agents as needed make
this solution highly scalable and well-suited for the high-
frequency power measurements of the Mont-Blanc system.

2.6 Performance Summary

Table 1 shows performance figures of the Mont-Blanc proto-
type. The two Cortex-A15 cores provide a peak performance
of 27.2 GFLOPS in single-precision (SP) and 6.8 GFLOPS
in double-precision (DP). The performance disparity comes
from the fact that the SIMD unit, codenamed NEON, sup-
ports only SP floating-point (FP) operations, thus DP FP are
executed in a scalar unit.

The on-chip embedded Mali-T604 GPU integrates four
cores providing a total of 72.5 GFLOPS SP and 21.3 GFLOPS
DP [6]. The total node peak performance is thus close to
100 GFLOPS SP and 28.1 GFLOPS DP.

Given that exploiting the GPU requires OpenCL appli-
cation support, Table 1 shows the peak performance at the
blade, chassis and entire system levels both for just the cores
and the total compute (cores+GPU).

Due to the 32-bit nature of the SoC architecture, each
node integrates 4 GB of memory. The high node integration
density of 1080 nodes (2160 cores) in 56U (over 19 nodes per
U) adds up to 4.32 TB of memory.

3 COMPUTE NODE EVALUATION

In this Section we present comparison between the Samsung
Exynos 5 SoC used in the Mont-Blanc prototype, and its con-
temporary - 8 core Intel Xeon E5-2670 server processor used
in the current MareNostrum supercomputer [7]. MareNos-
trum node is designed as a dual-socket solution, utilizing
DDR3-1600 memory DIMMs. It is worth mentioning that
both chips were introduced in the year 2012; the former in
Q3 and the later in Q1.

We present and discuss both core to core, and node to
node performance and power comparative figures when
executing Mont-Blanc benchmark suite [8].

3.1 Core evaluation
In Figure 6 we present performance comparison on a
core-to-core basis between the Mont-Blanc prototype and
MareNostrum supercomputer. We report performance dif-
ference by normalizing both execution times to execution
on MareNostrum.

2dc amcd dmm hist ms nbody 3ds fft red vecop gMean
0

1

2

3

4

5

6

7

8

E
xe

cu
ti

o
n

ti
m

e
n

o
rm

a
liz

ed
to

M
ar

eN
o

st
ru

m

12
.7

Mont-Blanc 1core

Fig. 6: Mont-Blanc benchmarks: core to core performance
comparison.

Across the benchmark suite, Mont-Blanc is from 2.2 to
12.7 times slower. Particularly, Mont-Blanc core is outper-
formed in the workloads which mainly stress either floating-
point subsystem (dmm), memory subsystem (hist), or both
(3ds). On average, across the entire suite, a Mont-Blanc core
is 4.3 times slower than a MareNostrum core.

3.2 Node evaluation
In the Figure 7 we present performance (7a) and energy
consumption (7b) comparison on a node-to-node basis be-
tween the Mont-Blanc prototype and MareNostrum super-
computer.

Given the characteristics of the Mont-Blanc SoC, we
employ three different computing scenarios: homogeneous
computing with OpenMP (blue bars), heterogeneous with
OpenCL (red bars), and heterogeneous with OpenCL +
OmpSs [9](violet bars).

Both performance and power figures are normalized
to executions on a MareNostrum node using 16 OpenMP
threads.

Regarding the performance, a Mont-Blanc node is on
average 18x slower than a dual-socket MareNostrum node
when comparing performance achievable only with CPUs
(two vs. sixteen cores). When utilizing only GPU, a Mont-
Blanc node is on average 14x slower compared to a
MareNostrum node. Finally, employing OmpSs to exercise
both GPU and CPUs on a Mont-Blanc node, we reduce
the gap and become 9x times slower on average across the
workloads.

Energy wise, when using only CPUs as computational
elements, a Mont-Blanc node consumes 5% more energy
compared to a MareNostrum node. As we keep on im-
proving the performance gap, Mont-Blanc node becomes
more energy efficient on average: from consuming 20% less
energy when using only GPU, to consuming 45% less energy
when utilizing both GPU and CPU cores.

3.3 Node Power
The scheduling of computation to the Mont-Blanc node
compute elements, namely CPU cores and/or GPU, has

5

2dc dmm hist nbody 3ds red vecop gMean
0

10

20

30

40

50
E

xe
cu

ti
o

n
ti

m
e

n
o

rm
a

liz
ed

to
M

ar
eN

o
st

ru
m

72
.2

83
.9

Mont-Blanc OpenMP 2

Mont-Blanc OpenCL

Mont-Blanc OmpSs+OpenCL

(a) performance

2dc dmm hist nbody 3ds red vecop gMean
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
n

er
g

y
to

so
lu

ti
o

n
n

o
rm

a
liz

ed
to

M
ar

eN
o

st
ru

m

6.
0

6.
8

Mont-Blanc OpenMP 2

Mont-Blanc OpenCL

Mont-Blanc OmpSs+OpenCL

(b) energy

Fig. 7: Mont-Blanc benchmarks: node to node a) perfor-
mance and b) energy comparison.

a varying impact on energy efficiency, as shown in Fig-
ure 7b. The use of just the general purpose cores, just the
embedded GPU or both simultaneously leads to different
energy efficiency depending on the workload. Offloading
computations to the GPU reduces energy consumption in
most workloads, except for those not well suited for GPU,
or lacking optimized GPU libraries.

