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Abstract

Vehicular Ad-hoc Networks (VANETS) have contributed significantly towards im-
proving road traffic management and safety. VANETS, integrated with Vehicular
Clouds, enable underutilized vehicular resources for efficient resource management,
fulfilling service requests. However, due to the frequently changing network topol-
ogy of vehicular cloud networks, the vehicles frequently move out of the coverage
area of roadside units (RSUs), disconnecting from the RSUs and interrupting the
fulfillment of ongoing service requests. In addition, working with heterogeneous ve-
hicles makes it difficult to match the service requests with the varying resources of
individual vehicles. Therefore, to address these challenges, this work introduces the
concept of clustering resources from nearby vehicles to form Combined Resource Units
(CRUs). These units contribute to maximizing the rate of fulfillment of service re-
quests. CRU composition is helpful, especially for the heterogeneity of vehicles, since
it allows clustering the varying resources of vehicles into a single unit. The vehicle
resources are clustered into CRUs based on three different sized pools, making the
service matching process more time-efficient. Previous works have adopted stochas-
tic models for resource clustering configurations. However, this work adopts distinct
search algorithms for CRU composition, which are computationally less complex. Re-
sults showed that light-weight search algorithms, such as selective search algorithm
(SSA), achieved close to 80% of resource availability without over-assembling CRUs in
higher density scenarios. Following CRU composition, a game-theoretical approach
is opted for allocating CRUs to service requests. Under this approach, the CRUs
play a non-cooperative game to maximize their utility, contributing to factors such
as fairness, efficiency, improved system performance and reduced system overhead.
The utility value takes into account the RSS (Received Signal Strength) value of each
CRU and the resources required in fulfilling a request. Results of the game model

showed that the proposed approach of CRU composition obtained 90% success rate



towards matching and fulfilling service requests.
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Chapter 1
Introduction

The Intelligent Transportation System (ITS) has gained considerable attention
in the modern world due to its applications in road safety and the transportation
industry, fulfilling the QoS (Quality of Service) requirements of users and operational
efficiency through the advanced techniques of information transmission. Due to the
significant advancements in road and traffic safety, considerable research works have
been focused on the advances of vehicular networks integrated with cloud computing
technologies. These advancements have provided users on the road with practicability
and convenience in terms of road safety and traffic management and has led to the
development of Vehicular Cloud Computing (VCC) [26].

VCC networks provide users access to information, such as heavy traffic routes
and accident scenarios. This information sharing can be enabled through vehicles in
close vicinity to each other, forwarding and exchanging information through cloud
networks. The vehicles and roadside infrastructure (RSUs) are essential elements
that compose VCC networks. They contribute towards efficient data processing and
acquisition, through devices such as smart sensors and actuators built into them.
They also play an active role in resource sharing by collaborating their underutilized

resources for resource allocation and management [22].

The vehicles and RSUs in the VCC network make use of an extensive range of
communication modes, which include: V2V (vehicle-to-vehicle) and V2I (vehicle-to-
infrastructure). The RSUs are an integral part of the V2I communication since these
units allow vehicles to transmit and download data from the networking platform.
A VCC network may consist of several RSUs that are usually hard wire connected

so that they have an infinite lifetime in the network and can be used for providing
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services to users if/when mobile vehicles in the network move outside of the transmis-
sion range of the requester vehicle. V2V enables vehicles in close vicinity to transmit
and receive data from each other without the involvement of RSUs, thus contributing

significantly towards reduced power consumption and transmission delay.

VCC allows for dynamic resource allocation, which contributes towards efficient
scaling in large networks [9]. VCC networks are generally classified based on the
services they offer, such as NaaS (Network as a Service), SaaS (Sensing as a Service)
[11] and CaaS (Computation as a Service). This thesis primarily focuses on CaaS,
as demonstrated in [15], which suggests that idle vehicles in a parking lot contribute
to building a strong VCC network. CaaS works by each vehicle contributing a small
number of their computing resources to the cloud system, which would help fulfill

user service requests in the surrounding area.

Previous works have considered stochastic models such as SMDP and MDP for
clustering resources within a VCC network, disregarding the heterogeneity of vehicles
(vehicles that may have varying amounts of computing resources). However, recently,
different manufacturers make vehicles with varying amounts of resources. Therefore,
it is vital to consider the heterogeneity of vehicles and their underutilized resources
for resource management in VCC networks. We address this by clustering vehicle

resources into small, medium, and large sized pools.

These pools, called Combined Resource Units (CRUs), are composed based on
a predefined maximum CPU, memory and storage capacity. Resources from vehi-
cles in the surrounding area are used to assemble these units until their capacity is
maximized. Unlike approaches that introduce complexity in the management and
allocation process, we introduce a relaxed method where virtual resource units are
assembled proactively for fulfilling requests. Our proposed method utilizes distinct
search algorithms called ELSA (Exhaustive Linear Search Algorithm), RSA (Restric-
tive Search Algorithm), FASA (First Available Search Algorithm) and SSA (Selective
Search Algorithm), which are based on search principles in matching predefined re-
source cluster sizes. A resource distribution heuristic is also implemented, which
attempts to impose resource cluster distribution according to the available resources

supported by the network.

Following the CRU composition process, a game theoretical model is implemented
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and tested for successfully allocating CRUs to user service requests. This model en-
sures that CRUs are assigned to users in a fair and efficient manner, maximizing the
service fulfillment success rate within a minimum time frame. The game model aims
at maximizing the utility of each request. The utility value is derived from the RSS
(Receiving Signal Strength) value and the additional resources offered by a CRU to
a service request. Based on the utility value of each CRU, it is allocated to a service
request for fulfillment using the Alpha-Beta Pruning algorithm, which is considered

as an optimization technique for the traditional minimax algorithm.

1.1 Motivation

Vehicles are equipped with a significant amount of on-board resources that re-
main under-utilized. These resources can be utilized towards fulfilling service re-
quests. Moreover, the vehicles in a VC network display high mobility, which results
in a dynamically changing network topology, which affects the connectivity status of
the vehicles. This leads to increased time delays in processing requests. It is also
a time-consuming process for service requests to be matched and fulfilled with indi-
vidual vehicles from a large pool of vehicles. Therefore, addressing these problems,
this work proposes a more relaxed approach of clustering resources of nearby vehicles
in a virtual unit of three different predefined sizes. Distinct search algorithms are
implemented for assembling these units. The different pools of resource units utilize
maximum underutilized vehicular resources while also maximizing the rate of fulfill-
ment of services. The distribution heuristic estimates the number of units that can
be safely assembled in the network, and the game theory model allows for fair and

efficient allocation of resource units to service requests.

1.2 Objectives

This work aims at clustering vehicular resources into virtual units, maximizing the
use of underutilized vehicular resources in a VCC network for fulfilling user service

requests. The following important factors are to be considered:

1. Vehicular resources need to be clustered into Combined Resource Units where

a minimum amount of resources is not unavailable.
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2. Such units must be organized into different pools to provide maximum success

rate of service request fulfillment.

3. A heuristic method must be able to estimate the different pools of CRUs that

the network can safely assemble, to avoid overloading and congestion.

4. A resource allocation strategy must efficiently and fairly be assigned to service

requests.

5. The CRU composition and allocation strategies need to scale to match urban

computing environments.
6. The assignment of resources must guarantee service delivery and fairness.

7. The connectivity level of vehicles must be ensured through a propagation model

to avoid interruption of service requests.

1.3 Contribution

This section organizes the contributions made through this work. The first sec-
tion presents the contributions of CRU composition process and the second section

presents the contributions of the CRU allocation process.

1.3.1 CRU Composition

The CRU composition process is conducted to assemble virtual units of resources,

that contribute towards service allocation and resource provisioning.

1. RSU-based resource discovery: The RSU triggers the CRU composition process
by communicating with vehicles in the vicinity to provide their resources for

clustering into virtual units.

2. CRU assembly algorithms: Distinct search algorithms called FLSA, RSA, FASA
and SSA are implemented for clustering the resources into different pools of
CRUs, based on a predefined CRU capacity. These algorithms are based on the

principle of a bin-packing algorithm.
3. CRU distribution heuristic: A distribution heuristic is implemented to estimate
the different pools of CRUs that the network can safely assemble.

The results of the performance of CRUs in the VCC network have been accepted for
publication in the IEEE ISCC-2021 conference.
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1.3.2 CRU Allocation

After the completion of the CRU composition process, the CRU allocation process
is conducted for fulfilling multiple service requests. The contributions of this section

are organized as:

e Game theory-based models and algorithms: Two decision-making algorithms,
Exhaustive MnM and Efficient Pruning, are implemented for finding an ideal
CRU match for service requests. These algorithms are based on the principles

of the Minimax and Alpha-Beta Pruning algorithms, respectively.

e The Efficient Pruning method presents a more coherent fair solution search since

it considers a more realistic utility function for the CRUs.

e Two different utility functions, one which is distance-centered and the other
which is RSSI-centered, are defined for Fxhaustive MnM and Efficient Pruning

algorithms, respectively.

1.4 Outline

The remainder of this thesis is organized as follows:

e Chapter 2 explains the background of Vehicular Cloud Computing, its emer-
gence in the cloud computing world, state-of-the-art architecture of VCC net-
works, the taxonomy of vehicular cloud computing and resource allocation and

management in VCC networks.

e Chapter 3 presents relevant related works to resource management in VCC
networks. These works have been categorized based on efficiency, mobility and

game theory approaches.

e Chapter 4 presents the problem statement, highlighting problems that moti-

vated us to conduct this research.

e Chapter 5 discusses the proposed approach in detail, introducing the resource
clustering method of CRU, the different search algorithms for clustering re-
sources into CRUs, and a distribution heuristic. It also discusses a game model
that is used to efficiently allocate the assembled CRUs to user service requests,

maximizing the service fulfillment rate.
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e Chapter 6 presents the experiments and simulations conducted for studying the

practicality of our proposed approach in real-world scenarios and discusses the

results.

e Chapter 7 concludes the thesis and describes some future work directions.



Chapter 2
Background

The integration of Vehicular Ad Hoc Networks (VANETS) and cloud computing
led to the emergence of Vehicular Clouds. VANETSs work as an underlying communi-
cation system where Vehicular Clouds are assembled through vehicles. This chapter
briefly describes VANETs and their contributions in the emergence of vehicular cloud

computing.

2.1 VANETs

VANETSs emerged as a new technology with the recent developments in the ve-
hicular and communication technologies. VANETSs are known for the integration
of new generation wireless network technologies to vehicles. They provide vehicle-
to-infrastructure (V2I) wireless communication which can help ensure transporta-
tion safety and communication reliability for moving vehicles in urban road environ-
ments. They also provide vehicle-to-vehicle (V2V) communication, which allows ve-
hicles to directly communicate with each other or vehicle communication with nearby
road equipment, referred to as roadside units (RSUs), forming V2I communication.
VANETSs are known for their ability to provide safety applications such as road and
traffic conditions, as well as non-safety applications such as video streaming, data
download, advertisement diffusion, allowing to make travel more comfortable for
users. However, despite the several advantages offered by VANETS, challenges such
as high vehicle mobility, intermittent connections and limited bandwidth impacts the

reliability of the services and applications offered by VANETS. [2]
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2.2 Internet of Vehicles (IoV)

The Internet of Vehicles (IoV) is an emerging paradigm and an important appli-
cation of the IoT technology in the field of ITS. The IoV is responsible for carrying
out effective wireless communication between vehicles and vehicles, roads, pedestrians
and the internet. It also contributes towards intelligent traffic management, intelli-
gent dynamic information services and intelligent vehicle control network integration
[27]. The IoV is known to provide some services such as collision warning, traffic con-
gestion detection, route planning, infotainment, etc., through the support of cloud
computing. These services contribute to making human traffic travel convenient and
efficient. Cloud computing has served as the backbone of IoV due to capabilities of
providing computing resources at any time and place through the internet. Cloud
computing in IoV has also served as a significant medium for data storage, data pro-
cessing and data analysis. In the communication architecture of VANETS, vehicles
can obtain road information only through two modes of communication: vehicle-to-
vehicle and vehicle-to-infrastructure. This leads to a small and limited network. IoV,
on the other hand, consists of smart vehicles that have various in-built sensors to
detect the status of other vehicles, and communication devices that enable them to
build connections with other vehicles and/or the Internet in the network. IoV in-
troduced the vehicle-to-everything (V2X) communication mode, allowing vehicles to
connect to anything that is able to share information about the surroundings of a
vehicle [14].

However, since there has been a significant increase in the number of vehicles and
mobile devices, road safety management has become a serious issue. The increase
in the number of vehicles burdens the centralized cloud data center in the cloud
computing paradigm for efficient storage, ofloading, processing and management. In
addition, since the cloud data centers are located relatively far from end users, it
poses a serious problem of high processing latency, especially for latency-sensitive
applications of the IoV. For instance, real-time applications such as an ambulance
requiring its surrounding traffic information to reach at the rescue location on time,
or a moving vehicle requiring instantaneous information about road accidents, colli-

sions, road surface conditions, etc..
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2.3 Vehicular Cloud Computing (VCC)

Initial research reveals that only communication resources of VANETSs and tradi-
tional Internet Cloud Computing had been widely explored. However, some statistics
reveal that over a billion vehicles around the world spent many hours in an idle state
in parking lots, garages, driveways, etc., and these vehicles are equipped with suf-
ficient computing and storage resources that could be used for fulfilling services or
sharing important data among nearby vehicles. These features have contributed to
making vehicles as the perfect nodes in the cloud computing environment. Keeping
in mind all of these points, [22] introduced the concept of vehicular cloud, which inte-
grates the underutilized communication, computing and storage resources of vehicles

to provide services to authorized users.

