10 research outputs found

    A machine learning approach to 5G infrastructure market optimization

    Get PDF
    It is now commonly agreed that future 5G Networks will build upon the network slicing concept. The ability to provide virtual, logically independent "slices" of the network will also have an impact on the models that will sustain the business ecosystem. Network slicing will open the door to new players: the infrastructure provider, which is the owner of the infrastructure, and the tenants, which may acquire a network slice from the infrastructure provider to deliver a specific service to their customers. In this new context, how to correctly handle resource allocation among tenants and how to maximize the monetization of the infrastructure become fundamental problems that need to be solved. In this paper, we address this issue by designing a network slice admission control algorithm that (i) autonomously learns the best acceptance policy while (ii) it ensures that the service guarantees provided to tenants are always satisfied. The contributions of this paper include: (i) an analytical model for the admissibility region of a network slicing-capable 5G Network, (ii) the analysis of the system (modeled as a Semi-Markov Decision Process) and the optimization of the infrastructure providers revenue, and (iii) the design of a machine learning algorithm that can be deployed in practical settings and achieves close to optimal performance.The work of University Carlos III of Madrid was supported by the H2020 5G-MoNArch project (Grant Agreement No. 761445) and the 5GCity project of the Spanish Ministry of Economy and Competitiveness (TEC2016-76795-C6-3-R). The work of NEC Laboratories Europe was supported by the 5G-Transformer project (Grant Agreement No. 761536)

    Game Theory-based Allocation Management in VCC Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) have contributed significantly towards improving road traffic management and safety. VANETs, integrated with Vehicular Clouds, enable underutilized vehicular resources for efficient resource management, fulfilling service requests. However, due to the frequently changing network topology of vehicular cloud networks, the vehicles frequently move out of the coverage area of roadside units (RSUs), disconnecting from the RSUs and interrupting the fulfillment of ongoing service requests. In addition, working with heterogeneous vehicles makes it difficult to match the service requests with the varying resources of individual vehicles. Therefore, to address these challenges, this work introduces the concept of clustering resources from nearby vehicles to form Combined Resource Units (CRUs). These units contribute to maximizing the rate of fulfillment of service requests. CRU composition is helpful, especially for the heterogeneity of vehicles, since it allows clustering the varying resources of vehicles into a single unit. The vehicle resources are clustered into CRUs based on three different sized pools, making the service matching process more time-efficient. Previous works have adopted stochastic models for resource clustering configurations. However, this work adopts distinct search algorithms for CRU composition, which are computationally less complex. Results showed that light-weight search algorithms, such as selective search algorithm (SSA), achieved close to 80% of resource availability without over-assembling CRUs in higher density scenarios. Following CRU composition, a game-theoretical approach is opted for allocating CRUs to service requests. Under this approach, the CRUs play a non-cooperative game to maximize their utility, contributing to factors such as fairness, efficiency, improved system performance and reduced system overhead. The utility value takes into account the RSS (Received Signal Strength) value of each CRU and the resources required in fulfilling a request. Results of the game model showed that the proposed approach of CRU composition obtained 90% success rate towards matching and fulfilling service requests

    Machine Learning-based Orchestration Solutions for Future Slicing-Enabled Mobile Networks

    Get PDF
    The fifth generation mobile networks (5G) will incorporate novel technologies such as network programmability and virtualization enabled by Software-Defined Networking (SDN) and Network Function Virtualization (NFV) paradigms, which have recently attracted major interest from both academic and industrial stakeholders. Building on these concepts, Network Slicing raised as the main driver of a novel business model where mobile operators may open, i.e., “slice”, their infrastructure to new business players and offer independent, isolated and self-contained sets of network functions and physical/virtual resources tailored to specific services requirements. While Network Slicing has the potential to increase the revenue sources of service providers, it involves a number of technical challenges that must be carefully addressed. End-to-end (E2E) network slices encompass time and spectrum resources in the radio access network (RAN), transport resources on the fronthauling/backhauling links, and computing and storage resources at core and edge data centers. Additionally, the vertical service requirements’ heterogeneity (e.g., high throughput, low latency, high reliability) exacerbates the need for novel orchestration solutions able to manage end-to-end network slice resources across different domains, while satisfying stringent service level agreements and specific traffic requirements. An end-to-end network slicing orchestration solution shall i) admit network slice requests such that the overall system revenues are maximized, ii) provide the required resources across different network domains to fulfill the Service Level Agreements (SLAs) iii) dynamically adapt the resource allocation based on the real-time traffic load, endusers’ mobility and instantaneous wireless channel statistics. Certainly, a mobile network represents a fast-changing scenario characterized by complex spatio-temporal relationship connecting end-users’ traffic demand with social activities and economy. Legacy models that aim at providing dynamic resource allocation based on traditional traffic demand forecasting techniques fail to capture these important aspects. To close this gap, machine learning-aided solutions are quickly arising as promising technologies to sustain, in a scalable manner, the set of operations required by the network slicing context. How to implement such resource allocation schemes among slices, while trying to make the most efficient use of the networking resources composing the mobile infrastructure, are key problems underlying the network slicing paradigm, which will be addressed in this thesis