Energy has two dimensions: power and time. Execution
time depends on how well the application behaves on the
given mappings to core and GPU. Power still depends
on the application and is directly influenced by physical
implementation and SoC power management.

The power monitoring infrastructure in the Mont-Blanc
prototype (see Section 2.5) allows to analyze power con-
sumption on different computation to hardware mappings.
Comparing the power of different mappings, the user is able
to estimate the speed-up required to compensate the power
differences, and even achieve better energy efficiency.

Figure 8 shows power profile of one Mont-Blanc node
for different mappings of the execution of 3D-stencil com-
putation. The different mappings include a single CPU core,
dual-core, GPU, and GPU+one CPU core.

The node idle power is 5.3W. This includes the static
power of all components given that frequency scaling is
disabled for benchmarking purposes. The average power
consumption when running on one core and two CPU cores
is 7.8W and 9.5W respectively. This includes the power
consumption of the SoC, memory subsystem and network
controller.

The power when using the GPU, and the GPU plus one
cores is 8.8 and 11.5W, respectively. When running on the
GPU, one of the cores is a helper thread that synchronously
launches kernels to the GPU and therefore blocks until it
completes. For this reason, the power of using the GPU
plus cores may be lower than using the cores alone. When

0 200 400 600 800 1000 1200 1400 1600 1800

Runtime [s]

5

6

7

8

9

10

11

12

P
o

w
er

[W
]

1 core
2 cores
GPU
GPU + 1 core

Fig. 8: Power profile of different compute to hardware
mappings for 3D-stencil computation. Note: markers are
only to distinguish lines, not sampling points.

running on the GPU plus one core, one of the cores runs
a worker thread and contributes to the computation, which
explains the additional power. Although we cannot confirm
due to the lack of finer grain power data, the results using
one core and GPU plus one core indicate that the power
consumption of the Mali-T604 GPU is lower than that of the
Cortex-A15 CPU.

From our results with other workloads, we found that
node power varies for different applications although it
remains in the same range as shown in Figure 8 for most
cases. The maximum power seen for executions with two
CPU cores is 14W, and for executions with GPU plus one
core 13.7W.

4 INTERCONNECTION NETWORK TUNING AND
EVALUATION

In this section, we quantify the latency and bandwidth of
the Mont-Blanc node network interface. Since Mont-Blanc
interconnect is implemented using a lossy Ethernet technol-
ogy, it is of a paramount importance that every segment
of interconnect is properly tuned. Thus, we discuss the
improvements in different parts of interconnect stack which
in turn affect the overall interconnect performance.

In Figure 9 we present both bandwidth (9a) and latency
(9b) measurements obtained from the Mont-Blanc prototype
using Intel MPI PingPong benchmark [10]. We present four
curves per graph, each corresponding to incremental im-
provements on the side of node network interface.

After the initial deployment of the Mont-Blanc prototype
we measured achievable MPI throughput and latency of
80MB/s and 156µs respectively (see blue line in the graph).
The results were obtained using the NIC driver built-into
the Linux Kernel.

After the update of the driver, using the proprietary one,
we noticed a significant improvement in both throughput
and latency for small messages - up to 3.4× better through-
put for messages smaller than 64KB and reduced base
MPI latency from 156 to 88µs for the zero-sized messages
(see the red line in the graph). However, throughput for
larger messages stayed the same as in initial configuration,
≈80MB/s. The main improvement comes from the feature
that proprietary driver brought - configurable wait interval
between the consecutive bulk transfers on the USB bus,
which we reduced to the bare minimum.

6

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

Message size [bytes]

0

20

40

60

80

100
B

a
n

d
w

id
th

[M
B

/
s]

Initial

Updated driver

Updated driver + OpenMX

Updated driver + patched kernel

(a) Bandwitdh

20 21 22 23 24 25 26 27 28 29 210

Message size [bytes]

0

50

100

150

200

L
a

te
n

cy
[u

S
]

Initial

Updated driver

Updated driver + OpenMX

Updated driver + patched kernel

(b) Latency

Fig. 9: Inter-node bandwidth and latency of the Mont-Blanc
prototype.

TABLE 2: MPI applications used for scalability evaluation.

Application Domain
BigDFT [14], [15] Electronic Structure
BQCD [16] Quantum Chromodynamics
MP2C [17] Multi-Particle Collision Dynamics
QuantumESPRESSO [18] Electronic Structure and Materials Modeling
SMMP [19], [20], [21] Molecular Thermodynamics
Alya [22], [23] Biomedical Mechanics
COMD [24] Proxy for Molecular Dynamics
LULESH [25], [26] Proxy for Hydrodynamics
miniFE [27] Proxy for Finite Element Method

Additionally, we did a back-port of a Linux Kernel
patch [11] which improves throughput in USBNET [12]
driver for USB3.0 compliant devices. This patch additionally
improved throughput for messages larger than 64KB, with
a maximum throughput of ≈100MB/s (see the green line in
the graph).

It is worth mentioning that deploying Open-MX [13],
avoiding TCP/IP stack, we could further lower the base
latency to 65µs which in turn would increase the throughput
for small messages below 32K. Currently, this approach does
not seem to show benefit for messages larger than 32K, even
degrades the maximum throughput (see the violet line in the
graph).