In VCC, vehicles are treated as smart devices that are equipped with multiple
sensors and therefore are capable of gathering and providing useful road and traffic
information to requesting users. The idle resources of vehicles may help city traf-
fic authorities in delivering information to vehicles approaching a particular traffic
congested or accident highway road. This would help drivers change their route and
save time. Therefore, the integration of cloud computing with vehicular networks
is said to provide a wide range of vehicle-based services to the drivers and passen-
gers, such as improvised road safety, smart traffic control, entertainment services,
and contribute towards minimizing high memory bandwidth consumption, process-
ing and communication latencies, response delays to network requests, and improvise

location-awareness.

2.3.1 VCC architecture

[16] defined the architecture of vehicular networks, keeping in mind the different types
of cloud scenarios in VANET. It is the first architecture defined for VCN and is divided

into 3 different sub-architectures:

e Vehicular Clouds (VC): This comprises a VANET infrastructure, gateways and
brokers. The VC is further divided into static clouds and dynamic clouds.

e VANET using clouds (VuC): In this architecture, VANETs make use of cloud
architectures while on the move. RSUs act as mediators for vehicles to access

cloud services. These RSUs are wired-connected to the clouds and provide
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high-speed communication to cloud services access. Infotainment and real-time

traffic information are some services provided by this architecture.

e Hybrid Clouds (Inter-vehicle clouds): This architecture is a collaboration of VC
and VuC. VC plays the dual role of a provider and consumer. Some services
offered by this architecture include NaaS, P2P and laaS.

[26] proposed the VCC architecture which comprises 3 tiers:

e Inside-vehicle: This tier keeps track of the health and mood conditions of the
driver by collecting useful information inside the car such as pressure and body
temperature. This information is detected using different types of vehicle in-
built sensors such as body sensors, smartphone sensors, environmental sensors
and driver behavior recognition sensors which can detect the reflexes and inten-
tions of the driver. This information is then stored in the cloud or is used as
an input for various software applications. The information for storage in the
cloud is forwarded through the on-board units in vehicles that are built with
wireless communication broadband, navigation system, a map, and location of

the RSUs.

e Communication: This consists of 2 components: i) V2V- If a driver is detected
with faulty behavior on the road such as abruptly changing directions, over
speeding while driving or some mechanical failure in the vehicle, emergency
warning messages (EWMs) are forwarded to cloud storage and nearby vehicles.
These messages carry with them important information such as current loca-
tion, speed and direction of the vehicle and ii) V2I- This allows for the transfer
of information and data between vehicles, cloud and infrastructure over wireless
networks such as 3G, internet, LTE, etc.. V2I has greatly minimized accidents,
delays and road traffic congestion on highways, thus enhancing road safety lev-

els.

e Cloud: This layer consists of 3 internal layers: application, infrastructure and
platform. It is responsible for computing complex and large computations in
minimal time. The application layer has several real-time services and applica-
tions, such as human health and activity recognition, environmental recognition,

etc. The infrastructure layer consists of cloud storage and computation.
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Figure 2.1: Vehicular Cloud Computing Architecture as proposed by [6]
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2.3.2 Vehicular Cloud Taxonomy

The vehicular cloud taxonomy is explained based on the different services offered
by the vehicular cloud: i) Network as a Service (NaaS), ii) Storage as a Service

(StaaS), iii) Sensing as a Service (SaaS) and iv) Computation as a Service (CaaS).

1. Network as a Service (NaaS): This service exploits the communication capa-
bilities of vehicles. Much research has been conducted to study the efficient
utilization of communication resources in vehicles. Work such as [1] has re-
searched on-time delivery issue of data by exploring the connectivity between
WiFi enabled devices that use different routing policies. Some researchers also
explored the static vehicles and their underutilized resources for utilization in
the vehicular cloud environment. [15] proposed the approach of parked vehi-
cle assistance which helps in establishing network connectivity in the vehicular

cloud environment by using parked vehicles as static nodes in the system.

2. Storage as a Service (StaaS): Recent developments in storage technology has
made it an inexpensive and contributing factor in the cloud computing envi-
ronment. Little research has been conducted in exploring the underutilized
resources to provide storage services in the vehicular cloud. The authors in [26]
make use of static vehicular storage resources of parking lots to calculate com-
munication cost, and propose a data-center system that consists of two tiers:
tier 1, which has stable storage resources; and tier 2, which has unstable stor-
age resources. These storage resources obtained are used to minimize the data

access cost within the system.

3. Sensing as a Service (SaaS): Modern-day vehicles are equipped with a number
of sensors that ensures safety while driving, as well as to identify the behaviour
of the driver. Due to the constant mobility of vehicles, the sensing coverage is
much expanded, which helps us in obtaining sensing date from geographically
distributed vehicles. [11] proposes an approach in which parked vehicles in urban
regions are utilized as relay nodes that will help in sensing vehicles on road that
are not in the line-of-sight region, thus contributing to maximizing road and
traffic safety. [32] introduces a system called POVA that helps in sensing traffic
lights in large-scale urban scenarios. This system provides advantages such
as low deployment cost and wide scale coverage. [28] introduces an incentive
mechanism for crowd-sensing that allows smartphone users to be recruited for

providing sensing services.
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4. Computation as a Service (CaaS): Most modern-day vehicles are built with
something called vehicle equipment (VE) which is like a small computer with
a networking interface. These VEs enable vehicles to communicate with other
vehicles, RSUs and sensors to exchange information and enhance road safety.
These VEs also enable vehicles to be treated as computation resource providers
of static vehicles that are parked. These resources contribute to building a date

center with significant computation power.

The taxonomy also includes several applications, such as traffic and road safety man-
agement, urban surveillance, emergency management, loV (Internet of Vehicles) and

management of traffic lights.

2.3.3 Game Theory

Game theory was founded by John von Neuman as an optimal solution to many
mathematical problems by providing possible outcomes which involves several parties,
called players [13]. It involves a strategic interaction between players, following a
certain set of rules, to yield possible outcomes. Game theory is different from other
mathematical optimization models in ways that it allows players involved to have
independent choices, with each of their choices having a possibility to influence the
other. This leads to players developing similar interests in each others choices which
can further be used to collaborate their assets or abuse each other’s assets for personal
benefits. Game theory is primarily used to achieve fairness and efficiency in certain
situations.

Game Theory is defined as a tuple: G = {P,S,U}. P denotes a set of players
or decision-makers that are actively involved in the game and contribute towards
achieving an outcome. S denotes a set containing one or more strategies adopted by
a player. Such strategies determine the action taken by a player at any time of the
game. U denotes the utility function which is a reward that each player receives at
the end of the game. The objective of the game theory tuple is to ensure that the
end outcome of each player is favorable to all players in the game. It depicts how the

decision of one player may affect the decisions of other players.

2.3.4 Resource allocation and management in VCC

Several studies have revealed that VCC networks enable dynamic allocation of

resources which ensures guaranteed delivery of reliable services to users. Resource
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management and provisioning in VCC networks are responsible for identifying and
allocating sufficient resources to the user’s requests, based on their QoS requirements.
Resource management also deals with identifying the lack of availability of resources
required to fulfill user service requirements. The work presented in [9] has mentioned
the importance of resource management in terms of minimized execution time, cost
and consumption of energy. However, the high mobility of vehicles and the frequently
changing topology of the vehicular cloud environment introduces challenges such as
instability of resources, which also complicates resource management and allocation in
VCC [10]. Therefore, it is important to address the resource management challenges
in the VCC network. A detailed view of resource allocation and management in VCC
networks is presented in the next chapter, where we will discuss and compare the

works of several authors.
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Related Works

Resource allocation and management in VCC networks have been significantly
investigated in various works based on three factors: i) Efficiency, ii) Mobility and

iii) Game Theory

3.1 Efficiency

Boukerche et al. [5] acknowledged the importance of resource management in VCC
networks, considering various aspects such as: i) efficiency - which means that the
resource allocation strategy must optimize the use of resources in a way that ensures
resources have been consumed in their entirety, ii) QoS - all allocated resources must
be sufficient to meet the QoS requirements of users, iii) fairness - all resources must

be fairly allocated to user service requests.

Yu et al. [30] presented a 3-tier vehicular cloud architecture which is constituted
by i) vehicular cloud, ii) roadside cloud and iii) central cloud. Their work focuses
on collaborating the redundant physical resources in the intelligent transportation
system network. Due to the resource-intensive characteristics of the architecture, re-
source management is considered a must. To address this, [4] proposes a game-theory
model to allow the maximization of cloud resources allocation. Cloud and vehicle
resources are represented as Virtual Machines (VMs). These VMs are present inside
a cloudlet to obtain maximum resources. These VMs are then allocated to user re-
quests based on the user request requirements. In order to achieve fair allocation
of computing and storage resources, the authors set up 2 virtual resource counters,
one for keeping track of the total computing resources and the other to keep track
of storage resources. The threshold of the VRC marks the indication that the VM

15
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can no further request for resources which means that all VMs in the network are

allocated equal number of computing and storage resources.

Lin et al. [17] addressed resource allocation in VCC networks by proposing an
SMDP model. The work constitutes integrating the computing resources of the ve-
hicles and RSUs in the network to form resource units (RUs). It presents a 2-tier
architecture which consists of a vehicular cloud composed of RUs and remote cloud
which consists of powerful computing resources. User service requests are processed
either through the VC or RC. Since this model considers heterogeneous vehicles, re-
source allocation and management in such networks in considered a complex model.
Such a model contributed towards minimized consuming power and time for resource

management in VCC.

Meneguette et al. [19] proposed a peer-to-peer protocol to address the resource
management problem in the vehicular mobile cloud. The protocol is the first of its
kind, that does not consider external infrastructure such as RSUs, and primarily
depends on vehicles collaboration to provide resources for service execution. The
objective of their model is to ensure maximum availability of resources as well to
ensure that the resource utilization time by the vehicles is highest. To address this,
they propose an efficient solution called SMAR#t (Search and Management Resource
Protocol) that will help in search and management of resources in the vehicular cloud
environment without depending on RSUs or any other external units for resources.
To achieve this, it is important for vehicles to be able to collaborate with other ve-
hicles to ensure management and sharing of resources. This protocol is based on the
famous Gnutella peer-to-peer network that is composed of 5 basic concepts: i) ping
message which contains information such as the location and request requirements of
the requesting vehicle and the identification and location of controller and gateways;
ii) pong message which contains the same fields in addition to the location and id
of the node sending the ping message, status of the requested service, gateway id
and the controller to which the sending node is connected; iii) query message which
consists of a location that is similar to that of the requester, resources required and
id and location of gateway and controller; and iv) query hit message which presents
the resource request confirmation as well as the location and id of the gateway and
controller it is connected to. Through the peer-to-peer protocol, this approach imple-
ments multi-hop communication between vehicles to seek resources and fulfill services.

Simulation results of this work showed improved results in terms of low search time
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for resources at one hop and multi-hop from the requester. This approach also guar-
antees the availability of significant number of resources and low overhead, thereby

increasing overall system performance.

Cordeshi et al. 8] designed a resource management controller that works well
in a distributed VCC network. This controllers allows the exploitation of cognitive
radio technology and the data fusion of soft input/soft output in the VCC environ-
ment. The primary goal of this model is to allow the vehicle smartphone devices
that are computation and storage resource-constrained, to access V2I provided WiFi
connections to perform traffic ofloading. This offloading is done into multiple road-
side units, also called cloudlets. This controller efficiently manages the traffic lows
the VC, making the system more distributed and scalable. In order to support the
cognitive radio based vehicular access to the VC, the authors proposed a unique pro-
tocol called intra-cluster access protocol. The authors divided this protocol into seven
phases: channel estimation, channel propagation, channel sensing, data fusion, client

scheduling, client upload, and acknowledgement phase.

Yu et al. [29] addressed the problem of resource management and sharing problem
for bandwidth and computing resources to support mobile applications in VCC net-
work. In their work, all service provider vehicles in the vehicular cloud environment
collaborate with each other to configure coalitions. These coalitions will help the
service provider vehicles to efficiently share their idle resources with each other. The
authors propose a coalition two-sided game theory model to enable the collaboration
of cloud service providers for the sharing of their idle resources. The authors divide
this model into two phases: i) the cloud service provider explores the revenue and
identifies if it is capable of working solo or must be integrated with the cloud environ-
ment; and ii) the service provider performs two functions of either leasing resources
to other service providers in range or renting resources from them. This means that
the service provider vehicles act as providers and requesters simultaneously. There
are several options that the authors consider in this approach: i) a service provider
can participate in a coalition to evaluate whether it could have a better utility; ii)
a service provider at any time can change coalitions they participate in to improve
their utility; iii) a service provider may work alone to improve their utility. To make
these options available to the service provider, the authors introduced the Pareto op-
timality that would help the service providers in maximizing their utility or to ensure

the avoidance of reduced optimality. The process of Pareto optimality is gradually
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made stronger.