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Architectures and Algorithms for Content Delivery in Future Networks

    Get PDF
    Traditional Content Delivery Networks (CDNs) built with traditional Internet technology are less and less able to cope with today’s tremendous content growth. Enhancing infrastructures with storage and computation capabilities may help to remedy the situation. Information-Centric Networks (ICNs), a proposed future Internet technology, unlike the current Internet, decouple information from its sources and provide in-network storage. However, content delivery over in-network storage-enabled networks still faces significant issues, such as the stability and accuracy of estimated bitrate when using Dynamic Adaptive Streaming (DASH). Still Implementing new infrastructures with in-network storage can lead to other challenges. For instance, the extensive deployment of such networks will require a significant upgrade of the installed IP infrastructure. Furthermore, network slicing enables services and applications with very different characteristics to co-exist on the same network infrastructure. Another challenge is that traditional architectures cannot meet future expectations for streaming in terms of latency and network load when it comes to content, such as 360° videos and immersive services. In-Network Computing (INC), also known as Computing in the Network (COIN), allows the computation tasks to be distributed across the network instead of being computed on servers to guarantee performance. INC is expected to provide lower latency, lower network traffic, and higher throughput. Implementing infrastructures with in-network computing will help fulfill specific requirements for streaming 360° video streaming in the future. Therefore, the delivery of 360° video and immersive services can benefit from INC. This thesis elaborates and addresses the key architectural and algorithmic research challenges related to content delivery in future networks. To tackle the first challenge, we propose algorithms for solving the inaccuracy of rate estimation for future CDNs implementation with in-network storage (a key feature of future networks). An algorithm for implementing in-network storage in IP settings for CDNs is proposed for the second challenge. Finally, for the third challenge, we propose an architecture for provisioning INC-enabled slices for 360° video streaming in next-generation networks. We considered a P4-enabled Software-Defined network (SDN) as the physical infrastructure and significantly reduced latency and traffic load for video streaming

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Machine Learning Solutions for Transportation Networks

    Get PDF
    This thesis brings a collection of novel models and methods that result from a new look at practical problems in transportation through the prism of newly available sensor data. There are four main contributions: First, we design a generative probabilistic graphical model to describe multivariate continuous densities such as observed traffic patterns. The model implements a multivariate normal distribution with covariance constrained in a natural way, using a number of parameters that is only linear (as opposed to quadratic) in the dimensionality of the data. This means that learning these models requires less data. The primary use for such a model is to support inferences, for instance, of data missing due to sensor malfunctions. Second, we build a model of traffic flow inspired by macroscopic flow models. Unlike traditional such models, our model deals with uncertainty of measurement and unobservability of certain important quantities and incorporates on-the-fly observations more easily. Because the model does not admit efficient exact inference, we develop a particle filter. The model delivers better medium- and long- term predictions than general-purpose time series models. Moreover, having a predictive distribution of traffic state enables the application of powerful decision-making machinery to the traffic domain. Third, two new optimization algorithms for the common task of vehicle routing are designed, using the traffic flow model as their probabilistic underpinning. Their benefits include suitability to highly volatile environments and the fact that optimization criteria other than the classical minimal expected time are easily incorporated. Finally, we present a new method for detecting accidents and other adverse events. Data collected from highways enables us to bring supervised learning approaches to incident detection. We show that a support vector machine learner can outperform manually calibrated solutions. A major hurdle to performance of supervised learners is the quality of data which contains systematic biases varying from site to site. We build a dynamic Bayesian network framework that learns and rectifies these biases, leading to improved supervised detector performance with little need for manually tagged data. The realignment method applies generally to virtually all forms of labeled sequential data

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field
    corecore