5 OVERALL SYSTEM EVALUATION

In this Section we show evaluation of parallel MPI applica-
tions listed in Table 2. These are flagship HPC production
application from different domains, plus three reference
mini-apps used by top US national labs. We look into weak
and strong scaling figures, and further expand them with
parallel efficiency graphs. Later, we compare Mont-Blanc
against MareNostrum supercomputer on a subset of the
applications to make a direct comparing between the two,
in terms of performance and energy consumption.

5.1 Applications scalability
In Section 3.2 we already showed that a current Mont-
Blanc node is, when using only CPU cores, 14× slower

1 10 100 1000 2000

MPI ranks

100

101

102

103

S
p

ee
d

-u
p

BQCD-2ppn
ALYA-2ppn
BigDFT-2ppn
SMMP-2ppn
COMD-2ppn
LULESH-2ppn
QE-2ppn
miniFE-2ppn
ideal

(a) Strong scaling.

1 10 100 1000 2000

MPI ranks

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

a
lle

l
effi

ci
en

cy

BQCD-2ppn
ALYA-2ppn
BigDFT-2ppn
SMMP-2ppn
COMD-2ppn
LULESH-2ppn
QE-2ppn
miniFE-2ppn

(b) Strong efficiency.

1 10 100 1000 2000

MPI ranks

100

101

102

103

S
p

ee
d

-u
p

MP2C-2ppn
SMMP-2ppn
COMD-2ppn
LULESH-2ppn
QE-2ppn
miniFE-2ppn
ideal

(c) Weak scaling.

1 10 100 1000 2000

MPI ranks

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

a
lle

l
effi

ci
en

cy

MP2C-2ppn
SMMP-2ppn
COMD-2ppn
LULESH-2ppn
QE-2ppn
miniFE-2ppn

(d) Weak efficiency.

Fig. 10: Scalability and parallel efficiency of MPI application
on the Mont-Blanc prototype.

on average compared to a MareNostrum’s one. This means
we should be able to scale out a workload to 14× more
compute resources in order to compensate for performance
disadvantage. In Figure 10 we present both strong and weak
scaling figures of MPI applications when running on the
Mont-Blanc prototype. Each graph is accompanied with
corresponding parallel efficiency graph to provide more
details about an application scalability.

As it can be seen from Figure 10a strong scalability is
bad, with only a few applications whose parallel efficiency
(see Figure 10b) does not go below 0.5 for their biggest
run. Weak scaling executions, revealed in Figure 10c, show
better behavior. Parallel efficiency of weak scaling tests (see
Figure 10d) reveals that the majority of the applications
achieves parallel efficiency of 0.7 with two outliers going
below 0.6.

We looked into the reasons for poor scalability. Apart
from the narrow interconnect bandwidth, we discovered the
following factors affecting the scalability of the prototype:

7

lost packets in the interconnect, each incurring a minimum
penalty of one retransmission time out (RTO min); and
preemptions.

5.1.1 Lost packets
In Figure 11 we visualize execution traces of CoMD proxy
application with and without lost packets. Trace of native
execution which suffers lost packets is shown in Figure 11a.
We simulate packet-lost-free execution by using DIMEMAS
MPI simulator [28], and opt not to simulate TCP/IP layer
and thus filter-out all the retransmissions (see Figure 11b).

(a) Packet loss in place.

(b) No packet loss.

Fig. 11: Illustration of lost packets effect on MPI parallel
application: a) trace with, and b) without packet loss. X axis
represents time, Y axis represents process number.

Both traces have the same scale, and results suggest
that lost packets, and corresponding timeouts, hurt the
performance 1.47×. This is of course application dependent,
and depends on the communication patterns, message sizes,
volume of communication, etc. In order to minimize the
effects of retransmission, we lower RTO min parameters
from the default 200ms to the lowest possible - 5ms on our
system.

5.1.2 Pre-emptions
In Figure 12 we present histogram of durations of computa-
tional phases during CoMD proxy application execution.

5.0 270.0 400.0 500.0

Duration [ms]

0001

0256

0512

0768

1080

P
ro

ce
ss

n
u

m
b

er

Fig. 12: 2D Histogram of computational phases duration. X
axis represents bins of durations, Y axis represents process
number. Gradient coloring: green-blue. Coloring function:
logarithmic.

We identify two regions: with 5ms and ≈270ms dura-
tions. Regions taking 5ms are identified to be related to
TCP/IP retransmissions with RTO min = 5ms. However,
most computational time is spent in regions with 270ms
duration (note the blue color of those), which a duration

TABLE 3: Mont-Blanc vs MareNostrum: same input, same
execution time.

Applications
CoMD miniFE

MNa MBb MN MB
MPI ranks 64 240 64 224
Execution time [s] 70.72 68.05 71.66 72.19
Avg. power [W] 992.15 1083.25 1064.69 1033.72
Energy [Wh] 195 205 212 207
rack units 8 7 8 7
eff. rack units 8 6 8 6
a MareNostrum
b Mont-Blanc

of one inner-iteration of the application. Further, we can
spot a set of outliers taking significantly more time, and we
mark these with red polygons. Checking per computational
phases IPC, we confirm this is not a load imbalance tied to
application, but there are external factors introducing this
variation. We suspect on preemptions, and from now on
treat them as OS-noise in discussions to come.