Another approach to resource management in VCC networks was introduced by
Zheng et al. [31] who proposed an optimal computational resource allocation scheme
which helps in significantly enhancing the total long-term expected rewards in the
VCC system. This reward is calculated by taking two important factors into ac-
count: income and cost of the VCC system, as well as the variability of the available
resources. This is one from a few works that have heterogeneous vehicles involved.
When a user vehicle sends a service request message, it is the responsibility of the
VCC network to make an immediate decision whether to process this request in lo-
cally in the VC or forward it to the RC. In order to deal with heterogeneous varying
resources of vehicles, the authors slice the resources into virtual units such that each
vehicle is accommodated with one such virtual unit. The reward that is calculated
based on cost and income depends on power consumption and time of processing.
The resource management and allocation problem is further solved as a semi-Markov
decision process (SMDP). The SMDP model depends on 4 factors: state space, action
space, reward model and transition probability distribution model of the VCC system.
For obtaining optimal results, the authors use an iteration algorithm that contributes

in efficiently enhancing the long-term expected total reward of the system.

3.2 Mobility

Arkian et al. [4] addressed the problem of resource management in VCC net-
works by proposing a vehicular cloud architecture that consists of vehicle clusters
that will act as resource providers to service requests. The clustering technique is de-
fined as the grouping of vehicular nodes to provide resources to service requests. The
clustering technique has contributed greatly towards maximizing vehicular network
performance. The clustering technique serves as an ideal solution to overcome chal-
lenges of high vehicle mobility and frequent topology changes in dynamic vehicular
cloud networks. In the proposed technique, a cluster head (CH) is selected, which
in fact acts as the cloud controller, and manages the creation, maintenance and de-
stroying of a vehicular cloud. The CH assigns resources to vehicles in need and is also
responsible for maintaining cloud resources. During a service request interval, if any
vehicle that is serving the request moves out of range, it is the responsibility of the
CH to assign a new vehicle to the service request. The cluster of vehicles is assembled
based on some vehicle characteristics such as the direction, speed and current loca-

tion. The main characteristic for cluster formation is the distance of vehicles from
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each other which means that vehicles in close vicinity of each other are grouped un-
der one cluster. Since the fuzzy logic does not involve complex mathematical models,
it is opted as an ideal technique for the process of selection of CH. The fuzzy logic
is used to calculate the FitFactor which is used in the selection process of the CH.
Three metrics are considered for the selection of a CH: vehicle average speed, degree
of neighborhood and quality of RSU link, in order respectively. In order for the CH
to select the most ideal helper vehicle (the vehicle with the most underutilized re-
sources), in a dynamic environment, an MDP-based reinforcement learning technique
is applied. The proposed architecture for resource management is called a COHORT.
This model proved to be efficient in terms of increased service completion rate. How-
ever, it also faces some challenges such as the CH selection process is time consuming

and thereby minimizes network performance and increases system overhead.

Mustafa et al. [21] addressed the challenge of high mobility of vehicles which has
an impact on resource allocation and management in the VCC environment. For the
first time, their work introduced the concept of mobility prediction of the vehicles
as a novel solution to minimize the impacts of resource mobility on the performance
of the VC environment. Unlike several approaches, this approach also deals with
VM migration for efficient resource management. Groups of vehicles present within
the RSU coverage form cloudlets. For continuity of service, the VM assigned to a
particular user makes continuous shifts between different RSUs in order to reach the
destined cloudlet. The authors in [21]| propose a mobility prediction model that is used
to ensure that the resource management process is conducted in a reliable manner,
without the overuse of resources which could be led by redundancy as well as to min-
imize the performance overhead due to service executions being interrupted by VM
migrations. According to the proposed model, the lifetime of all available resources,
which is defined as the time through which a resource is available for service execu-
tion, is predicted, which implies that a resource with maximum predicted lifetime is
chosen. The model also sets up a predefined VM migration is scheduled to ensure
accomplishment of service execution. The simulation environment set up by [21] is
based on Nagel Shreckenberg CA model. Despite its simplicity, this model efficiently
captures the real-time traffic details and, as a result, provides a two-dimensional ma-
trix which defines the traffic characteristics through 2 metrics: definite road length
and simulation time. The lifetime of available resources is predicted using a hybrid of
linear regression (LR) supported by the artificial neural network (ANN) model. Sim-

ulation results of this model revealed successful performance of the vehicular cloud,
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without the overuse of vehicular cloud resources as well as decreased overhead due to

the minimal VM migrations in the network.

The approach in [7] is slightly different and one of its kind from existing resource
management techniques in VCC. Keeping in mind the high mobility of vehicles, Brik
et al. |7] introduced the concept of public bus harnesses which provides 2 important
advantages: stability - in terms of time (since buses have fixed schedules of operat-
ing) and space - which means having a fixed line in an urban area. These 2 factors
enable buses to act as cloud depositories, allowing provider vehicles to register their
services at these directories. The authors in [9] introduce a new proactive protocol
called DCCS-VC (Discovering and Consuming Cloud Services in Vehicular Clouds).
In this protocol, vehicles present in the MVC network rent out their various resources
to nearby vehicles. The architecture of this protocol comprises of 3 main entities: i)
provider vehicles which identify the most appropriate cloud directory in its vicinity
and register their services with it; ii) public buses to employ as cloud directories.
The public buses are employed to allow provider vehicles to store their services and
allow consumers to select from a wide range of services; and iii) consumer vehicles
that discover services before making a request. This protocol also enables consumer
vehicles to select from a wide range of services, in the case where they have discov-
ered several possible service providers for their requested service. The bus selection
process for cloud directories is based on Simple Additive Weighing (SAW) technique,
based on quality criteria. The provider vehicles are localized so that consumer vehi-
cles can consume requested services directly from the providers. To enable this, the
authors propose a localization technique called the Grid-based Tracking Cell tech-
nique (GTC). To select the most appropriate provider vehicle, the consumers propose
a fuzzy approach, accommodating 2 important factors: consumer preferences and
service constraints (QoS). This has enabled in achieving efficiency in the ranking of
provider vehicles, in terms of delay. Simulation results revealed that the proposed

protocol significantly enhances service directory and consumption delays.

Sibai et al. [12] proposed a connectivity-aware service provision approach for ad-
dressing the challenge of resource allocation and management in VCC networks. In
this approach, a vehicle is requested as a provider for providing the requested service.
This service provider vehicle is selected based parameters such as mobility of vehicles
and availability of the requested service. The authors propose a 3-tier architecture in

which: i) level 1 defines the type of available services (data storage, sensor data, com-
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puting, etc.); ii) defines the communication involved (V2V and V2I); and iii) vehicle
sensors for data aggregation such as GPS, camera, smartphones, etc. The author also
defines 2 types of vehicles: i) requester vehicle which is responsible for requesting for
one or more available services in the cloud environment; ii) service provider vehicle
that is responsible for assigning services to the requester vehicle. Since the provider
vehicle initiates the servicing of the VC, it is also called the leader vehicle. The leader
vehicle has various responsibilities like: i) exploring vehicles that are willing to pro-
vide services as ideal candidates; ii) initiating services of the cloud; iii) maintaining
the cloud during an ongoing service; and iv) destruction of cloud after service ful-
fillment. The service provider vehicle may be a mobile or stationary vehicle in the
cloud environment. A spatiotemporal algorithm is implemented to calculate commu-
nication duration and delimited communication interval. These values are then used
in the process of searching and allocation of resources in the VC environment. This
process is achieved by the requester sending a request message and implementing
a mechanism of re-transmission that aims at controlling the broadcast storm, thus

minimizing system overhead.

3.3 Game Theory

Tao et al. [24] proposed a non-cooperative resource allocation game whose work-
ing is based on Gauss-Seidel iteration method. The primary aim of this method is
the reduction of Nash Equilibrium Point (NEP) calculation time. The authors pro-
posed the concept of roadside cloud which is formed by merging VANETSs and cloud
computing, for efficiently minimizing the communication time between the RSU and
vehicles. The roadside cloud enables users and vehicles for data access and download-
ing services. This access to the roadside cloud is provided to the users through the
RSU or dedicated servers contained inside the RSU. The roadside cloud also consists
of roadside cloudlets that offers services to bypassing vehicles. It is assumed that
vehicles participating in the data access competition are selfish in terms of trying
to achieve the best desired network performance. In urban scenarios, vehicles access
data through RSUs. For this reason, the authors propose a game theory approach
to study the transmission of vehicle nodes. This game theory helps vehicles in min-
imizing their cost and maximizing their utility. The game theory results helps in
achieving efficient cloud resource allocation results among vehicle nodes through the

G-S iteration method. The G-S iteration method helps in addressing the problem of
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resource allocation convergence in VCN, by calculating the optimal utility and flow

rates of vehicular nodes.

Mohanty et al. [20] proposed a hierarchical interconnected vehicular cloud archi-
tecture for mobile vehicles. This cloud architecture collaborates the physical resources
of mobile vehicles present in the I'TS infrastructure to form a ubiquitous cloud envi-
ronment for vehicular networks. This cloud environment combines the interconnected
data center, infrastructure units and the physical resources of mobile vehicles that
results in a significant and powerful resource cloud for vehicles. The 3-tier architec-
ture which comprises of a vehicular cloud, roadside cloud and central cloud helps in
organizing together, the abundant available resources of these clouds. Even though
the central cloud is comprised of large resources, it also produces a large end-to-end
communication delay. While the resources contained in the roadside and vehicular
cloud are limited, but they provide good communication speed and quality. Due to
these reasons, this architecture enables vehicles to select their particular cloud and its
services with ease, thus making it flexible, application-friendly and compatible with
heterogeneous WSN and CR technologies. The authors in [20] also propose a game
theoretical approach as an effective resource allocation algorithm to accommodate the
resource-demanding nature of the vehicular and roadside cloud. Resources present in
the roadside and vehicular cloud are represented in the form of VMs. VM resource
allocation in the roadside cloud must meet with 3 important factors: efficiency, QoS

and fairness.

The authors in [3] proposed a new architecture called Smart Vehicle as a Service
(SVaaS) to provide services to vehicles prior to their arrival in smart city environment.
This architecture was proposed to expand the provisioning of vehicular services shar-
ing and storing digital data, monitoring and sensing surrounding environment such
as for traffic and accident information and on-demand mobile services, and to address
the challenges of varying ownerships, costs, high demand levels, service requester and
different rewards. This approach relies on the mechanism of predicting a vehicle’s
future location. This would help in achieving a service selection mechanism that is
based on Quality of Experience (QoE), which in turn would help in selecting services
that are needed by the vehicle before the actual arrival of the vehicle. The authors
collaborate QoE with a TTP cloud entity to establish a game model that acts as a
mediator between vehicle nodes and service providers. T'TPs are established organiza-

tions and provide services to vehicle users. They provide an abstraction layer between
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Table 3.1: Summary of works in resource management in VCC.

Work Connectivity Mobility V2I Probabilistic Model used

[7] v’ v’ Own Method

[30] v’ v’ Game Theory and Nash Equilibrium

[17] v’ Semi Markov Decision Process

[19] v’ v~ Peer-to-Peer protocol (Gnutella model)

8] v’ v’ Own Method (Intracluster Access Protocol)
[29] v’ v’ Coalition Game Model and Pareto Optimality
[31] v’ v’ Infinite Horizon SMDP model

[4] v’ Fuzzy Logic and Q-Learning

[21] v’ Artificial Neural Network

[12] v’ Spatio-Temporal Similarity

[24] v’ v’ Gauss-Seidel Iteration Method (GT)

[20] v’ v’ Game Theory and VM Migration

[3] v’ QoE Game Model

Proposed v~ v’ v’ Game Theory and CRU

service users and providers that contributes significantly in the resource management
and allocation in a smart city environment. In this approach, vehicles play the role
of service requesters and providers. The location prediction mechanism is based on
Dempster-Shafer theory and relies on several factors such as: user schedule, tasks, ser-
vice interests and location history of the vehicle to predict future locations. The TTP
cloud entity is composed of a service mediator module that incorporates the location
prediction mechanism and is responsible for service discovery and selection. This
module relies on game theoretical model which calculates a rating measure for each
service provider based on an overall satisfaction of service from the participant. Game
theory is used to ensure fair service distribution among providers or requester based
on some factors such as resources, services available, requesters that are currently
operating, service charges, game participants, game events and reputation values of

QoE for each service.

Table 3.1 summarizes and presents a comparison of the resource allocation and
management problem by different authors, based on factors such as connectivity,
mobility and communication. It also displays how our work differentiates from all
previous works. These related works deal with resource management. However, their
performance and feasibility is impacted by several issues. The heterogeneous nature
of vehicles and service requests is not addressed by most works. VM migration is
not considered an ideal option when working with heterogeneous vehicles since it is
difficult to deal with continuously changing data. The service drop rates would be

higher in such a scenario when a VM migrates from vehicle A to B due to the varying
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resources of A and B. Therefore, the challenges presented by these works motivated

our work to propose the CRU composition approach, for conducting efficient resource

management in VCC networks.



Chapter 4
Problem Statement

Our primary challenge to address in this work is to maximize the use of underuti-
lized resources of vehicles towards fulfilling service requests in a urban dynamic VCC
environment. The vehicles in the VCC environment can communicate with each other
through V2V (vehicle-to-vehicle) or through V2I (vehicle-to-infrastructure), where
RSUs provide coverage. When dealing with heterogeneous vehicles, the challenge lies
in their varying resources, often resulting in under-utilization/wastage of resources.
This adversely affects the success rate of service request fulfillment.

