5,380 research outputs found

    Instabilities of infinite matter with effective Skyrme-type interactions

    Get PDF
    The stability of the equation of state predicted by Skyrme-type interactions is examined. We consider simultaneously symmetric nuclear matter and pure neutron matter. The stability is defined by the inequalities that the Landau parameters must satisfy simultaneously. A systematic study is carried out to define interaction parameter domains where the inequalities are fulfilled. It is found that there is always a critical density ρcr\rho_{cr} beyond which the system becomes unstable. The results indicate in which parameter regions one can find effective forces to describe correctly finite nuclei and give at the same time a stable equation of state up to densities of 3-4 times the saturation density of symmetric nuclear matter.Comment: 20 pages, 5 figures, submitted to Phys.Rev.

    Order parameters in the Landau-de Gennes theory - the static and dynamic scenarios

    Get PDF
    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies into our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations

    Connecting orbits for a singular nonautonomous real Ginzburg-Landau type equation

    Full text link
    We propose a method for computation of stable and unstable sets associated to hyperbolic equilibria of nonautonomous ODEs and for computation of specific type of connecting orbits in nonautonomous singular ODEs. We apply the method to a certain a singular nonautonomous real Ginzburg-Landau type equation, which that arises from the problem of formation of spots in the Swift-Hohenberg equation.Comment: 36 pages, 6 figure

    Bounds on the heat kernel of the Schroedinger operator in a random electromagnetic field

    Full text link
    We obtain lower and upper bounds on the heat kernel and Green functions of the Schroedinger operator in a random Gaussian magnetic field and a fixed scalar potential. We apply stochastic Feynman-Kac representation, diamagnetic upper bounds and the Jensen inequality for the lower bound. We show that if the covariance of the electromagnetic (vector) potential is increasing at large distances then the lower bound is decreasing exponentially fast for large distances and a large time.Comment: some technical improvements, new references, to appear in Journ.Phys.

    Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space

    Full text link
    A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten dimensional real representation of the group G=G={\bf O}3_3\otimes{\bf U}1×_1\times . We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group-subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial GG-invariant free energy, calculated by Mermin, are also determined.Comment: 27 revtex pages, 2 figures, use of texdraw; minor changes in the bibliography and in Table II

    Decay of superconductivity away from the magnetic zero set

    Full text link
    We establish exponential bounds on the Ginzburg-Landau order parameter away from the curve where the applied magnetic field vanishes. In the units used in this paper, the estimates are valid when the parameter measuring the strength of the applied magnetic field is comparable with the Ginzburg-Landau parameter. This completes a previous work by the authors analyzing the case when this strength was much higher. Our results display the distribution of surface and bulk superconductivity and are valid under the assumption that the magnetic field is H\"older continuous

    Can branes travel beyond CTC horizon in Godel Universe?

    Full text link
    Godel universe in M-theory is a supersymmetric and homogeneous background with rotation and four-form magnetic flux. It is known that, as seen in inertial frame of co-moving observer, all geodesics with zero orbital angular momentum orbit inside `surface of light velocity' (CTC horizon). To learn if other probes can travel beyond the CTC horizon, we study dynamics of M-graviton and, in particular, M2-brane, whose motion is affected by Lorentz force exerted by the four-form magnetic flux and by nonzero orbital angular momentum. Classically, we find that both probes gyrate closed orbits, but diameter and center of gyration depends on sign and magnitude of probe's energy, charge and orbital angular momentum. For M2-brane, orbits in general travel outside the CTC horizon. Quantum-mechanically, we find that wave function and excitation energy levels are all self-similar. We draw analogy of probe's dynamics with Landau problem for charged particle in magnetic field.Comment: Latex, 3 .eps figs, 21 pages, v2: typos fixed, references adde
    corecore