5.2 Comparison with traditional HPC

In Figure 13 we depict performance and energy comparison
between Mont-Blanc prototype and MareNostrum super-
computer, when using the same number of MPI ranks
(cores) on both systems. For the same amount of used
compute resources, Mont-Blanc prototype is 4× slower than
MareNostrum when running MPI applications. In terms of
energy consumption, Mont-Blanc prototype consumes 10%
more on average across 7 applications, when using 257-1536
cores.

SMMP
1024

MP2C
512

ALYA
1500

COSMO
257

COMD
1331

LULESH
1331

MINIFE
1536

gmean
0.1

1

10

N
o

rm
a

liz
ed

to
M

ar
eN

o
st

ru
m

12.64

1.43

4.59 4.70
3.57 3.86 3.26 4.043.76

0.69
1.00 1.07 1.09

0.70 0.89 1.10

Execution time Energy

Fig. 13: Mont-Blanc vs MareNostrum: Performance and
Energy comparison for a fixed number of MPI ranks.

Table 3 shows a comparison of Mont-Blanc prototype
and MareNostrum when aiming to equalize their execution
time. For this experiment we exercise strong-scaling capabil-
ity of applications on the Mont-Blanc prototype, such that
we keep input set constant and increase number of MPI
ranks to get the same execution time on the MareNostrum.
From the table we can observe that in order to get the same
execution time, we would need between 3.5-3.75 more MPI
ranks on the Mont-Blanc prototype across the applications
we list in Table 3. In terms of energy consumption, both
systems consume approximately the same amount of en-
ergy. Regarding the rack space, Mont-Blanc occupies one
additional rack unit.

If we define utilization factor for the both machines, we
can draw a conclusion such that rack space is not equally
utilized: in the case of Mont-Blanc blade 90% of 7U is taken
by the nodes. Furthermore, in the case of CoMD application,

8

240 MPI ranks occupy 88.8% of the available node resources
(270 MPI ranks max). This leads to a utilization of ∼ 80% of
7U space. Finally, equivalent utilized rack space is 5.6≈6U -
which is two units less compared to MareNostrum.

To conclude, regarding system integration, Mont-Blanc
prototype offers slightly denser integration, and consume
about the same amount of energy. However, the peak power
envelopes may vary, but it is not possible to track MareNos-
trum’s power consumption in real time. We keep this matter
open for future investigation.

6 SCALABILITY PROJECTION

The results in previous sections showed that the perfor-
mance of the Mont-Blanc prototype is affected by intercon-
nect technology, and potential load imbalance. These issues
with the current implementation conceal the potential of
the Mont-Blanc approach at scale. Further, in Section 5.2
we reveal a need for good parallel scalability in order
to compensate for lower per node performance compared
against MareNostrum supercomputer.

To unveil the scalability of the prototype architecture
to larger systems, we employ a state-of-the-art methodol-
ogy [29], [30] that allows us to project scalability of the
current deployment. We look into the scalability of a certain
workload through the parallel efficiency metric, which is a
product of three fundamental factors:

η‖ = LB ∗ Ser ∗ Trf (1)

Each of the three factors (ranging from 0 to 1) reveal
different aspect of an application running on a particular
machine. Load balance (LB) defines a potential imbalance
between the duration of computation phases across the run-
ning processes. Further, Serialization (Ser) gives an insight
about potential inefficiency caused by the dependencies.
Finally, Transfer (Trf) provides a measure of how much an
actual run is affected by the interconnect.

In Figure 14 we present measured and extrapolated fun-
damental parallel efficiency factors from the traces obtained
from the Mont-Blanc prototype. Let us define two parallel
efficiency zones: from 1 to 0.8 and from 0.8 to 0.5, with
the former being desirable, and the later representing low-
efficiency but still acceptable until 0.5.

Looking into the figure, we observe none of the appli-
cation would achieve efficiency in the desirable zone for
the process count larger than 2.000. The most inefficient
one, LULESH (see Figure 14b), enters the low-efficiency
zone at the 256 processes count. Looking into the extracted
fundamental factors, we see that all three applications are
mostly limited by the load imbalance and transfer, while
the former is the one affecting the performance the most.

In the Figure 15 we depict the improvement in parallel
efficiency if we were able to completely remove retransmis-
sions from the Mont-Blanc prototype.

Both CoMD and LULESH benefit from removing the
retransmissions related to lost-packets, such that they expe-
rience increase in the number of processes at which they
reach 0.8 efficiency. The former improves from ≈2K to
9K, while the later from ≈256 to 0.5K. On the other side,
miniFE does not seem to be affected with packet-loss issues
(comparing Figure 14c and Figure 15c).

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(a) CoMD.

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(b) LULESH.

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(c) miniFE.

Fig. 14: Parallel efficiency - base case. Lines represent the
model, while the lone marker ticks represent measurements
points.