Consider an urban dynamic VCC network environment(Figure 4.1), consisting of

a finite number of heterogeneous vehicles, defined as:
V= {‘/1’ ‘/Qa ‘/3a X3 Vn}

This VCC scenario resembles a real-world scenario to better understand the practi-
cality of our approach in real-world. The vehicles in our scenario possess high mobility
and are able to connect and communicate with each other to exchange information,
data and resources. Due to the high mobility of vehicles, their connectivity in the
network is abruptly affected when they move out of range of each other. This also
affects an ongoing service that is being processed. To support connectivity and avoid
disruption of services, the network also consists of a set of finite number of RSUs,

represented as:
RSU = {rsuy,rsug, rsus, ..., rsuy }

Let us consider R to be our set of resource requests. This set will consist of p

number of resource requests and it can be written as:

R={Ry,Rs, ..R,}
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Figure 4.1: CRU composition in a VCC Scenario.

26

These vehicles are efficiently in-built with a set of resources that can be represented

as::

r= {7"1,7"2,7'3, "'7Tn}

Each vehicle is equipped with sufficient CPU (MHz), Memory (MB) and Storage

(MB) resources. These resources can be classified as:

rn, = {CPU;, Mem,, Stor;}

There are several mobile smart users that are accessing the internet for download

and upload of data, data sharing, etc. through mobile devices. However, several

problems may be encountered:

1. The heterogeneous nature of vehicles may result in the under-utilization of ve-

hicular resources during the resource-service matching process, thus resulting

in minimal service fulfillment rate.

2. Mobile devices are resource constraint devices. This means that they are not

sufficiently equipped with resources to always fulfill large user service requests

such as downloading large media files, sharing data with other users, etc. Using

mobile devices’ resources for fulfilling service requests is considered a difficult

and time-consuming process.
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3. Since the connectivity between vehicles remains a rarely researched topic, the
currently researched resource management algorithms do not produce efficient
results due to the short communication time between vehicles. In such cases, it

is difficult to meet with the QoS requirements of the users.

4. The high mobility of vehicles in Vehicular Clouds results in a dynamically chang-
ing network topology, which constantly affects the connectivity status of the
vehicles. If a vehicle loses its connection with the centralized RSU, it is no
longer considered valid for participating in resource sharing, which would lead

to increased time delays in processing user requests.
5. Most works in the past have not considered heterogeneity of user requests.

6. It is time-consuming for user service requests to be matched and fulfilled with

an appropriate vehicle from a pool of vehicles in the network.

Addressing the above stated problems, our approach takes advantage of the het-
erogeneous vehicles present in the network and utilize their available underutilized
resources to form Combined Resource Units (CRUs) that are used to fulfill multi-
ple user service requests simultaneously. Unlike previous works that have considered
stochastic models such as SMDP, MDP, etc. for resource clustering techniques, our
approach uses distinguishing search algorithms for conducting the CRU composition
process. Following the CRU composition process, we employ the CRUs for fulfilling
user service requests. A game theoretic model is used for conducting a fair and ef-
ficient allocation of the assembled CRUs to multiple user requests, simultaneously.
The fairness and efficiency of the game theoretic model is achieved through the max-

imization of the utility value/payoff of each CRU.



Chapter 5
Combined Resource Unit

This work proposes the concept of collaborating the physical resources of vehi-
cles in a virtual environment, forming a Combined Resource Unit (CRU). CRUs,
integrated with the concept of a game theory model will contribute to the resource
management problem in VCC networks, ensuring: i) fair allocation of CRUs to all
service requests; ii) maintaining the QoS requirements of users service requests in a
mobile vehicular environment; iii) efficient consumption of CRU resources allocated
to the service requests; and iv) efficient utilization of the underutilized vehicular re-

sources.

CRU is defined as the amalgamation and virtual combination of vehicles’ resources
into a single unit that can be used for efficient resource allocation in the VC envi-
ronment. Unlike all past approaches related to resource management in VCC using

virtual machine migration (VMM), the CRU approach is unique for several reasons:

e In previous works, each vehicle in the VC has its own virtual machine (VM) of
resources which are used in the management and allocation process. However,
this work clusters the resources of several vehicles into a single virtual unit
and after resource allocation, these vehicles are assigned to the request for
fulfillment.

e The composition of CRUs make the request allocation process easy and efficient
by designing and assembling three different sizes of these units. This helps in
reducing the search time for requests to be assigned and also helps in preserving

more resources for future requests.

e The CRUs are assembled prior to service requests. This means that if there are

multiple requests made by multiple users, the rate of fulfillment is much higher.
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e The three different sizes of the CRUs ensures that all requests are allocated their
desired number of resources for fulfillment while also ensuring that resources of
these units are not wasted. This means that services can be matched with
the CRUs during allocation. The overhead in the system is minimized since
there are always enough CRUs available to be assigned to service requests and
therefore, the load on the system is also reduced, making the system more

scalable and economic.

Table 5.1: Notations

Notation Meaning

VCN Vehicular Cloud Network

A% All vehicles in the VCC network

n number of vehicles in the VCC network

CRU Combined Resource Unit

RM Resource Manager (pertaining to characteristics of RSU
R set of resource requests

RSU Roadside Unit

V2I Vehicle-to-Infrastructure communication

V2v Vehicle-to-vehicle communication

5.1 VC Scenario

Consider an urban dynamic vehicular cloud network consisting of a finite number
of heterogeneous vehicles. These vehicles possess high speed and are constantly mov-
ing around in the network. Two RSUs, which are static in nature, are deployed in the
VC network, and are responsible for providing internet coverage to vehicles wirelessly
through V2I (Vehicle-to-Infrastructure). They also help in maintaining connectivity
in the network and exchanging information with the vehicles. From the deployed set
of RSUs, rsu,, is considered as a resource manager since it aggregates all data and in-
formation in the region, besides connecting to neighbouring (in range) vehicles. Thus,
rsu,, maintains information of vehicle’s resources in our problem scenario. Also, rsu,,
is considered as the primary RSU in the network since it is responsible for conducting
resource allocation to incoming user requests.

There may be a few problems that can be encountered in the process of CRU

composition and a few assumptions that must be made:
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1. Problem: All vehicles in the VCC network have the same resources and fea-
tures. This means that the three different types of CRUs that will be composed
will have the same capacity and this would make the allocation process com-
plex, leading to resource wastage.

Assumption: We assume that, our VCC scenario consists of heterogeneous

vehicles which have varying resources and features.

2. Problem: Failure in network connectivity can lead to disruption of ongoing
services in the network.
Assumption: The RSUs in the network have a lifetime connectivity and are
hard wired connected to each other. This would lead to minimal service disrup-

tion.

3. Problem: There can be multiple requests requesting for resources at the same
time. This would make it difficult in identifying which request must be pro-
cessed first.

Assumption: Requests can be queued based on their arrival time and pro-

cessed accordingly.

5.2 Composition of Combined Resource Unit

The CRU composition approach is divided into two objectives: i) designing an
algorithm suitable for CRU assembly and; ii) developing a CRU distribution heuristic

to calculate the number of different CRU types that our network is able to assemble.

5.2.1 CRU Composition Algorithm

The different CRU composition algorithms are based on the principle of bin-
packing problem. This optimization problem fits our CRU composition problem by al-
lowing resources of vehicles to be packed /clustered into a finite number of predefined-
capacity-CRUs. The goal of using bin-packing problem is to ensure efficient number
of CRUs are composed in the network.

The bin-packing problem is classified under the non-deterministic polynomial time
(NP) problems. These problems are solvable and can be verified in polynomial time.
The bin-packing problem is further classified as a NP-hard problem, which is a subset
of the NP problem. NP-hard problems are decision problems that cannot be verified

in polynomial time. In instances such as ours, where a large number of vehicles are
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involved, it becomes difficult to cluster significant number of resources into limited
number of CRUs. However, the bin-packing problem allows the efficient clustering of
resources in a dynamic scenario like ours, despite its worse-case NP-hard property,
through the use of several approximation algorithms.

The various approximation algorithms that exist are divided based on: online
heuristics and offline heuristics. Online heuristics include algorithms such as next-
fit, first-fit, best-fit, worst-fit, almost worst-fit refined harmonic, and refined first-fit
algorithms. Offline heuristics include algorithms such as first-fit decreasing, next-fit
decreasing and modified first-fit decreasing. However, in this work, we only con-
sider the online heuristic algorithms since the time complexity of the offline heuristic
algorithms is significantly higher than the online heuristic algorithms.

It is important to note that the approximation ratio of these algorithms must not
be less than 1.5, which is the approximation ratio of the bin-packing problem. In this
work, we consider the next-fit, best-fit and first-fit approximation algorithms. The
first-fit and best-fit algorithms are termed as any-fit algorithms that have an approx-
imation ratio of 1.7. The next-fit algorithm presents an approximation ratio of 2,
while the almost worst-fit algorithm presents a ratio of 1.7, which is better. However,
in terms of time complexity, the next-fit algorithm performs better than the almost
worst-fit algorithm. Additionally, in the almost worst-fit algorithm, vehicles are made
to cluster into the second most empty CRU. It is difficult and time-consuming to per-
form such a complex search when large number of vehicles are involved.

The goal is to select an algorithm that makes use of maximum resources of ve-
hicles, leaving behind little to no underutilized resources. This particular algorithm
must also assemble CRUs using least number of vehicles while ensuring that a CRU’s
maximum capacity has been met. For all algorithms, we assume a scenario in which
the RSU periodically probes vehicles that are within its communication range. The
RSU maintains an updated table of the resource information of all vehicles, that can
be used for the CRU composition process. The RSU is also assumed to maintain
a CRU list, that is used for storing CRUs that are composed using different algo-
rithms. When CRU composition begins, each algorithm calculates the total number
of different-sized CRUs that it is required to assemble, by calling the Distribution
Heuristic method. Once the array of CRU types have been established, the different

CRU composition algorithms can be used.

e Exhaustive Linear Search Algorithm: The Exhaustive Linear Search Al-
gorithm, also called FLSA, is based on a greedy approach for composing CRUs.
This method works by clustering vehicles in a CRU based on a first-come-first-
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served approach, as described in Algorithm 1. This means that when a service
request arrives at the RSU, it is assigned the first available CRU for service pro-
cessing. This method is expected to generate flawed results since this method
composes a CRU until it exceeds its predefined capacity. It does this so that
it does not result in composing under-assembled CRUs. This could potentially
serve as an advantage and disadvantage to the VCC system in terms of having
minimal under-assembled CRUs and maximum over-assembled CRUs, respec-

tively.

ALGORITHM 1: CRU Composition - Exhaustive Linear Search

Data: Vv, ., = {CPU, memory, storage}
Result: CRU = {cruy, crug, ..., cru,}
1 CRU = (;
2 CRUy;st = distribution _heuristic(V, a, B,7);
3 foreach v € V do

4 foreach cru € CRU do
5 if v; ¢ cru; then
6 cru = new(CRU, CRUy;st);
7 if v;,.., < cruj.,, then
8 crug U vg;
9 break;
10 end
11 end
12 end
13 end

e Restrictive Search Algorithm: The Restrictive Search Algorithm, also called
RSA is based on the principle of the next-fit bin-packing method. According to
this algorithm, vehicle resources are tried to be clustered in the current CRU.
If the vehicle fits, it is placed in the CRU. Otherwise, a new CRU is created
to accommodate the current vehicle. The RSA is expected to be flawed due to
several reasons: This algorithm does not allow new vehicles to be clustered into
CRUs that previous vehicles did not fit in, thus leaving significant number of

unfinished CRUs and under-utilized resources in the system.
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ALGORITHM 2: CRU Composition - Restrictive Search

Data: V|v;,,, = {CPU, memory, storage}
Result: CRU = {cruy, crug, ..., cru,}
1 CRU = (;
2 CRUy;st = distribution heuristic(V, «, 3,7);
3 foreach v € V do

4 foreach cru € CRU do
5 if v; ¢ cru; then
6 cru = new(CRU, CRUy;st);
7 if v, < crucurrentc,, then
8 CTUcurrent U Vi;
9 break;
10 else
11 cru = new(CRU, CRUy;s);
12 crug U vg;
13 end
14 end
15 end
16 end

e First Available Search Algorithm: The First-Available Search Algorithm,
also called FASA, is based on the principle of first-fit bin-packing method.
This algorithm works by iterating through a finite number of currently ex-
isting /previously composed CRUs until the first CRU in which current vehicle
resources can be clustered is found. If no CRU that can accommodate a vehicle
is found, a new CRU is created. Following the distribution heuristic, this al-
gorithm begins the CRU composition process with composing small size CRUs
first, followed by medium and large size CRU. The number of vehicles used in
packing a CRU using this algorithm is intended to be minimal compared to the
other methods. This algorithm also aims at evaluating the first previously cre-
ated CRU for clustering resources, resulting in the composition of fewer CRUs
and following the distribution heuristic accurately. However, FASA can fail to
match efficient resource allocation requirements due to the fact that this algo-
rithm does not consider alternative, more efficient assignment of resources in

other CRUs, which could result in significant number of under-assembled CRUs.
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ALGORITHM 3: CRU Composition - First-Available Search

Data: V|v;,,, = {CPU, memory, storage}
Result: CRU = {cruy, crug, ..., cru,}
1 CRU = (;
2 CRUy;st = distribution heuristic(V, «, 3,7);
3 foreach v € V do
4 foreach cru € CRU do

5 if v; ¢ cru; then
6 cru = new(CRU, CRUy;st);
7 if v;,.., < CTlj,,, then
8 crug U v
9 CTUjegy, = CrUjoa, — Vi
10 break;
11 end
12 end
13 end
14 if v;,,, # CRU then
15 cru = new(CRU, CRU y;st);
16 cruy; U vy,
17 end
18 end

e Selective Search Algorithm: The Selective Search Algorithm, also called,
SSA, is based on the principle of best-fit bin-packing method. This algorithm
works by iterating through the CRU list and accommodating a vehicle in the
tightest-spot-available CRU. This means that a vehicle is assigned/clustered
to a CRU until it is almost full so that there is the least wastage of CRU
space. The SSA works by assembling large CRUs first, clustering vehicles with
large resource capacity first. This serves as a benefit to the performance of the
method since large CRUs can prevent accommodating smaller resource capacity
vehicles, minimizing the total number of vehicles assigned to a CRU. S54 is ex-
pected to provide better results in terms of clustering CRUs to their maximum
predefined capacity by clustering minimal number of vehicles, maximizing the
rate of service request fulfillment. This would allow the algorithm to build a
more stable VCC network by accurately matching the CRU distribution heuris-
tic results. RSA and FASA oversimplify the search process by minimizing the

attempts to match available resources with a set of CRUs under construction.
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However, their search does not prime optimal assembly, leaving the algorithms

to perform under-expected, in comparison to SSA.

ALGORITHM 4: CRU Composition - Selective Search

Data: V|v;,,, = {CPU, memory, storage}
Result: CRU = {cruy, crug, ..., cru,}
1 CRU = 0;
2 CRUy;st = distribution _heuristic(V, a, B,7);
3 while vdV do
4 foreach v € V do

5 ‘ find v, ;

6 end

7 foreach cru € CRU do

8 if v; ¢ cru; then

9 cru = new(CRU, CRUy;st);
10 if v, . <cruj then

11 compare cru; with CRU
12 Crupest U Cruy;

13 end
14 end
15 end

16 if v;,., . # CRU then

17 cru = new(CRU, CRUy;st);
18 crup U vy

19 end

20 end

5.2.2 CRU Distribution Heuristic

The CRU distribution heuristic enables the calculation of the total number of
different sized CRUs that the VCC network can assemble. An estimation technique
is introduced that help us in defining our method. The distributed nature of the ve-
hicular environment introduces complexity and difficulties in assessing the individual
resources of each vehicle in the network. Therefore, this technique uses the sum of
the CPU resources of all vehicles, represented as: C' = {cy, ¢9, C3, ..., ¢, }, to estimate
the total number of vehicles present in the network. The sum of the available vehicle
CPU resources in the VCC network can be defined as:
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Table 5.2: CRU size templates

CRU size CPU (MHz) Memory (MB) Storage (MB)

Small 4 1024 5120
Medium 16 2048 10240
Large 32 4096 20480

C=> ¢ (5.1)

i=1

In a distributed, heterogeneous environment, service requests might match dif-
ferent CRU sizes. Consequently, we assume that our VCC network might comprise
of a distribution of assembled CRUS. This distribution might follow the predefined
CRU sizes, where we might have a population of CRUs that follow a small CRUs,
medium CRUs, and v large CRUs. Let’s denote the predefined resource capacities a
for small, medium and large CRUs as a = {a1, as, a3}, respectively, as represented in
Table 5.2. Using these values and our predefined CRU distribution parameters, we

can define:

P = (ay x )+ (ag x B) + (az x ) (5.2)
Using 5.1 and 5.2, we can calculate the total vehicles in the VCC network as:

C
V== 5.3
’ (53)
Let p represent the percentage of resources that can be accommodated in a CRU. We

calculate the number of resources that can be allocated to a CRU as:

:C*(PMLU

Q;

b (5.4)

where b; represents the resource distribution and a; represents the CPU capacities for
CRU size i = {small, medium, large}.
Using Equation 5.4, we can also determine the number of CRUs N of each type

that the network can assemble as:

Nob (5.5)



Chapter 6

Game Theory-based CRU Allocation

The second objective of this thesis is resource provisioning and service request ful-
fillment in VCC networks. After the CRUs have been assembled, they are now ready
to be assigned to service requests for fulfillment. The aim of the allocation model is
to ensure that CRUs are assigned to service requests in an efficient manner, ensuring
fairness among all users, resulting in maximum success rate of service fulfillment and
minimal wastage of resources.

As a result, three different models have been explored in this work for conducting
CRU allocation: Naive FCFS, Exhaustive MnM and Efficient Pruning. The Fax-
haustive MnM and Efficient Pruning models are decision making algorithms that
follow a game theoretic-based decision-making approach. The goal of these models
is to maximize the utility value of each CRU, based on which they are assigned to
requests.

There are a few assumptions we consider for conducting the CRU allocation pro-

Cess:

e We assume that there is a static mobile device nearby the RSU that is re-
sponsible for collecting and forwarding the list of service requests from multiple

requesters.

e The mobile device communicates with the RSU and other vehicles through V2I

communication mode.

6.1 Naive FCFS Model

Allocation in vehicular environments utilizing CRUs as the fundamental resource

element involves the already-known scheduling and management challenges of dis-

37
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ALGORITHM 5: CRU Allocation- Naive-FCFS Approach
Data: R = {r1,rs,...rp}, CRU = {cruy, crug, ..., cruy,}
Result: CRU = {R,CRU}

1 foreach r € R do

2 foreach cru € CRU do

3 if r;,,, < cru;,, then

4 crug U rg;

5 (ri, cru;) = completed,
6 CRU U (ry, cruy)

7 end

8 end

9 end

tributed and mobile computing systems. However, the particular scope of this work
includes high mobility where the underlying network topology changes constantly and
rapidly, aggravating the allocation challenges. At first, we can assume that a naive
approach can fulfill service/resource requests as they arrive in the system, based on
an first-come-first-served (FCFS) basis. Therefore, we name the naive approach as
Nawe FCFS model. The CRU allocation process using the FCFS approach is briefly
explained in Algorithm 5. The algorithm takes the list of service requests and list of
CRUs as input. It matches the first CRU on the CRU list with the first request on
request list. If it matches, it is assigned to the request and the (request, C RU) pair is
marked as "completed". If not, the request is marked as "incomplete" and the next
request is processed.

The FCFS algorithm is simple and covers all requests greedily. When trying to
implement this approach of resource management using CRUs in a real-life scenario,

it is not possible to get feasible results due to several reasons:

e The user request requirements may be more than the maximum capacity of the
first available CRU in the list due to which the request cannot be accommodated

and is dropped.

e The user request requirements may be minimal and it is allocated a large size

CRU, which would lead to resource wastage.

e In the above approach, at a given time, only a single user request is processed
and after the completion of the current user service allocation, the next request
is taken into consideration. This approach is time consuming since it allows
only a single request to be processed at a particular interval. In the modern-

day scenario, there are long waiting times for users to get their services processed
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which could serve as a drawback for the system. This approach could also lead
to higher percentages of service drops which could affect the overall performance

of the system.

6.2 Game Theory Model

In this section, we focus on developing a distributed system which allows effi-
cient sharing of resources between RSUs and vehicles in the network. Keeping in
mind a real-life scenario, at a particular interval, there are several service requesters
requesting for resources to fulfill services, such as obtain road traffic information,
download /upload data, and media files. CRU allocation strategy is designed in a way

that meets the following requirements:

1. Efficiency. Each CRU is allocated in an efficient manner to ensure that all of
its resources are utilized to its optimum level. The CRU distribution heuristic
assembles three different sized pools of CRUs, which allows service requests to
be assigned CRUs that precisely match their requirements. It minimizes the

time in searching for individual vehicles that match the service requirements.

2. QoS. Each allocated CRU meets with the user’s QoS requirements such that,
all services assigned to the CRU are completed in a comfortable manner. The
CRU allocation model is designed in a way that CRUs are assigned to multiple
service requests simultaneously. The model ensures to deliver service request

fulfillment in a timely manner.

3. Fairness. Each user is able to choose a CRU in a fair manner, without any
biased behavior involved. Each service request is assigned a CRU that precisely
matches its requirements, without being biased and offering a large or medium
size CRU to a small request. CRUs are assigned to requests, leaving some room

to accommodate extra requirements, if requested by the requester.

In our proposed approach, we present a game theoretical mechanism for resource
provisioning and management in the VCC network. Game theory, when integrated
with a VCC architecture that consists of a roadside cloud (RC) and vehicular cloud
(VC), has proven to show efficient results for resource allocation and management [20].
The resources provided by RC and VC provide a good communication speed and
quality, making the architecture flexible and application-friendly for heterogeneous

vehicles and service requests. We introduce and compare two different models of
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Game Theory: ezhaustive minimax (MnM) and efficient pruning for conducting CRU

allocation.

6.3 Objective of the Game

Here, we tackle the allocation problem through a game theory model, where it
identifies the best set of CRUs for all existing user requests to maximize the rate of
successfully assigned and fulfillment of requests. This assignment is based on two
factors: connectivity level of the CRU and resource capacity. Each request must be
assigned a CRU that optimally matches resource requirements and is at the closest
distance from the RSU. This network distance decision serves as a policy to ensure
that the connection is enabled at all times during service fulfillment. The model can
consider multi-hop V2V and V2X connections, thus allowing vehicles to communicate
directly with nearby vehicles or with anything that presents connectivity and is able
to share information about resources. However, the complexity of the multi-hop con-
nections would introduce high complexity in the allocation process. Therefore, in our
current scenario, we only consider V2I communication mode for resource allocation
and request fulfillment. At this design stage, we assume that only a single CRU is
assigned to a request for task fulfillment.

Consider a finite multi-dimensional game scenario where n players are actively
involved. The tuple for our game theory resource allocation model in VCC is defined
as G = {P, S, U}, where P denotes a set of players that represent the incoming user
requests that compete for resources (CRUs). These players/requests adopt a strategy
S that help them in performing the action of resource allocation. The strategy S
in terms of resource allocation is defined as the request meeting with the minimum
resource requirements of CRU. The strategy set is defined as S = {CRU;, noCRU]}.
CRU; means a CRU is available from a pool of CRUs, and it matches the request
requirements. noC'RU means there is no CRU available that matches request re-
quirements, so no CRU is assigned. Every incoming request r; adopts a strategy from
the strategy set S after matching minimum resource requirements. U denotes the
utility function that represents the reward that each request receives at the end of
CRU allocation. Two factors contribute towards a request receiving maximum re-
ward: resource allocation and distance. The utility function U is expressed according

to Equation 5.

f(ri, CRU;) = y(r;, CRU;) x d(rsum,, CRU;) (5)
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where

— i) X A+ (rel;

y(r“ CRU]) = (rel Jstor - ristoT) X 9 (6>
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In Equation 6, rel;_ , rel represent the relative values of CPU,

Jepus 7€ jmem s
memory and storage respectively, offered by the 5 CRU. Tiepus Timems a0d i, T€P-
resent the relative values of the CPU, memory, and storage respectively, requested by
the 7" service. Consequently, we identify the difference between offered and requested
resources. For instance, the value (rel;,,,

tive CPU the CRU presents to the i*" request. The coefficients, ¢, A, and 6 represent

the predefined resource weights that indicate the importance of computation, storage,

- 14,,,) indicates the additional offered rela-

and data type resources in the workload of the j** CRU.
Also, the last term of Equation 5, d(rsu,,, C RU;), corresponds to the geographical
distance between the rsu,, and j** CRU, which is calculated as a Euclidean distance,

and is represented as:

r€ldist, s, ~CRU; = |Arsup—crU; — M drsu,, —cru|/max(drsy,—crv) —min(drs, —crv)

(7)

where d,s,, —cru represents the set of all distances between rsu,, and all CRUs.

Identified in the urban road-segment topology, rsu,, is the closest RSU to the j*
CRU.

There are several properties that make our resource management problem appro-

priate for an extensive-form game model:

e Each CRU payoff value is a function of its distance from the RSU. Since a CRU
can be composed of a single or multiple nodes/vehicles, the distance of a CRU
from RSU is calculated as an average of the cumulative sum of the distances
of each vehicle that is clustered in a CRU, from the RSU. This distance is a
function of the CRUs own distance from the RSU and the distances of other
CRUs from the RSU.

e When two or more CRUs are located at the same distances from the RSU, the
CRU that offers minimal additional resources (sufficient to fulfill a request and

minimizing wastage of resources) is allocated to a service request.

e When two or more CRUs offer equal number of resources for service fulfillment,
the CRU which is at the closest distance to the RSU is allocated.

e In an unlikely situation where two CRUs that are at equal distances from the
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RSU and offer equal number of resources for service fulfillment, the CRU that
is first on the list of CRUs is allocated.