Further, in Figure 16 we depict the effect of removed pre-
emptions and packet-loss altogether. From the graphs, only
CoMD experience significant performance degradation due
to preemptions, as it now reaches 0.8 parallel efficiency with
10K cores (see Figure 16a). It also shows slight improvement
for 0.5 parallel efficiency, and now we consider to stop
scaling at 40K cores with CoMD. Scalability of LULESH (see
Figure 16b is still dominated by the load-balance inefficien-
cies and we achieve 0.8 efficiency with 256 cores and 0.5 with
1K. On the other side, miniFE (see Figure 16c) is affected by
both load-balance and transfer inefficiencies with the root of
the problem not being packet-loss. Removing preemptions
slightly improves Serialization efficiency but it is the least
contributing factor to the final parallel efficiency in this case
(being close to 1.0 in a wide region). miniFE would scale
up to 10K cores with the efficiency of 0.5 on the Mont-Blanc
prototype.

7 RELATED WORK

ASCI Red was a landmark supercomputing machine de-
ployed in 1997. It was the first supercomputer to break the
TFLOPS barrier [31], and it remained at number one on the
TOP500 list for three years [32]. It was the first top-tier
supercomputer that, instead of powerful HPC-optimized
vector processors, integrated 7,246 Pentium Pro processors,1

1. Later the number of processors was increased to 9,632 and up-
graded to Pentium II processors

9

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

ffi
ci

en
cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(a) CoMD.

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(b) LULESH.

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(c) miniFE.

Fig. 15: Parallel efficiency - no lost packets. Lines represent
the model, while the lone marker ticks represent measure-
ments points.

the first x86 commodity processors to support on-chip
double-precision floating-point computation. It opened the
door to more designs based on the same principle: clusters
of commodity PC processors; and the beginning of the end
of vector processors.

GreenDestiny [33] represents an early attempt to use
low-power processors in HPC, using the Transmeta TM5600
processor. MegaProto Systems [34] was another prototype in
the same direction, based on later versions of Transmeta’s
processors, namely TM5800 and TM8820. Unfortunately,
none of the systems entered the commercialization for HPC.
However, some architectural principles found in the afore-
mentioned processors, are now incorporated into NVIDIA
Denver CPU architecture, meant for mobile and automotive
market [35].

The three generations of BlueGene family of supercom-
puters [36], [37], [38], first introduced in 2004, introduced
a new approach for energy-efficient HPC. The BlueGene
processors were based on IBM cores used in the embed-
ded market and extended with SIMD capabilities. System
software and interconnect fabrics are however architecture-
specific.

FAWN was a proposal to use Intel Atom processors in
clusters [39]. The cluster was built and tested with a range
of workloads, but evaluation did not include a suite of
true HPC workloads. The authors did a thorough study
to determine the type of workloads where Intel Atom can
offer a competitive energy-efficiency compared to an Intel

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(a) CoMD.

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(b) LULESH.

100 101 102 103 104 105 106

Processes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy Load Balance

Measured Load Balance

Serialization

Measured Serialization

Transfer

Measured Transfer

Parallel Eff.

Measured Parallel Eff.

(c) miniFE.

Fig. 16: Parallel efficiency - no lost packets, no pre-emptions.
Lines represent the model, while the lone marker ticks
represent measurements points.

Core i7 processor. A follow-up of this work found that a
homogeneous cluster of low-power Intel Atom processors
is not suited to complex database workloads [40].

The Apple TV cluster [41] was the first cluster built from
ARM-based consumer devices. Composed of four AppleTV
devices for a total of four ARM Cortex-A8 cores, was the
first platform allowing parallel processing on processors
targeted to the mobile market. Authors pointed out the lack
of fully pipelined floating-point unit which is nowadays
unquestionable resource in mobile SoCs. Also, they report
the latency of the network interface to be ≈200µs which is
2.27× bigger compared to the Mont-Blanc prototype.

The Tibidabo cluster prototype, deployed in 2011, was
the first large scale HPC cluster based on mobile proces-
sors [42]. Built with a total of 256 developer kits (nodes)
featuring dual-core Cortex-A9 processors, it was the first
cluster with a full HPC software stack including cluster
management, job scheduler, scientific libraries and HPC
performance analysis tools for the ARM architecture. The
ARM Cortex-A9 was the first mobile processor with built-in
fully-pipelined double-precision floating-point unit. Tibid-
abo also demonstrated a case for scale-out parallel process-
ing with real scientific applications on mobile processors.

Several commercial solutions targeting the server market
have founded their design on mobile core IP. Calxeda Ener-
gyCore ECX-1000 [43] was an ARM-based SoC with four
ARM Cortex-A9 cores, five 10 GbE links, and SATA. AMD
SeaMicro SM10000-64 was a 10U chassis with 256 dual-core

10

Intel Atom N570 processors. Quanta Computer S900-X31A
is a 3U microserver of 24 nodes with Intel Atom S1200
“Centerton” at 10W per node. AMD Opteron A1100 is a
micro-server SoC with eight ARM Cortex-A57 cores, two
memory controllers and two 10GbE network controllers.

Other companies have developed custom processors
based on the ARM architecture. Applied Micro (APM) X-
Gene [44] is a server-class SoC with eight 64-bit ARMv8
cores and four 10 GbE links. Cavium, with large experi-
ence in networking processors, designed ThunderX [45],
another server-class SoC with 48 ARMv8 cores and mul-
tiple 10/40GbE interfaces. Qualcomm and Phytium also
announced ARMv8 server SoCs with 24 [46] and 64 [47]
cores, respectively.