6.3.1 Exhaustive MnM

After establishing the utility function (payoff value), we adopt an Ezhaustive MnM
algorithm, which is based on the principle of minimaz algorithm and is used for
solving the modeled game theory problem. This algorithm is used to find the optimal
CRU for a service request, based on the utility value of the CRU. It considers the
utility function defined in equation 5 and aims at maximizing it for each service
request. Each service request is matched with CRUs that match minimum resource
requirements and display a high utility value.

Our scenario represents an extensive form game in which our game is represented
as a tree. In this tree, the nodes represent the different service requests and the edges
represent the set of CRUs that are ideal for matching the service request requirements.
The utility value of each CRU is calculated using Equation 5. The Ezhaustive MnM
algorithm is applied to the set of utility values of the matched ideal CRUs to find the
optimal CRU for the service request.

Since we have inferred the connectivity status of a CRU as its distance from
the RSU, we can establish that our utility value will be inversely proportional to
the distance. This means that a CRU that is closest (at a shorter distance) to the
RSU will acquire a higher value of payoff. Besides, the relative resources value,
which defines the additional resources that a CRU can offer to a service request,
will also be inversely proportional to the utility value. This means that a CRU that
offers sufficient resources to fulfill a service request, without resulting in wastage of
resources, is allocated to a request. Therefore, our utility function can be expressed

mathematically as:

U= 1/(relativegstance X relative csources) (8)

where relativegsiance 1s expressed as a Euclidean distance, as defined in equation 7,
and relative,qsources 1 €xpressed as the additional resources, as defined in equation 6.

Algorithm 6 explains the working of the CRU allocation process and how Ezhaus-
tive MnM is applied for acquiring an ideal CRU match for a service request. The
algorithm is implemented on a combinatorial search tree, with the nodes being the
service requests and the edges being the selected CRUs. The algorithm begins by

matching the service requirements with CRU resources and it calculates the utility



CHAPTER 6. GAME THEORY-BASED CRU ALLOCATION 43

ALGORITHM 6: Exhaustive MnM - CRU Allocation
Input: ur: node of a combinatorial search tree

Result: V: set of pairs (ur, cru)

V = @,

if ur < cru then

| VU {ur,cru}

end

foreach {ur,cru} € V do

flur,eru) = y(ur, cru) x d(rsu, cru);

U U f(ur,cru)

end

Function Exhaustive MnM(n, depth, isMax) is

foreach f(ur,cru) € U do

if depth = 0 then

‘ V U f(ur,cru)

else
bestVal = —o0;
value = MnM (U, depth — 1, false);
bestVal = max(bestVal,value);
return bestV al;
V UbestVal

end
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value of each CRU. After the utility values are calculated, its value is maximized
with a threshold value & = —oo. This process is repeated for every child node/CRU
of the tree, until the CRU with maximum utility has been found. At the end of
the algorithm, the CRU with maximum utility is assigned to the service request for
processing.

However, the Exhaustive MnM model presents some drawbacks:

1. This algorithm is based on the principle of minimax algorithm which has a
significant branching factor. The branching factor is defined as the number of
moves/choices a player has to win an optimal outcome. This can be a time-
consuming process, especially in complex, large-scale scenarios like ours when
there are multiple requests and significant number of CRUs available for alloca-
tion. Therefore, we adopt an efficient pruning technique, that is an optimization
for the exhaustive MnM algorithm. We further discuss about this in the next

section.

2. The distance factor, as defined in Equation 7, is a linear distance. This means
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that a CRU closer to the RSU gets a higher utility value than a CRU that is far-
ther away from the RSU. However, in real-world scenarios, the communication
reliability grows differently with distance. For instance, a CRU that is closest
to the RSU, may have a poor connection. As it moves slightly away, it gains a
strong connection as the signal strength improves. Therefore, it is important to
consider the signal strength of each CRU, along with their distance from RSU
and the additional resources it offers, for service allocation. We define a new

utility function for the CRUs in the next section, considering the signal strength
of the CRU.

6.3.2 Efficient Pruning

The efficient pruning algorithm is proposed as a performance enhancement of the
exhaustive MnM algorithm to overcome its drawbacks. This algorithm is based on
the principle of alpha-beta pruning which minimizes the number of moves of a node
by half, yielding faster searches, resulting in minimal composition time.

The time complexity of efficient pruning and Exhaustive MnM can be defined as:
e Ezhaustive MnM: O(b9)
e Efficient Pruning: O(v/b)

where b represents the branching factor, which is defined as the number of children
at each node of a tree data structure. The higher the branching factor of a search
tree, the greater is the search time of the algorithm. d represents the depth of the
search tree, which is defined as the number of edges between the root node and the
leaf node in a search tree. A higher number of edges results in a greater depth of the
tree. Therefore, we can conclude that efficient pruning algorithm is a better choice
than exhaustive MnM since it avoids many unnecessary search moves across the tree.

This algorithm, like the Exhaustive MnM, also considers the utility value of CRUs
to allocate them to service requests. However, we define the utility function of this
model slightly different from the Fzhaustive MnM model. As discussed earlier, it is
important to consider the signal strength of a CRU in defining its utility function in
terms of Connectivity and Resource Provisioning factors. Therefore, we define the
connectivity factor of a CRU in terms of its Receiving Signal Strength Indicator (RSSI)
value, which is defined as the estimated transmit power that a device is receiving from
an access point or router. In other words, it measures how well the receiving device

can hear a signal that is being transmitted from an access point or router, located
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Table 6.1: RSSI parameter values

Parameter Value

n 2 (for free-space path-loss model)
d distance of a vehicle from RSU
do 1m

A 17.78dBm

anywhere in the network. This value determines if the receiving device has sufficient
signal to establish a good wireless connection. The RSSI value is a negative value,
expressed in dBm. The closer the value to 0, the stronger is the RSSI.

In a log-distance path loss model, the receiving signal strength of receiving nodes/vehicles

can be expressed as:
RSSI = A— 1071[0910((1/6[0) - XJ (6].)

The RSSI value is determined from several factors of the path loss model of free space

propagation such as:

e Path loss exponent, also called attenuation factorn. It measures the rate at
which the value of RSSI decreases as the distance between transmitter and

receiver increases. It depends on the specific propagation environment.

Distance between transmitter and receiver d.

Reference distance d.

Received signal power A, in dBm.
e A Gaussian random variable that reflects attenuation caused by fading, X,

For the sake of simplicity, we can neglect the fade margin factor X, since we do
not consider any shadowing or obstacles in our scenario. Therefore, considering the

parameter values from table 6.1, our final RSSI equation can be defined as:

RSSI = A — 10nlogo(d) (6.2)

To define the utility function for the Efficient Pruning algorithm, we calculate the

relativerpggr value for each CRU as:

relativeRSSI = |CRUjRSSI - minRSSﬂ/maxRSSI — minRSSI (63)
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ALGORITHM 7: Efficient Pruning - CRU Allocation
Input: ur: node of a combinatorial search tree
Result: V: set of pairs (ur, cru)

1V =g
2 U= J;
3 if ur < cru then
4 ‘ V U {ur, cru}
5 end
6 foreach {ur,cru} € V do
7 flur,eru) = y(ur, cru) x d(rsu, cru);
8 U U f(ur, cru)
9 end
10 Function Efficient Pruning(n, alpha, beta, depth, isMax) is
11 foreach f(ur,cru) € U do
12 if depth = 0 then
13 ‘ V U f(ur,cru)
14 else
15 result = —oo;
16 value = Ef ficient Pruning(U, —oo, +00, depth — 1, false);
17 result = maz(result, value);
18 alpha = maz(alpha, result);
19 if beta > alpha then
20 optimal = E f ficient Pruning(U, —oo, +00, depth — 1, false);
21 result = maz(result, value);
22 alpha = mazx(alpha, result);
23 end
24 return result;
25 V U result
26 end
27 end
28 end

Using equations 6 and 6.3, we can define the utility function for Algorithm 7 as:
U = relativerssy/relative esources (6.4)

where relative,csources 1S defined in 6. According to this equation of the utility func-
tion, it is directly proportional to the RSSI value of a CRU. Closer a CRU to the
RSU, higher is its RSSI value which signifies strong signal strength and higher is the
utility value. The relative,csources factor remains inversely proportional to the utility
value, similar to Fxhaustive MnM algorithm.

Algorithm 7 explains the working of the CRU allocation process and how Efficient

Pruning is applied for acquiring an ideal CRU match for a service request. The algo-
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rithm is implemented on a combinatorial search tree, with the nodes being the service
requests and the edges being the selected CRUs that match minimum service request
requirements. There are two threshold parameters defined in this algorithm, a = —o0
and # = 4o00. The algorithm begins by matching the service requirements with CRU
resources. Following the matching process, the utility value for each matched CRU
is calculated and stored in a list. At this point, the Efficient Pruning algorithm is
applied to the list of utilities The algorithm works by iterating over the nodes (CRUs)
of the tree until the condition a@ > 3 becomes true. Once the condition becomes true,
the algorithm prunes the remaining nodes and edges in the tree since it has found the
ideal choice of CRU at the point where the condition becomes true.

The Efficient Pruning algorithm yields the same results as the Exhsuative MnM
algorithm. However, since the latter individually loops through every CRU (edges of
the tree) on the list to obtain an ideal match for a request, the process is inherently
time-consuming. Additionally, the function considered in calculating the utility value
for a CRU may not always be reliable. Therefore, Efficient Pruning is expected to
overcome the drawbacks of the Exhaustive MnM model and display ideal choices of
CRUs for service allocation. The CRUs selected as ideal choices for service requests
represent more realistic selections since the algorithm considers details from the un-
derlying communication media in calculating the utility value of each CRU. The
optimal choices of CRU selected are considered more reliable than those obtained

from the minimax algorithm.



Chapter 7
Performance Analysis

The proposed approach of CRU composition and allocation was analyzed and
tested by conducting simulation experimental analysis. These simulations closely re-
semble real-time urban scenarios, with vehicles exhibiting high and varying mobility.
This chapter will briefly discuss our VCC experimental scenario, the different param-
eters and performance metrics that are used to evaluate our proposed approach, and

the results obtained by implementing the simulations.

7.1 Scenario

The simulation environment for our analyses is built using Veins, Omnet-+-+, and
SUMO. The simulator veins [23] was built for running simulations of vehicular net-
works, in support of omnet+-+ [25], which provides a C++ simulation library and
framework for building network simulators. Sumo [18] provides a microscopic simu-
lation traffic package that is built to handle large vehicular networks. Our simulation
scenario is completely built on V2I (Vehicle-to-Infrastructure) communication mode.
This means that vehicles in the network can connect to the internet and communicate
with each other via RSUs.

7.2 'Traffic Network Topology

To emulate a real-world traffic network topology, we employ the Manhattan grid
network area as our urban scenario. Vehicles in our network present high and varying
mobility displacement patterns. The Manhattan grid represents an urban area of

1000 x 1000m2. The primary RSU, which is responsible for the composition and

48
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Table 7.1: Simulation Parameter Settings.

Parameter Value Range
Vehicle Density 100 - 1000

RSU Density 1

Vehicle Speed 13.90 m/s
Vehicle CPU 1-8 MHz
Vehicle Memory 64 - 1024 MB
Vehicle Storage 1280 - 5120 MB

Transmission Power 60mW

RSU comm. range  1000m

a, B,y 0.5, 0.25, 0.25
Map Manhattan Grid

allocation of CRUs is placed in the centre of the network. This would allow maximum
vehicles in the network to connect and communicate with the RSU and share their
resources for service processing. Two other RSUs, one at the top right corner and other
at the bottom left corner, are placed in the network. These RSUs are responsible for
connecting and communicating with vehicles that the primary RSU is unable to reach.
A mobile device is placed at a close distance to the primary RSU. It is responsible
for collecting all service requests from users and forwarding them to the RSU for
processing.

Both set of experiments conducted in this thesis work employ the same traffic
network topology. The first section comprises the performance analysis of the CRU
composition process, where we discuss the different parameters, performance metrics
and results of the proposed composition approach. The second section comprises the
performance analysis of the CRU allocation and service fulfillment process. We define
similar parameters for this approach as well, a new set of performance metrics, and

discuss the results gathered from the simulations.

7.3 Performance Analysis of CRU Composition

The CRU composition requires a list of nearby vehicles as input in order to clus-
ter resources efficiently. The clustering efficiency directly impacts resource allocation.
Therefore, our vehicular network is well-defined with a combination of suitable pa-
rameters and performance metrics, that will contribute towards gathering desired

experimental results.
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7.3.1 Parameters

For evaluating our CRU approach, we have defined a combination of parameter
settings in Table 5.1. In our simulation environment, the speed of the vehicles is set
to 13.90 m/s, which resembles the speed of vehicles in an urban scenario with traffic
conditions. This speed could result in vehicles frequently changing their position in
the network, resulting in loss of their connectivity and highly dynamic nature of our
VCC environment.

In our simulation scenario, the different densities of vehicles, ranging from 100 -
1000 vehicles, impact the composition of the CRUs, which is linked to the success
rate of service fulfillment. The higher densities of vehicles result in the formation of
large number of different pools of CRU, maximizing service fulfillment rate. For the
sake of simplicity in our simulation analyses, we have considered CPU as the avail-
able resources of vehicles in the observed urban scenario, since it would be difficult
to assess individual sets of resources of each vehicle in a distributed network.

A single RSU is deployed in the grid network and is responsible for initiating the
simulation by connecting and communicating with vehicles in close vicinity, and com-
posing different pools of CRU, based on the distribution heuristic data. The RSU
is static and is responsible for initiating the CRU composition process by collecting
resource information of vehicles and using them to assemble different pools of CRUs,
by implementing the different search algorithms. The RSU also provides internet
coverage to the vehicles through V2I.

For the sake of emulating real-world scenarios, our scenario depicts the vulnera-
bility of the vehicles and RSU to collisions/accidents, attenuation and propagation.
These factors contribute to strengthening the performance of our proposed CRU
composition process to dynamic conditions such as changing network topology, loss
of connectivity.

After the RSU has collected the resource information of vehicles, the distribution
heuristic method is used to estimate the number of total different pools of CRUs that

the network is able to safely assemble.

7.3.2 Performance Metrics

This work focuses on the composition of CRUs using maximum underutilized ve-
hicle resources while maximizing the success rate of matching requests by aggregating
different sized CRUs. We adopted several performance metrics to analyze and test

our CRU approach.
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Average number of vehicles per CRU size estimates the total number of vehicles
that are utilized in composing the three different pools of CRUs, based on their max-
imum predefined capacity. The large CRU will be composed using more vehicles, as
compared to the small and medium pools.

Resources available in composing a CRU is the second metric we adopted in con-
ducting this experiment. This metric estimates the number of resources that are
required to maximize the predefined capacity of a CRU.

The third metric we adopted in measuring the performance of our approach is
Ratio of Under-assembled/Total CRUs. This metric measures how many CRUs as-
sembled by each algorithm is composed under its predefined capacity. In other words,
this metric calculates the total CRUs that are incompletely composed. This is an im-
portant metric since it determines how many resources remain under-utilized that
could be used for maximizing the success rate of service fulfillment.

Ratio of Over-assembled/Total CRUs is our fourth performance metric. The re-
sults of this metric determine the number of CRUs that have been composed exceeding
their predefined capacity. When CRUs are composed exceeding their predefined ca-
pacity, it results in reduced total number of CRUs in the network, adversely impacting
the success rate of service fulfillment.

Accuracy of Distribution Heuristic is another metric observed for testing the per-
formance of our approach. The results of this metric determine the ratio of composed
CRUs to the expected CRUs as estimated by the distribution heuristic method. The
distribution heuristic method precisely determines the total number of CRUs the net-
work can safely assemble and support. Therefore, it is important that the algorithms

are able to match the results of this method.

7.3.3 Results

The experiments conducted to analyze the CRU approach compared the perfor-
mance of our distinctive search algorithms, based on the performance metrics defined
above. These comparisons were made with different vehicle densities, and averages
with 95% confidence intervals were calculated from 10 simulation runs for each vehicle
density and different resource parameters defined in Table 5.1.

Figure 7.1 depicts the average number of vehicles that were used by the different
CRU composition algorithms. CRU composition is concerned with using least number
of vehicles in composing a CRU. Therefore, SSA begins the composition process by

assembling large size CRUs first by using vehicles with maximum resources. As
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Figure 7.1: Average number of vehicles per CRU size.

depicted in Figure 7.1, FASA performs better in this area than the other algorithms.
However, it also results in a significant number of under-assembled CRUs because of

its inability to meet the maximum predefined capacity of each CRU type.
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Figure 7.2: Percentage of resources assigned to CRU.
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Figure 7.2 shows the relative amount of resources grouped by a CRU for different
vehicle densities by the different algorithms. FELSA shows almost 100% resource
utilization in the compositions. However, these results cannot be considered our
best choice since the algorithm exceeds the predefined capacity of each CRU type.
Hence, it results in clustering maximum resources in a single CRU, limiting the total
number of CRUs in the VCC network and affecting service fulfillment rate. SSA, on
the other hand, uses optimal number of resources in composing a CRU, resulting in
composing minimal under-assembled and over-assembled CRUs. FASA, compared to
SSA, assigns lesser resources to a CRU. However, it performs better than RSA that

assigns the least resources for composing a CRU.

Underassembled/Total CRU Ratio

Small Medium Large
CRU Size

Figure 7.3: Ratio of under-assembled CRUs.

Figure 7.3 represents the comparison of the number of under-assembled CRUs
between different approaches. As seen from the figure, since SSA starts the CRU
composition process with composing larger CRUs first, it builds a minimum number
of under-assembled CRUs. FASA, on the other hand, results in maximum number of
under-assembled CRUs. This is because the algorithm checks for the already existing
CRU for clustering vehicles, and if it fits, the vehicle is accommodated in that CRU.
It does not check for other existing CRUs that could better accommodate a vehicle,
resulting in increased number of under-assembled CRUs. The bar graph of RSA shows
that it results in composing the least number of under-assembled CRUs. However,

RSA does not match the distribution heuristic and it composes the least number of



CHAPTER 7. PERFORMANCE ANALYSIS 54

total CRUs, most of which are under-assembled. Hence, these results are considered
flawed rather an advantage for the VCC system. Lastly, FLSA follows a greedy
approach, where it tries to assign maximum number of resources to a CRU, resulting

in fewer number of under-assembled CRUs.
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Figure 7.4: Ratio of over-assembled CRUs.

Figure 7.4 shows the comparison of the number of over-assembled CRUs between
the different approaches. In the figure, SSA shows that it composes the least number
of over-assembled CRUs and composes a minimum percentage of only small over-
assembled CRUs. FASA also performs better in this area since it composes minimal
number of only small over-assembled CRUs. As previously explained, the RSA mini-
mally matches the distribution heuristic and results in composing significantly fewer
CRUs in the VCC system, with a few small over-assembled CRUs. Hence, these re-
sults show a performance that does not benefit VCC resource management. Lastly,
ELSA results in composing the maximum number of over-assembled CRUs since it
follows a greedy approach, attempting to cluster maximum amount of resources in a
CRU, exceeding the predefined CRU capacity.

Figure 7.5 compares the ratio of composed CRUs to the expected CRUs estimated
by the distribution heuristic between the different approaches. The results of FASA
and SSA demonstrate almost 100% accuracy. RSA matches the least with the distri-
bution heuristic, since CRUs are closed off, before their maximum capacity has been

reached, leaving no CRUs to cluster the remaining vehicle resources. FLSA begins
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Figure 7.5: Distribution Heuristic Accuracy.

with assembling small sized CRUs, followed by medium and large. Therefore, it over-
exceeds the capacity of small and medium sized CRUs by clustering more number of
vehicles, thus leaving behind fewer vehicles to cluster the large size CRUs. As seen
from Figure 7.3, ELSA’s bar graph shows more number of large under-assembled
CRUs.

In terms of time complexity, both FLSA and RSA require only O(n) time to
compose CRUs. The time complexity of FASA is O(n?) and SSA is O(nlogn). Even
though light-weight, FLSA results in composing CRUs exceeding their predefined
capacity, and RSA leaves maximum CRUs incomplete.

After successfully implementing our search algorithms, we can conclude that the
SSA is our ideal choice for conducting the CRU composition process. It results in
utilizing maximum resources for composing CRUs, leaving behind minimal to no un-
derutilized resources in the system. The algorithm composes least number of under-
assembled and over-assembled CRUs, meeting accurately with the distribution heuris-
tic results. The only drawback of SSA is it utilizes a higher number of vehicles in
composing CRUs, compared to FASA. However, the several advantages of SSA over-
come its only flaw, making it an ideal choice for conducting CRU composition in
real-world scenarios. The worst performing algorithm is the RSA, since it results in
significant number of under-assembled CRUs, and assigning minimum resources to

CRUs for composition process. The algorithm composes the least number of total
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CRUs, minimally meeting with the distribution heuristic results.

7.4 Performance Analysis of CRU Allocation

The CRU allocation takes place following the CRU composition process. After
identifying the three different pools of CRUs that the network can safely assemble,
the mobile device that is in vicinity of the RSU collects service requests from multiple
requesters and forwards them to the RSU for CRU allocation and service fulfillment.
We define a set of parameters and performance metrics that will contribute towards
testing our allocation approach and gathering desired experimental results. The set of
parameters remain the same, as defined in table 7.1, and the values of the coefficients,
o, A, 0, defined in equation 6, are 0.6, 0.2 and 0.2, respectively. The network also has
a mobile device that is always located in the vicinity of the RSU.

7.4.1 Experiments

Experiments have been conducted to analyze the CRU allocation process using
the Naive FCFS, Exhaustive MnM, and Efficient Pruning models, based on the per-
formance metrics that have been defined in Section 7.4.2. These comparisons were
made with different vehicle densities and CRU composition algorithms, and the dif-
ferent resource parameters as defined in Section 7.4. We tested our approach with
three different sets of service requests: 30, 50 and 100.

Our metric is based on measuring the number of requests that have been acknowl-
edged and completely processed at the end of the allocation and service fulfillment
process. We test the performance of this metric for a vehicle density ranging from
100-1000. We estimate the average number of requests that are completely processed
by the three allocation models. These averages are calculated from 30 simulation
runs for each vehicle density, with 95% confident intervals. The y-axis represents the
ratio of complete/total number of requests, fulfilled by the 3 models and the x-axis

represents the vehicle density.

7.4.2 Performance Metrics

Following the composition of different pools of the CRUs in the VCC network, this
work focuses on allocating these CRUs to service requests for service fulfillment. We
adopted several performance metrics to analyze and test the CRU allocation approach

using game theory.
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e CRU-assigned requests. It calculates the number of requests that have been
assigned a CRU for service processing, since it matches minimum request re-

quirements.

e CRU-assigned and completely processed service requests. It calculates
the number of requests that have been assigned a CRU and have been completely
processed. The vehicles that compose the assigned CRUs are in range of the

RSU and provide their resources, resulting in 100% service fulfillment.

e CRU-assigned and partially processed service requests. It calculates
the number of requests that have been assigned a CRU and have been partially
processed. Of the vehicles that compose the assigned CRUs, some vehicles are
not in range of the RSU to provide their resources, resulting in the request being

partially processed or incompletely processed.

e CRU-unassigned requests. It calculates the number of requests that have
not been assigned a CRU for service processing, since it does not match mini-

mum request requirements.

7.4.3 Results

Simulations were conducted for evaluating the performance of all three allocation
algorithms, with three sets of service requests; 30, 50 and 100 and vehicle density
100-1000.

Figures 7.6, 7.7 and 7.8 display the ratio of service requests that have been assigned
a CRU by matching minimum service requirements. The line graphs of all three
algorithms in 7.6 present a 100% success ratio of assignment. As the vehicle density
increases, the network is able to assemble more number of CRUs which are able to
match minimum service request requirements. However, at lower vehicle densities,
we can observe that the ratio of success is 60% lower for Naive FCFS and Ezhaustive
MnM and 55% lower for Efficient Pruning. With low vehicle densities, the network
assembles considerably fewer CRUs and since the requests are random in nature, there
could possibly be more number of large size requests, requesting for large size CRUs.
However, with low vehicle densities, the network assembles limited number of large
size CRUs, resulting in unassigned service requests.

In Figure 7.7, Naive FCFS presents a 30% drop in success rate of assignment,
as compared to Exhaustive MnM and Efficient Pruning algorithms. As the number

of service requests increases, there are fewer CRUs that match minimum service
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Figure 7.6: Ratio of Assigned / Total Number of Requests = 30
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Figure 7.7: Ratio of Assigned / Total Number of Requests = 50

requirements based on a FCFS approach. However, Exhaustive MnM and Efficient
Pruning present similar success ratio of assignment, with a drop of almost 20%, as
compared to Figure 7.6. There may not be sufficient CRUs in the network that match

with resource requirements of service requests. These are mostly CRUs belonging to



CHAPTER 7. PERFORMANCE ANALYSIS 59

1.0
—— Naive FCFS
—}— Exhaustive MnM
Efficient Pruning
0.8 A
e
0 /
o
3
T
g //\
5 0.6 1
0
c
=)
n
<
J 0.4
)
]
=)
o}
(4
0.2 A
0.0

200 400 600 800 1000
Number of Vehicles

Figure 7.8: Ratio of Assigned / Total Number of Requests = 100

the large pool since the distribution heuristic method assembles minimal large size
CRUs, to allow composing more CRUs in the network.

Figure 7.8 represents the ratio of assigned requests for all three algorithms when
the number of requests is equal to 100. As the number of service requests increases,
it affects the ratio of assignment of all three algorithms moderately. There is a drop
in the ratios by 40%, 25% and 20% for Naive FCFS, Ezxhaustive MnM and Efficient
Pruning, respectively. With increase in the number of requests, it becomes difficult
for CRUs to match the resource requirements of all services, especially in a scenario
like ours, where the algorithms assign only a single CRU to each request.