Some successful deployments of some of these SoCs are
already in place. CERN has published a comparison of APM
X-Gene compared to Intel Xeon and IBM Power8 chips [48].
PayPal has deployed HP Moonshot servers with APM X-
Gene processors claiming half the price, one seventh of the
power consumption and 10x more nodes per rack compared
to their traditional data center infrastructure [49].

These efforts, however, target the server marker and
there are still no large demonstrators of such mobile-
technology-based processors for HPC. The Mont-Blanc pro-
totype is thus the first demonstrator of an HPC cluster with
full HPC software stack running real scientific application,
commodity networking, and standard system integration.
Our experiments demonstrate the feasibility of the proposed
alternative approach, assess system software maturity and
project its scalability at larger scale.

8 CONCLUSIONS

In this report, we have presented the architecture of the
Mont-Blanc prototype, from both hardware and software
perspectives. Comparing its performance against a produc-
tion level supercomputer we have shown that it is ≈4×
slower then its contemporary supercomputer based on the
Intel SandyBridge Xeon processor, when using the same
number of MPI ranks (cores). Energy-efficiency wise, Mont-
Blanc prototype is on pair. However, if we favor latency-
oriented computing, aiming towards faster runtime over
other metrics, we have to put 4× more computing resources
in order to compensate for lower per node performance.

Direct comparison of the cost of the Mont-Blanc proto-
type against a production level supercomputer is impossi-
ble. The price of the former is dictated by the prototyping
process, while the cost of the later is always formed after
negotiations and competition required by the procurements.
However, we could speculate that using the same SoCs, as
the one used in modern mobile, embedded and automotive
devices, Mont-Blanc approach could offer more affordable
High-Performance Computing machines. Though, given the
current limitations of the aforementioned SoCs, it probably
could not compete at scale in near future, unless vendors
take another direction and start incorporating minimum
required HPC features.

Prototyping a new HPC platform requires freezing de-
sign specification at a given moment of the design cycle. The
Mont-Blanc prototype, presented in this report, is built on

the technology dating from 2012. From the moment of freez-
ing design specification there have been many advances in
the mobile, embedded and automotive SoCs - chips inte-
grating more cores, heterogeneous CPUs, shift towards 64-
bit architecture, advances in memory technology, advances
in process nodes etc. - while staying within the same power
and thermal budget dictated by the target application of the
SoCs. Here we leave open the question for future research
- how would an upgraded revision of the Mont-Blanc prototype
perform?

REFERENCES

[1] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz, “Towards energy-proportional data-
center memory with mobile DRAM,” in ACM SIGARCH Computer
Architecture News, vol. 40, pp. 37–48, IEEE Computer Society, 2012.

[2] ASIX, “AX88179 - USB3.0 to 10/100/1000M Gigabit Eth-
ernet Controller.” http://www.asix.com.tw/FrootAttach/brief/
AX88179 Brief.pdf, 2015.

[3] “Intelligent Platform Management Interface.” http:
//en.wikipedia.org/wiki/Intelligent Platform Management
Interface, 2015.

[4] “The MQTT Protocol.” http://mqtt.org, 2014.
[5] “The Apache Cassandra Project.” http://cassandra.apache.org/,

2014.
[6] “ARM Connected Community Forums.” https://web.archive.

org/web/20160303143357/https://community.arm.com/
message/18218, 4 2014.

[7] Barcelona Supercomputing Center, “MareNos-
trum III (2013) System Architecture.” https://web.
archive.org/web/20160303114630/https://www.bsc.es/
marenostrum-support-services/mn3.

[8] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and
A. Ramirez, “Experiences with mobile processors for energy ef-
ficient HPC,” in Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 464–468, EDA Consortium, 2013.

[9] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “Ompss: a proposal for programming
heterogeneous multi-core architectures,” Parallel Processing Letters,
vol. 21, no. 02, pp. 173–193, 2011.

[10] Intel, “MPI Benchmarks v4.1.” https://software.intel.com/en-us/
articles/intel-mpi-benchmarks.

[11] Ming Lei, “USBNET: increase max rx/tx qlen for
improving USB3 throuput.” https://web.archive.org/web/
20160308154732/https://github.com/torvalds/linux/commit/
452c447a497dce3c9faeb9ac7f2e1ff39232876b, 2013.

[12] David Brownell, “The GNU/Linux ”usbnet” Driver Frame-
work.” https://web.archive.org/web/20160304233120/http:
//www.linux-usb.org/usbnet/, 2005.

[13] B. Goglin, “Design and implementation of Open-MX: High-
performance message passing over generic Ethernet hardware,”
in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on, pp. 1–7, IEEE, 2008.

[14] “The BigDFT Scientific Application.” http://bigdft.org/, 2015.
[15] L. Genovese, B. Videau, M. Ospici, T. Deutsch, S. Goedecker,

and J.-F. Méhaut, “Daubechies Wavelets for High Performance
Electronic Structure Calculations: the BigDFT Project.,” in Compte-
Rendu de l’Académie des Sciences, Calcul Intensif., Académie des
Sciences, 2010.

[16] Y. Nakamura and H. Stüben, “BQCD-Berlin quantum chromody-
namics program,” arXiv preprint arXiv:1011.0199, 2010.

[17] G. Sutmann, L. Westphal, and M. Bolten, “Particle based simula-
tions of complex systems with mp2c : Hydrodynamics and electro-
statics,” AIP Conference Proceedings, vol. 1281, no. 1, pp. 1768–1772,
2010.