Figures 7.9, 7.10 and 7.11 displays the ratio of CRU-assigned and completely
processed service requests. As observed from the figure, all three models perform
significantly well, with a success rate of 70%. However, when we individually com-
pare their performances, the Naive FCFS algorithm presented 20% and 28% lower
ratios than Frhaustive MnM and Efficient Pruning, respectively, since each request is
matched with the first available CRU and if the request does not match, it is termed
as "Unassigned" and returned back to the mobile device. Ezhaustive MnM and Ef-
ficient Pruning perform better than Naive FCFS since the two algorithms assign
CRUs to service requests, considering the distance of a CRU from the RSU. However,
Exhaustive MnM considers a linear distance that is not reliable in assigning a CRU

to a service request. FEfficient Pruning performs considerably well, with a drop in
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Figure 7.9: Ratio of Complete / Total Number of Requests = 30

success rate for a 500-vehicle density in a 30-requests scenario, displayed in 7.9. This
happens due to the high mobility of vehicles, resulting in them quickly moving out
of range of the RSU. The position of the RSU also affects the success rate for certain
vehicle densities. The initial drop in success rate for vehicle densities 100 and 200 is
due to the fact that when there are less vehicles in the network, there are fewer CRUs
composed. It impacts the rate of service fulfillment since there would not be enough
CRUs in the system to accommodate the requirements or the request would be too
large and minimal large CRUs available for allocation. Additionally, when there are
fewer service requests to process, the vehicles allocated for resource provisioning tend
to remain in vicinity of the RSU, thus increasing the rate of service fulfillment.

In Figure 7.10, we see a moderate drop of about 20% in the success rate of com-
plete requests for the Naive FCFS model, when the total number of service requests
is equal to 50. It happens because, as we increase the number of service requests,
there are either not enough CRUs available for allocation, especially in low density
vehicles, or the CRU capacity does not match increased number of service requests
since requests are allocated on a first-come-first-served basis. It results in smaller
requests being assigned medium or large size CRUs, leaving behind no CRUs to fulfill
medium and large size requests. It is a point to note that the mobile device does
not forward service requests categorizing them by CRU sizes. However, Fzhaustive

Naive and Efficient Pruning present a steadily growing graph as the vehicle density
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Figure 7.10: Ratio of Complete / Total Number of Requests = 50

increases. However, there is a slight decrease in the success rate for these two models,
as compared to Figure 7.9, because as the number of requests increases and since
these requests are random in nature (of varying resource requirements), there would

not be sufficient CRUs to accommodate the needs of some requests.

In Figure 7.11, we notice a significant drop in the success rate of all three models,
when the number of service requests is equal to 100. Since the CRU composition
follows a distribution heuristic and assembles a balanced number of CRUs that the
network can support. Therefore, this is a scenario where there are not sufficient
CRUs available for allocation for lower vehicle density and a substantial group of
these requests could possibly belong to the medium and large size pool, resulting
in almost half the requests not being completely processed. Additionally, when the
number of service requests is large, a larger number of CRUs (and therefore, larger
number of vehicles) are assigned to fulfill these requests. However, these vehicles
display high mobility and may move out of range of the RSU, resulting in a drop in
the success rate of complete requests.

The Efficient Pruning model presents 20% and 10% higher ratios of success than
Naive FCFS and Erhaustive MnM, respectively. The Naive FCFS model is based on
the first-come-first-served approach, which is not considered reliable since majority

of service requests would remain unfulfilled if the small size requests are allocated
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Figure 7.11: Ratio of Complete / Total Number of Requests = 100

medium and large sized CRUs. The distance factor used to calculate the utility value
of a CRU in the Ezhaustive MnM approach is a linear distance. This means that a
CRU closer to the RSU is considered reliable for allocation than one that is farther
away. However, in real-life scenarios, it could be possible that the CRU closest to the
RSU displays a weak connection in comparison to the one farther away. Therefore,
the RSSI value is reliable to determine the ideal CRU for service allocation, which
makes FEfficient Pruning our ideal choice for service allocation and fulfillment.

In Figure 7.12, we observe that Naiwe FCFS displays comparably larger number of
partially-complete /incomplete service requests than FEzhaustive MnM and Efficient
Pruning. The algorithm does not consider distance of the CRU from the RSU and
its resource capacity for service provisioning. It randomly allocates the first available
CRU, which could be at a farther distance from the RSU. Therefore, it is unable to
connect and communicate with the RSU to provide its resources for service fulfillment.
The line graphs of figures 7.12, 7.13 and 7.14 for Ezhaustive MnM and Efficient
Pruning show a drop in the number of incomplete requests because as the vehicle
density increases, there is some amount of congestion in the urban centre, reducing
the mobility of the vehicles and therefore, allowing them to be in vicinity of the RSU
to process the request. However, Efficient Pruning performs slightly better than
Exhaustive MnM since it allocates CRUs based on their connectivity strength with
the RSU, allowing majority vehicles to be in vicinity of the RSU to process requests.
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Figure 7.12: Ratio of Incomplete / Total Number of Requests = 30
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Figure 7.13: Ratio of Incomplete / Total Number of Requests = 50

At the lower vehicle density mark of 100 and 200, the ratio of incomplete requests
remains unchanged for all three algorithms. For lower density vehicle scenarios, the
congestion in the network is minimal, allowing the vehicles to freely move around.

It results in most vehicles of assigned CRUs to quickly move out of range of the
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Figure 7.14: Ratio of Incomplete / Total Number of Requests = 100
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Figure 7.15: Ratio of Unassigned / Total Number of Requests = 30

RSU, leaving the request only partially processed. However, as the vehicle density
increases, the vehicles of the assigned CRUs remain in range of the RSU, providing
their resources for service fulfillment.

In Figure 7.15, it is observed that there is a significant drop in the number of unas-
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Figure 7.16: Ratio of Unassigned / Total Number of Requests = 50
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Figure 7.17: Ratio of Unassigned / Total Number of Requests = 100

signed requests until the vehicle density is 400 and then the graph becomes almost
uniform for all three models. The CRU distribution heuristic allows the network to
compose CRUs based on the number of vehicles in the network. Therefore, as the

vehicle density increases, the total number of CRUs in the network also increases,
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allowing sufficient service requests to be allocated. When closely observed, Naive
FCFS presents 10% and 15% lower ratios than Ezhaustive MnM and Efficient Prun-
ing. The algorithm possibly allocates medium and large size CRUs to small size
requests, leaving most medium and large size requests unassigned. Secondly, there
are not sufficient small, medium or large size CRUs available to accommodate differ-
ent capacity requests. On the other hand, Fzhaustive MnM and Efficient Pruning
display almost negligible number of unassigned service requests after the mark of
500-vehicle density.

As the number of service requests increase to 50 and 100 in Figures 7.16 and 7.17,
respectively, there is a significant increase in the number of unassigned requests for
the Naive FCFS model. As explained earlier, there are not sufficient CRUs available
to accommodate requests on a first-come-first served basis. Additionally, there is a
slight increase in the number of unacknowledged requests for low vehicle densities for
the Ezxhaustive MnM and Efficient Pruning models, as compared to the 30-request
scenario in Figure 7.15. As the number of service requests demand increases, there
are fewer number of CRUs available for allocation. Such a case happens for requests
that demand medium and large CRUs since the distribution heuristic estimates and
composes fewer number of medium and large CRUs, to avoid congestion of the net-
work.

The results of the three algorithms, as displayed in the graphs, confirmed the
expected performance where Efficient Pruning can identify a combination of CRU
allocations that matches a larger number of requests. The algorithm considers the
connectivity of vehicles to the RSU and the number of resources a CRU offers to a
request, resulting in minimal wastage of resources The Fzxhaustive MnM conducts
a search that achieves an optimal result but with a longer time. Its lower perfor-
mance compared with the Efficient Pruning approach occurs because pruning has a
more realistic, communication-aware fitness function. This makes Efficient Pruning
a connectivity-oriented algorithm. The only drawback of this model is that rarely, for
some vehicle densities, this algorithm performs weaker than Fzhaustive MnM. How-
ever, the several advantages of Efficient Pruning model overcome its only drawback,
making it an ideal choice for conducting CRU allocation and service fulfillment in
real-world scenarios. The worst performing model of the three is Naive FCFS since it
does not consider the connectivity level and resource capacity of a CRU for allocation,

resulting in vehicles being out of range of RSU and wastage of resources.



Chapter 8
Conclusion

This thesis has dealt with the resource allocation problem in VCC networks
through a new relaxed approach, which introduces Combined Resource Units that
aims at clustering resources of heterogeneous vehicles to minimize the number of
underutilized resources, facilitating discoveries and assignments in a dynamic urban
computing environment. Following CRU composition process, we have addressed
the service allocation and fulfillment problem by allocating CRUs to service requests
through a fair and efficient approach of game theory which implements the Efficient
Pruning model. We conducted simulations to evaluate the proposed composition

approach and allocation model.

8.1 Summary of Contributions

This work introduced the concept of clustering resources of heterogeneous vehi-
cles into virtual units called Combined Resources Units. This approach helped us
in identifying significant number of underutilized vehicles and their resources in the
VCC network, and utilizing them for service provisioning. Through this approach, we
configure our VCC network with three different pools of CRUs: small, medium and
large, which helps us in minimizing the search time for matching CRU and request
requirements and also maximizing the success rate of request fulfillment. By having
different pools of CRUs, maximum number of service requests can be acknowledged
and processed. We compared four different search algorithms for composing CRUs.
We also established a distribution heuristic method which helped us identify the pre-
cise number of CRUs that a VCC network with certain vehicle density can safely
compose, without congesting the network. The results of the distribution heuristic

method displayed that SSA, FASA and ELSA performed adequately. Amongst the dif-
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ferent search algorithms implemented, the SSA algorithm outperformed all the other
algorithms. This algorithm resulted in composing least number of under-assembled
and over-assembled CRUs, maximizing the use of available vehicle resources. This
contribution has been accepted for publication at the IEEE ISCC-2021 conference, in
the field of Vehicular Networks.

After conducting the CRU composition process, we allocate them for resource
provisioning to service requests. We studied and compared the performance of three
different models of allocation, by conducting experiments for different densities of ve-
hicles and service requests. A Naive-FCFS model was defined as a baseline, fulfilling
the minimum requirements of the CRU allocation process. However, this approach
was inefficient since service requests are fulfilled on a first-come-first-served basis, re-
sulting in wastage of resources. Next, we implemented an Exhaustive MnM model
that is a recursive algorithm used in decision making scenarios. This approach cal-
culates a payoff value for each CRU and assigns the one with highest payoff to a
request. The payoff is calculated based on connectivity and resources provisioning
factors. However, the connectivity of a CRU from RSU is calculated as a Euclidean
distance, which is linear. Therefore, it is not considered reliable. Additionally, the
Exhaustive MnM algorithm has a time complexity of O(b?), making it inherently
time-consuming since it loops through the list of all available CRUs, even though an
ideal match has been identified.

To overcome the drawbacks of Exhaustive MnM algorithm, we adopted the Effi-
cient Pruning algorithm for CRU allocation and service request fulfillment. The time
complexity of this algorithm is (’)(\/ﬁ), minimizing the time consumed in search-
ing for an ideal CRU for a service request. The utility value of this model is also
calculated based on the factors of connectivity and resource provisioning. However,
we define the connectivity level of a CRU in terms of its receiving signal strength
indicator value. The CRU with a higher utility value is allocated to a service request
for fulfillment.

There are some limitations of both the approaches proposed in this work:

e CRU Composition Approach. The current scenario pre-composes CRUs based
on their predefined capacity. However, this could limit the fulfillment of exces-
sively large sized service requests, maximizing the under-utilization of resources
in the network for service fulfillment. Our current scenario has a significant
number of incomplete /under-assembled CRUs, affecting the success rate of ser-

vice fulfillment.
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e CRU Allocation Approach. In our current scenario, a service request is allocated
a single CRU for fulfillment. This impacts the success rate of fulfillment since
the network may not have sufficient medium and large CRUs to fulfill large size

requests.

In terms of our current simulation settings, the primary RSU is loaded with sev-
eral responsibilities of triggering the start of CRU composition, assembling CRUs,
implementing the distribution heuristic allocating CRUs to service requests and com-
municating with vehicles to provide their resources for service provisioning. This
impacts the simulation time significantly, slowing the network and currently process-

ing services.

8.2 Future Research Directions

Even though the proposed approaches are promising solutions to the resource
management problem in VCC networks, it encounters several challenges, as defined
above that can be addressed in future work.

The VCC network should be flexible to allow the composition of CRUs as and
when it receives user requests. This flexibility should allow for maximum utilization
of resources and minimal wastage of resources. Also, we could identify newer methods
that minimize the number of incomplete CRUs to allow for a maximum success rate
in terms of service fulfillment.

Instead of allowing only a single CRU to be allocated to a service request, we
can make our approach flexible by allowing multiple CRUs to be allocated to a ser-
vice request. This would also impact and significantly maximize the success rate of
fulfillment, while minimizing the number of unassigned requests. The number of in-
complete requests due to vehicles being out of range of CRU could be minimized by
deploying multiple RSUs in the network that are connected to each other and can
fulfill a request if the primary RSU is not in reach of vehicles.

We can introduce V2V communication in our work. This would allow vehicles to
directly communicate with other vehicles, sharing information about their resource
capacity and also helping fulfill service requests if CRU-assigned vehicles are not in
range.

Since the RSU assembles CRUs following the distribution heuristic, we can prior-
itize service requests. Requests about road and traffic information can be prioritized
over infotainment requests, ensuring sufficient CRUs are available to process priority

requests first.
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In our current scenario, at the start of simulation, we have a single RSU that
broadcasts a message to all vehicles in range, requesting for their resources for com-
posing CRUs. It is time-consuming since vehicles in range receive the message and
respond back to the RSU, providing their resources. It would be interesting to have
vehicles provide their resource information, to multiple RSUs, as soon as they arrive
in the network. This would accelerate the CRU composition process, thus accelerating

the processing of service requests.
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