[18] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D.
Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Ger-
stmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos,
N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,
A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM

http://www.asix.com.tw/FrootAttach/brief/AX88179_Brief.pdf
http://www.asix.com.tw/FrootAttach/brief/AX88179_Brief.pdf
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://mqtt.org
http://cassandra.apache.org/
https://web.archive.org/web/20160303143357/https://community.arm.com/message/18218
https://web.archive.org/web/20160303143357/https://community.arm.com/message/18218
https://web.archive.org/web/20160303143357/https://community.arm.com/message/18218
https://web.archive.org/web/20160303114630/https://www.bsc.es/marenostrum-support-services/mn3
https://web.archive.org/web/20160303114630/https://www.bsc.es/marenostrum-support-services/mn3
https://web.archive.org/web/20160303114630/https://www.bsc.es/marenostrum-support-services/mn3
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://web.archive.org/web/20160308154732/https://github.com/torvalds/linux/commit/452c447a497dce3c9faeb9ac7f2e1ff39232876b
https://web.archive.org/web/20160308154732/https://github.com/torvalds/linux/commit/452c447a497dce3c9faeb9ac7f2e1ff39232876b
https://web.archive.org/web/20160308154732/https://github.com/torvalds/linux/commit/452c447a497dce3c9faeb9ac7f2e1ff39232876b
https://web.archive.org/web/20160304233120/http://www.linux-usb.org/usbnet/
https://web.archive.org/web/20160304233120/http://www.linux-usb.org/usbnet/
http://bigdft.org/

11

ESPRESSO: a modular and open-source software project for quan-
tum simulations of materials,” Journal of Physics: Condensed Matter,
vol. 21, no. 39, p. 395502, 2009.

[19] F. Eisenmenger, U. H. E. Hansmann, S. Hayryan, and C.-K. Hu,
“[SMMP] A modern package for simulation of proteins,” Computer
Physics Communications, vol. 138, no. 2, pp. 192–212, 2001.

[20] F. Eisenmenger, U. H. E. Hansmann, S. Hayryan, and C.-K. Hu,
“An enhanced version of SMMP—open-source software package
for simulation of proteins,” Computer Physics Communications,
vol. 174, no. 5, pp. 422–429, 2006.

[21] J. H. Meinke, S. Mohanty, F. Eisenmenger, and U. H. E. Hansmann,
“[SMMP] v. 3.0—Simulating proteins and protein interactions in
Python and Fortran,” Computer Physics Communications, vol. 178,
no. 6, pp. 459–470, 2008.

[22] M. Vazquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra,
R. Aris, D. Mira, H. Calmet, F. Cucchietti, H. Owen, et al., “Alya:
towards exascale for engineering simulation codes,” arXiv preprint
arXiv:1404.4881, 2014.

[23] M. Vázquez, R. Arı́s, J. Aguado-Sierra, G. Houzeaux, A. Santiago,
M. López, P. Córdoba, M. Rivero, and J. C. Cajas, Selected Topics
of Computational and Experimental Fluid Mechanics, ch. Alya Red
CCM: HPC-Based Cardiac Computational Modelling, pp. 189–207.
Cham: Springer International Publishing, 2015.

[24] ExMatEx, “Comd proxy application.”
[25] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and

changes,” Tech. Rep. LLNL-TR-641973, August 2013.
[26] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen,

Z. DeVito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards,
M. Schulz, and C. Still, “Exploring traditional and emerging
parallel programming models using a proxy application,” in 27th
IEEE International Parallel & Distributed Processing Symposium (IEEE
IPDPS 2013), (Boston, USA), May 2013.

[27] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,”
Sandia National Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[28] R. M. Badia, J. Labarta, J. Gimenez, and F. Escale, “Dimemas: Pre-
dicting mpi applications behavior in grid environments,” in Work-
shop on Grid Applications and Programming Tools (GGF8), vol. 86,
pp. 52–62, 2003.

[29] M. Casas, R. M. Badia, and J. Labarta, “Automatic analysis of
speedup of MPI applications,” in Proceedings of the 22nd Annual
International Conference on Supercomputing, ICS 2008, pp. 349–358,
2008.

[30] C. Rosas, J. Giménez, and J. Labarta, “Scalability prediction for
fundamental performance factors,” Supercomputing frontiers and
innovations, vol. 1, no. 2, 2014.

[31] T. Mattson and G. Henry, “An Overview of the Intel TFLOPS
Supercomputer,” Intel Technology Journal, vol. 2, no. 1, 1998.

[32] TOP500, “Top500 R©supercomputer cites.” http://www.top500.
org/.

[33] M. Warren, E. Weigle, and W. Feng, “High-density computing:
A 240-processor Beowulf in one cubic meter,” in Supercomputing,
ACM/IEEE 2002 Conference, pp. 61–61, IEEE, 2002.

[34] H. Nakashima, H. Nakamura, M. Sato, T. Boku, S. Matsuoka,
D. Takahashi, and Y. Hotta, “Megaproto: 1 TFlops/10kW rack is
feasible even with only commodity technology,” in Proceedings of
the ACM/IEEE SC 2005 Conference on Supercomputing, IEEE, 2005.

[35] D. Boggs, G. Brown, B. Rozas, N. Tuck, and K. S. Venkatraman,
“NVIDIA’s Denver Processor,” in Hot Chips 2014.

[36] N. R. Adiga, G. Almási, G. S. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, et al., “An overview of the BlueGene/L
supercomputer,” in ACM/IEEE 2002 Conference on Supercomputing,
IEEE Computer Society, 2002.

[37] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy,
J. Rogers, P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu,
“Early evaluation of IBM BlueGene/P,” in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, (Piscataway, NJ,
USA), pp. 23:1–23:12, IEEE Press, 2008.

[38] IBM Systems and Technology, “IBM System Blue Gene/Q Data
Sheet,” November 2011.

[39] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin,
and I. Moraru, “Energy-efficient cluster computing with fawn:
Workloads and implications,” in Proceedings of the 1st International
Conference on Energy-Efficient Computing and Networking, pp. 195–
204, ACM, 2010.

[40] W. Lang, J. Patel, and S. Shankar, “Wimpy node clusters: What
about non-wimpy workloads?,” in Proceedings of the Sixth Interna-
tional Workshop on Data Management on New Hardware, pp. 47–55,
ACM, 2010.

[41] K. Fürlinger, C. Klausecker, and D. Kranzlmüller, “Towards energy
efficient parallel computing on consumer electronic devices,” in
Information and Communication on Technology for the Fight against
Global Warming, pp. 1–9, Springer, 2011.

[42] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
“Tibidabo: Making the case for an ARM-based HPC system,”
Future Generation Computer Systems, vol. 36, pp. 322–334, 2014.

[43] Calxeda, “Calxeda EnergyCore ECX-1000 Series.”
http://www.calxeda.com/wp-content/uploads/2012/06/
ECX1000-Product-Brief-612.pdf, 2012.

[44] Applied Micro, “APM “X-Gene” Launch Press Brief-
ing.” https://web.archive.org/web/20120813151248/http:
//www.apm.com/global/x-gene/docs/X-GeneOverview.pdf,
2012.

[45] Cavium, “ThunderXTM.” https://web.archive.org/web/
20160310114848/http://www.cavium.com/pdfFiles/ThunderX
PB p12 Rev1.pdf, 2013.

[46] PCWorld, “Qualcomm enters server CPU market with 24-
core ARM chip.” http://www.pcworld.com/article/2990868/
qualcomm-enters-server-cpu-market-with-24-core-arm-chip.
html, 2015.

[47] Charles Zhang, Phytium Technology Co., Ltd,
“Mars: A 64-core ARMv8 Processor.” https://web.
archive.org/web/20160310155325/http://www.hotchips.
org/wp-content/uploads/hc archives/hc27/HC27.
24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.
24.321-64core-Zhang-phytium-v1.0.pdf, 2015.

[48] D. Abdurachmanov, B. Bockelman, P. Elmer, G. Eulisse, R. Knight,
and S. Muzaffar, “Heterogeneous high throughput scientific com-
puting with apm x-gene and intel xeon phi,” in Journal of Physics:
Conference Series, vol. 608, p. 012033, IOP Publishing, 2015.

[49] Data Center Knowledge, “PayPal Deploys ARM Servers in Data
Centers.” https://web.archive.org/web/20160310160416/http:
//www.datacenterknowledge.com/archives/2015/04/29/
paypal-deploys-arm-servers-in-data-centers/, 2015.

http://www.top500.org/
http://www.top500.org/
http://www.calxeda.com/wp-content/uploads/2012/06/ECX1000-Product-Brief-612.pdf
http://www.calxeda.com/wp-content/uploads/2012/06/ECX1000-Product-Brief-612.pdf
https://web.archive.org/web/20120813151248/http://www.apm.com/global/x-gene/docs/X-GeneOverview.pdf
https://web.archive.org/web/20120813151248/http://www.apm.com/global/x-gene/docs/X-GeneOverview.pdf
https://web.archive.org/web/20160310114848/http://www.cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
https://web.archive.org/web/20160310114848/http://www.cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
https://web.archive.org/web/20160310114848/http://www.cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
http://www.pcworld.com/article/2990868/qualcomm-enters-server-cpu-market-with-24-core-arm-chip.html
http://www.pcworld.com/article/2990868/qualcomm-enters-server-cpu-market-with-24-core-arm-chip.html
http://www.pcworld.com/article/2990868/qualcomm-enters-server-cpu-market-with-24-core-arm-chip.html
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310160416/http://www.datacenterknowledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-centers/
https://web.archive.org/web/20160310160416/http://www.datacenterknowledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-centers/
https://web.archive.org/web/20160310160416/http://www.datacenterknowledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-centers/

	Introduction
	The Mont-Blanc Prototype
	The Mont-Blanc Compute Node
	The Mont-Blanc Blade
	The Mont-Blanc System
	System interconnect
	Storage
	Cooling

	The Mont-Blanc Software Stack
	Power Monitoring Infrastructure
	Performance Summary

	Compute Node Evaluation
	Core evaluation
	Node evaluation
	Node Power

	Interconnection Network Tuning and Evaluation
	Overall System Evaluation
	Applications scalability
	Lost packets
	Pre-emptions

	Comparison with traditional HPC

	Scalability Projection
	Related work
	Conclusions
	References

